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2. James B. Sympson: Estimation of Latent Trait Status in Adaptive Testing
Procedures

The role of latent trait theory in measurement for criterion prediction
and in criterion-referenced measurement is explicated. It is noted that
latent trait models allow both normed-referenced and criterion-referenced
interpretations of test performance. Using a 3-parameter logistic test
model, an example of sequential estimation in a 20-item adaptive test is
‘presented. After each item is administered, four different ability esti-
mates (two likelihood-based and two Bayesian estimates) are calculated.
Characteristics of the four estimation methods are discussed. The infor-
mation available in the items selected by the adaptive test is compared
with the information available from comparable "rectangular' and "peaked"
non-adaptive tests. The joint application of latent trait theory and
adaptive testing is advocated as a useful approach to human assessment.

3. C. David Vale: Adaptive Testing and the Problem of Classification
The use of adaptive testing procedures to make ability classification
decisions (i.e., cutting score decisions) is discussed. Data from com-
puter simulations comparing conventional testing strategies with an
adaptive testing strategy are presented. These data suggest that,
although a conventional test is as good as an adaptive test when there is
one cutting score at the middle of the distribution of ability, an adap-
tive test can provide better classification decisions when there is more
than one cutting score. Some utility considerations are also discussed.

4. Steven M. Pine: Applications of Item Characteristic Curve Theory to the
Problem of Test Bias
It is argued that a major problem in current efforts to develop less
biased tests is an over-reliance on classical test theory. Item Charac-
teristic Curve (ICC) Theory, which is based on individual rather than
group-oriented measurement, is offered as a more appropriate measurement
model. A definition of test bias based on ICC theory is presented. Using
this definition, several empirical tests for bias are presented and demon-
strated with real test data. Additional applications of ICC theory to
~the problem of test bias are also discussed.

5. 1Isaac I. Bejar: Applications of Adaptive Testing in Measuring Achievement
and Performance

The paper reviews two relatively recent developments in psychometric
theory, the assessment of partial knowledge and research in adaptive
testing. It is argued that the use of non-dichotomous item formats,
needed for the assessment of partial knowledge, and now made possible by
the administration of achievement test items on interactive computers,
should result in achievement test scores which are a more realistic and
precise indication of what a student can do.
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AppPLICATIONS OF COMPUTERIZED ADAPTIVE TESTING

A BRIEF OVERVIEW OF ADAPTIVE TESTING
JAMES R, McBRIDE

U. S. Army Research Institute for the Behavioral and Social Sciences

This symposium will present some recent developments in adaptive testing which
have applications to several military testing problems. The purpose of this over-
view is to provide a brief introduction to adaptive testing--what it is, what is
needed to implement it, and why it is of interest.

"Adaptive" testing is one of a number of terms used to describe a procedure
whereby the test items that comprise an individual's test are selected during
the test itself. Some of the other terms used interchangeably with adaptive testing
include tailored testing, branched testing, programmed testing, and individualized
testing. The term "adaptive" was chosen because these tests adapt themselves to
the examinee; different persons answer different items, with the items chosen
sequentially to suit the individual examinee's performance.

Differential selection of test items may be accomplished in any number of
ways. But, generally, in adaptive tests a more difficult item is administered
following each correct answer, and an easier item following an incorrect one. Some
methods of adaptive testing have been implemented in paper-and-pencil mode; for
example, Lord's (1971) flexilevel adaptive test was designed specifically for
paper-and-pencil administration. However, experience has shown that the instruc-
tions for paper—and-pencil adaptive tests are too complex for some examinees to
follow successfully (Weiss & Betz, 1973, p. 23) A more satisfactory mode of admin-
istration is through use of an interactive computer terminal or similar device.
Thus, Weiss (1976) chose to administer adaptive tests at a cathode-ray terminal
(CRT); Bayroff, Ross and Fischl (1974) reported the Army's development of a
computer—controlled slide projection terminal for adaptive testing; Waters (1977)
designed and built a micro-processor terminal which directs the examinee through
an adaptive sequence of test items read from a printed booklet.

Item selection strategies. Because adaptive tests are quite different from
conventional tests in which all examinees must answer the same set of test items,
adaptive testing poses some new psychometric problems. One problem is how to
choose successive items from the pool of available items. This problem can be
solved through an item selection strategy, which defines a formalized rule for
item choice.

Numerous item selection strategies are possible. They vary from very simple
two-branch rules to rules based on the optimization of rather complex mathematical
functions (Weiss, 1974). Obviously, computerizing the item-selection process
facilitates the use of the mathematical optimization procedures.



Scoring adaptive tests. Since different examinees take sets of test items
which may differ in number, difficulty, and discriminating power, the traditional
number correct score will not suffice to order people on most adaptive tests. Some
scoring procedure is required which will consider not only how many items were
answered correctly, but also which items were taken, and the pattern of right and
wrong answers to those items. The scoring procedures most widely used in adaptive
testing are based on various formulations of latent trait theory (e.g., Birnbaum,
1968; Lord, 1952, 1974; Rasch, 1960). All of these formulations provide statis-
tical methods for locating examinees on a common scale, even though they responded
to different sets of test items. ’

Item response theory. Because of the unique characteristics of adaptive
tests-~tailoring each test to the individual and locating all examinees on a common
scale despite the different items constituting each test--traditional test theory
is inadequate for use in adaptive testing. '"Latent trait" or "item response'
theory (Lord, 1952, 1976) provides an adequate theoretical basis for the develop-
ment of adaptive testing.

Item response theory, also known as item characteristic curve theory, .is a
general term for theoretical formulations which account for examinees' responses
to test items in terms of their status on an underlying attribute. 1In ability
(or achievement) testing, the higher the attribute status, the larger is the
probability of a correct respomse to any given item which measures the trait in
question. Through appropriate scaling procedures, a response curve can be con-
structed for every such test item. This item characteristic curve (ICC) expresses
the probability of a correct response as a mathematical function of the scaled
trait and the item characteristics.

Every person can be characterized by his/her location on this scale. Every
test item also has a location parameter (its threshold, or "difficulty") and
perhaps its own rate parameter (proportional to the steepness of the ICC), analogous
to its discriminating power. Some items also have a lower asymptote, or guessing
parameter.

Knowing which items a person has answered; the difficulty, discrimination,
and guessing parameters of those items; and whether the answers were correct or
incorrect permits the use of the statistical techniques of item response theory
to estimate the examinee's ability. The resulting ability estimate is a "test
score" of sorts which has an error component like any other observed score. Unlike
classical test theory, item response theory makes no assumption that measurement
errors are independent of "true score', which is appropriate because this central
assumption of classical test theory is untenable (Lumsden, 1976). Whether ability
is defined as '"true score'" or as location on a latent continuum, errors of measurement
can vary at different levels of the trait, reflecting in part the discrepancy
between examinee trait level and the difficulties of the test items.

Information. Item response theory permits the evaluation of something closely
akin to the standard error of measurement as a function of underlying ability, if
the test item parameters are known. This is called the test information function
(Birnbaum, 1968) which is inversely proportional to the standard error of estima-
ting an examinee's location on the trait scale. If the information function of a



typical peaked conventional test (one whose items are all about equal in difficulty)
were plotted, its test information function would likewise be peaked--very high

over a narrow range of the trait, but diminishing in magnitude elsewhere. Such a
test will discriminate very well over a narrow interval of the trait range; it will
not discriminate as well outside that interval. The ability level at which the

test information function is highest can be referred to as the test "center'.

The information function of a "rectangular" conventional test (one whose
item difficulties are uniformly distributed over a wide range) is fairly flat, but
low over a broad interval on the trait scale around the test center. This test
would measure about equally well over a much wider range than the peaked test,
but other things being equal, would not discriminate nearly as effectively as
does the peaked test at its center.

The design of conventional tests. A test measures best (most precisely) where
its information function is highest (and hence its standard error is lowest).
It is frequently desirable to have high measurement precision over most of the
normal range of the attribute we seek to measure. This is tantamount to a high,
flat information function. Conventional testing, however, presents a dilemma. A
peaked test can be constructed which yields an information function with a high
peak; or at the other extreme, a rectangular test can be built which has a low,
flat information function. A test with a high, flat information function cannot
be constructed for conventional test administration unless it is extremely long.

This problem can be referred to as a "bandwidth-fidelity dilemma", with
apologies to Cronbach (1961), who described a different "bandwidth-fidelity
dilemma". The designer of a conventional test can construct it to have high
"fidelity"-~high precision, low measurement error--over a narrow range of ability;
or to have a broad "bandwidth"--equiprecision of measurement over a wide range
of ability, at the expense of fidelity. In designing a conventional test, there
is a tradeoff between broad bandwidth and high fidelity; the designer cannot have
both.

Adaptive testing. Herein resides the most attractive feature of adaptive
tests from a psychometric point of view: Because the test is adapted to the
individual, the discrepancy between trait level and item difficulty can be made
both small and fairly constant across the trait range. The result is a flat
information function which is also generally high. Adaptive tests--and only
adaptive tests—-are capable of accurate, equiprecise measurement over a wide
ability range. This should pay dividends in test reliability, criterion-~related
validity, and in the general utility of the test for a broad range of measurement
and decision applications.

A properly designed adaptive test will have higher reliability than a conven~—
tional test of the same length. As a corollary to that, an adaptive test can
achieve a specified level of reliability in substantially fewer items than can a
conventional test, thus permitting the measurement of additional attributes in
the time saved. Both improved reliability and additional measurements should result
in an increment in predictive validity over that obtained using conventional tests.

In addition to the psychometric benefits accruing from the use of adaptive
tests, there are psychological benefits to the examinees. Adaptive tests can have



positive effects on the test-taking motivation of examinees (Betz & Weiss, 1976b)
and, for some testees, on their measured ability levels (Betz & Weiss, 1976a).

By tailoring test difficulty to examinee ability, adaptive tests can reduce the
effects of guessing among low-ability examinees and make any remaining effects
relatively constant across ability levels.

Summary

This overview has presented a rather broad-brush introduction to adaptive
testing. Hopefully, it has conveyed some conception of what adaptive testing
is, of the rudiments of the test theory supporting it, and of the significant
psychometric and psychological advantages that can accrue when a well-designed
adaptive testing program is implemented in a mental-measurement setting. The
four principal papers in this symposium will deal in more detail with some methods
used in conjunction with adaptive testing, and with a variety of areas of appli-
cation of adaptive tests which are relevant to the needs and problems of test
users in the military.



ESTIMATION OF LATENT TRAIT STATUS IN ADAPTIVE TESTING PROCEDURES
JAMES B. SYMPSON

University of Minnesota

During the last few years, latent trait theory has become increasingly
important as a theoretical foundation for the practice of psychological and
educational assessment. This has been due to shortcomings inherent in classical
test theory (Lumsden, 1976) and to recent developments in testing practice. In
particular, when "adaptive'" or "individualized" testing is desired, latent trait
theory provides a particularly useful conceptual scheme for guiding test design and
test scoring procedures.

Latent trait theories are characterized by a mathematical model that relates
the probability of occurrence of a particular response class (e.g., a 'correct"
response) in the presence of a particular stimulus (e.g., a test item) to a person's
position on one or more metric dimensions. The graph of the function that relates
probability of a particular response class to a person's status on these dimensions
can be referred to as a response-characteristic surface.

Both univariate and multivariate latent trait models have been proposed. The
univariate models (e.g., Birnbaum, 1968; Bock, 1972; Lord, 1952; Rasch, 1960)
assume that response probabilities are related to the relative positions of persons
and stimuli on a single metric dimension. Multivariate models (e.g., Christoffer-
son, 1975; Samejima, 1974) allow for the possibility of several latent dimensions.

Latent Trait Theory and the Objectives of Measurement

When they first encounter latent trait theory, many people question its
practical utility. For example, they often ask, "Why should I bother with an
approach to testing that involves inferred latent traits if what I'm really
interested in is either predicting some criterion accurately or achieving content
validity and implementing criterion-referenced measurement?" 1In order to motivate
an interest in latent trait estimation procedures, it will be useful to discuss
briefly the issues raised by this type of question.

The "existence' of latent traits. The adoption of latent trait theory as a
guide to test construction and test scoring does not require a belief in the
"existence" of unobservable traits that control human behavior. Empirically, it is
sufficient to inquire whether peoples' responses to test stimuli can be predicted
accurately on the basis of such a model. The postulated dimensions of latent trait
theory can be viewed as quantitative variables that are created by calibrating and
scoring test items in a certain way. These variables can provide a convenient basis
for designing testing procedures and may lead to increased predictive accuracy in
scientific and practical applications.

This research is supported by contract NOOO14-76-C-0243, NR150-382, with the
Personnel and Training Research Programs, Office of Naval Research.



Measurement for criterion prediction. In many situations, tests are developed
and applied with the sole intention of predicting performance on a criterion of
interest. The introduction of intervening variables (latent traits) might seem
unnecessary when one is only interested in obtaining a high degree of relationship
between test scores and criterion scores. However, estimates of latent trait status
can themselves be viewed as a particular variety of test score. Such scores may or
may not have higher predictive validity than more conventional test scores; this
is an empirical question. But,even if predictive validity is mot increased via the
use of latent trait scores, it may still be advantageous to adopt a latent trait
approach if the testing process can be made more efficient as a result (e.g., through
adaptive testing procedures).

Moreover, test development for the purpose of criterion prediction is always
based upon an implicit structural model. No one chooses items at random from all
conceivable item domains. Test developers try out items with certain kinds of
content and never consider using other kinds of content. They also attempt to
generate items that have difficulty levels or endorsement rates (i.e., p-values)
that are not too extreme in the population to be tested. This is done so that item-
criterion correlations will not be unduly restricted. Such procedures suggest the
existence of an implicit structural model.

Trying certain types of items, and not others, implies that certain types of
inter-person differences exist and are related to criterion performance, while
others are not. More generally, any conceptual scheme for classifying test items
implies a corresponding set of response variables that can be generated when the
items are administered. 1In selecting items for criterion prediction the test
developer indicates the response variables that are thought to be related to the
criterion.

A concern about item difficulties and endorsement rates implies that the
probability of a given response to an item is a function of status on the relevant
response variable(s). If such probabilities were not a function of status on the
response variables, an item would have the same p-value in every conceivable popu-
lation and there would be no need to match item difficulties to the population that
is to be tested.

A latent trait approach to test construction and scoring provides a formal
vehicle for elaborating structural models and encourages the test developer to make
structural assumptions explicit. When structural models are explicitly stated,
they can serve to guide test construction efforts and aid in the interpretation of
empirical results.

Content validity and criterion-referenced measurement. The testing situation
never constitutes the entire behavioral domain of interest. The implicit objective
in pursuing content validity and in implementing criterion-referenced measurement
is to make more accurate inferences about a person's potential for performance in a
hypothetical task domain (Cronbach, 1971, p. 452; Glaser & Nitko, 1971, p. 653).
This hypothetical task domain, though it is not observable in its entirety, is
carefully defined in terms of performance objectives or item content. Test items
are generated that represent the domain, and responses to these items are used as a
basis for making inferences about domain performance.




Some individuals protest such a view and argue that in criterion-referenced
measurement the test stimuli are the criterion tasks of interest and that no
further task domain is intended or implied. However, unless all the tasks that are
required on the job are included in the test, inferences are necessarily being made
about a larger task domain from a sample of person-stimulus interactions drawn from
the domain.

What is the nature of the hypothetical task domain in achievement testing?
Such task domains can be described in terms of a multidimensional structural model.
Whenever test stimuli can be clustered with regard to common content or process
and arranged in a learning hierarchy within each cluster, there is a definite
possibility that a latent trait approach to achievement testing will be useful.

Norm-referenced and criterion-referenced interpretations of test performance.
In recent years, the distinction between norm-referenced and criterion-referenced
measurement has been widely discussed. An important fact to keep in mind is that
this distinction properly applies to the type of information available from test
scores, not to test content or the testing procedure itself (Hambleton & Novick,
1973, p. 162). This is important because estimates of latent trait status can
provide information about both inter-person differences (norm-referenced interpre-—
tations) and intra-person response probabilities (criterion-referenced interpreta-
tions) for tasks drawn from a task domain.

An estimate of an individual's latent trait status can be converted to a
centile rank or standard score relative to any norm group previously tested using
the latent trait procedure. This same latent trait estimate, when considered in
conjunction with the latent trait parameters of a test item (i.e., a task sample)
that has been previously calibrated, allows generation of the probability of
occurrence of a given response class (e.g., a "correct" response) in the presence
of the item. (That is, one can determine the probability that a person will
complete a given task successfully, even though the person has never attempted the
task.) The fact that latent trait theory can provide both norm-referenced and
criterion-referenced interpretations of test performance indicates that the current
schism between psychological and educational testing may be narrowed considerably
in the years to come.

Estimating Latent Trait Status

In order to exploit the wide range of potential applications of latent trait
theory, it is necessary to understand procedures for estimating latent trait status
of individual testees. Four methods for obtaining estimates of latent trait status
are described below. In addition, it will be shown that the accuracy of such esti-
mates can often be improved through the use of adaptive testing procedures.

The latent trait model to be described is one in which only two response classes
are considered, a keyed response and a non-keyed response, and the probability of
occurrence of each response class is a function of a single latent dimension. This
model might be applicable to a test that has been constructed to maximize internal
consistency (Nunnally, 1967, pp. 254-268) and in which items are scored dichotomously.
The model would not be suitable for tests that involve a multidimensional item

structure, but the principles of latent trait estimation that are discussed can
be generalized to such cases.



The Three-parameter Logistic Model

This latent trait model has been investigated extensively by Birnbaum (1968).
The function rule that relates probability of a keyed response to the parameters
of the model is given in Equation 1.

Pg(e) =c, + (l—cg)[1+exp(-—1.7ag(6—bg))]_1 [1]

The quantity Pg(e) is the probability of a keyed response to item g, with
parameters ag, b and cg, by a person whose location on the latent trait con-
tinuum is given by the quantity © (theta). The exponential operator (exp) indi-
cates that the quantity in parentheses is an exponent of the constant e=2.71828.
Figure 1 shows a graph of the function Pg(e) in the interval from 6=-3.00 to
=+3.00 for an item having a =2.0, bg=0.0, and cg=.00. This graph was generated
by evaluating Pg(e) at 61 points along the theta continuum. The irregularities

visible in Figure 1 result from rounding P (8) to the nearest .02 for plotting
purposes. g

Figure 1
Response Characteristic Curve (a=2.0, b=0.0, c=.00)
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The item parameter cg is the value of Pg(e) when O=-x. It is the lower

asymptote of Pg(e) and is usually conceived of as the probability of a keyed

P(KEYED RESPONSE)



response occurring '"by chance" when 6=-©, The item parameter Q] is known as the

item location parameter; it indicates the location on the latent trait continuum

at which %7(9) is equal to -5(l+qg). The item parameter ag is known as the <tem

diserimination parameter. 1t is related to the slope of the response charac-
teristic curve and in this model is equal to the reciprocal of the distance that
one must move along the theta continuum in order to increase Qg(e) from .5(1+cg)

g Since ag=2.0 and cg=.00 in Figure 1, the
distance between the locations on the theta continuum at which Pg(6)=.5 and

to approximately (.8455(1—09))+c

Pg(6)5.84 is equal to l/ag=.50 theta units.
Figure 2 shows a response characteristic curve for an item having g =1,0,

b

g g

in the shallower slope of this graph and in the fact that the distance between
the locations at which ag(9)=.50 and ag(e)é.84 is now equal to 1/ag=1.00 theta

=0.0, and ¢,=.00. The reduced value of ag, relative to Figure 1, is reflected

Figure 2
Response Characteristic Curve (a=1.0, b=0.0, ¢=.00)
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units. A value of ag,in the vicinity of 1.0 is typical of many test items.

Values of ag,below about .5 are indicative of "

poor" items and values of a

above 2.0, while desirable in many applications, are not common.
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Figure 3 shows a response characteristic curve for an item having ag=1.0

bg=0'0’ and cg=.20. The value cg=.20 might be applicable to a multiple-choice

test item that has five response alternatives. In accord with the definitions
given above, bg is equal to the location at which Pg(6)=.5(1+.2)=.60 and a_is

]

equal to the reciprocal of the distance from the location at which Pg(6)=.60 to
the location at which Pg(e)é(.8455(1—.2))+.25.88. Note that one of the effects

of a non-zero cg is to reduce the slope of Pg(G) at all points along the theta

.
continuum.,
.
Figure 3
Response Characteristic Curve (a=1.0, b=0.0, c=.20
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The Concept of "Information"

Birnbaum (1968) has discussed the concept of "information" available in
test item. Birnbaum's <tem information function is given in Equation 2.

- - 2
I(e, ug) [Pg(e)] /[Pg(e) Qg(e)] [2]

In this equation, u, is the item response variable. It is equal to 1 when a

g
keyed response is emitted and is equal to O otherwise. The quantity Qg(e) is

o
(=]
.

©

«10 20 430 L4C 50 .60 .T7C BD .90 1.0C
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.00
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equal to 1—Pg(9). The numerator of Equation 2 is the squared first derivative
(i.e., the squared slope) of Pg(e) at a fixed value of 6. The denominator is
the variance of the item response variable, ug, at a fixed value of 6. The
quantity I(G,ug) is an index of the item's ability to discriminate people whose

latent trait location equals 6 from people at nearby latent trait locations.

In general, a steeper slope for Pg(e) implies greater discriminating power.
As was noted earlier, high values of ag and low values of cg increase the slope
of Pé(e) and, hence, the information available from an item. The variance of
ug approaches zero at latent trait levels that are deviant from bg and reaches
its maximum value at the latent trait level where Pg(6)=.5. Figure 4 shows a
graph of the function I(G,ug) in the interval from 6=-3.00 to +3.00 for the item
shown ' in Figure 2, which has ag=l.0, bg=0.0, and cg=.00. This graph was generated
by evaluating I(G,ug) at 61 points along the theta continuum and rounding the

obtained values to the nearest .02,

.
Figure 4
. .
Information Curve for a Single Item (a=1.0, b»=0.0, ¢=.00)
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Figure 4 shows that an item provides maximum information in the region of
the theta continuum where the item is located (i.e., near bg) and relatively
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little information at levels far below or far above b _. This result is consis-

g

tent with intuitive impressions of item discriminating power. If, for example,
an ability test item that was suitable for third graders (i.e., Pb(e) near ,5

among third graders) were administered to college students (in which group
Pg(6)51.0), all the college students would probably answer it correctly and

no basis for discriminating among college students would exist. Note that in
Figure 4 the information curve is symmetric about bg and attains a maximum

value of approximately .72.

Figure 5 shows an information curve for an item having «,=.85, b.=0.0, and

g g
¢.,=.00. This curve, while still symmetric about bg, attains a lower maximum

g
(approximately .52) and falls off more gradually on either side of bg than the

curve in Figure 4. 1In fact, the item represented in Figure 5 provides slightly
more information than the item represented in Figure 4 in the interval below
6=-1.40 and in the interval above 6=1.40. However K the gain in these regions
is slight compared to the information loss in the interval -1.40 < 8 < 1.40.

Figure 6 shows an information curve for an item having a.=1.0, b,=0.0,

g g
and ¢,=.20. This curve is not symmetric about bg’ It attains its maximum

g ,
value of about .50 near 0=.16. The curve falls off more rapidly on the left
of 6=.16 than on the right. This reflects the fact that "chance" keyed res-
ponses are more prevalent among people located below bg than among people located

above bg' Such "lucky" responses contribute error to the estimation of latent

trait status and reduce the amount of information available. Note that the
information curve in Figure 6 is lower than the curve in Figure 5. Introducing
the possibility of "lucky" keyed responses reduces the information available
from an item just as if it were an item with lower «,, but with cg=.00.

Sequential Estimation in an Adaptive Test

In order to demonstrate the sequential estimation of latent trait status
in an adaptive test, a computer program was used to simulate the test responses
of a person whose latent trait location is 0=+1.0. Twenty items having ag=1.0

and ag=.20 were administered. The items' bg values changed as a function of

responses generated during the simulated test. Table 1 summarizes the results
of this 20-item test.

The first column in Table 1 contains item numbers in the 20-item series
(g=1,2, . . .,20). The second column contains the bg values of the items

administered. The difficulty of the first item was b1=0 because this value
approximates the mean latent trait score in any population of persons that is
sampled to parameterize a set of test items. (An exception to this may be
found in Wright and Panchapakesan's (1969) implementation of the Rasch model.
They scale the latent trait metric such that the mean of the bg estimates is
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Figure 5

Information Curve for a Single Item (a

.85, b=0.0, c¢=.00)
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Figure 6

Information Curve for a Single Item (a=1.0, b

0.0, ¢=.20)
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zero and the mean O estimate among persons is, in general, other than zero.)
Following the first item, bg values either increase or decrease (in accordance

with a procedure to be outlined below) depending on whether a keyed or non-keyed
response was generated. The item response variable u_ is shown in the third
column of Table 1. g

Table 1
Sequential Estimation of Latent Trait Status
in a 20-Item Adaptive Test

Item MAXL WBL SBAYES OBAYES
No Diff. Resp. Est. Est. Est. Est.
1 0 1 5.49 1.61 .38 .38
2 1.00 0 .36 -.85 .05 .04
3 0 1 .67 .18 .32 .31
4 .18 1 .89 .82 .53 .54
5 .82 1 1.16 1.25 .75 .78
6 1.25 0 .87 .72 .57 .56
7 .72 1 1.03 1.00 .74 .75
8 1.00 1 1.20 1.21 .89 .93
9 1.21 0 .99 .93 .74 .74
10 .93 1 1.12 1.10 .87 .89
11 1.10 0 .95 .89 .73 .72
12 .89 1 1.05 1.02 .84 .84
13 1.02 0 .91 .85 .72 .70
14 .85 1 .99 .96 .82 .80
15 .96 1 1.07 1.05 .90 .90
16 1.05 0 .96 .92 .80 .78
17 .92 1 1.03 1.00 .88 .87
18 1.00 0 .93 .89 .79 .76
19 .89 1 .99 .96 .86 .84
20 .96 1 1.05 1.03 .92 .92

Likelihood-based estimation. The last four columns of Table 1 contain four
different estimates of latent trait status that were calculated after each item
was administered. The fourth column of Table 1 contains maximum-likelihood
estimates of 6. A maximum-likelihood estimate of 6 corresponds to the latent
trait location at which the observed pattern of item responses has the maximum
probability of occurrence. The probability of a set of item responses, given some
fixed value of 6 and the item parameters, is obtained using the likelihood function
given in Equation 3.

: u 1-u
L,(8) = g[Pg(G) g Qg(e) g] 3]

This equation assumes that the responses of a given person to different test items
are independent of one another. The operator II indicates that a serial product is
to be taken over the test items administered up to that point (g=1,2,...Kk).



-15-

After each item was administered, Equation 3 was evaluated at 101 equally
spaced 6 values in the interval from 6=-5.00 to 6=+5.00 and the largest of the 101
likelihood values was identified. Then, a quadratic function was fitted to this
largest likelihood value and the two likelihoods adjacent to it. The value of 6
corresponding to the maximum of the quadratic function was used as the "MAXL"
estimate. Under most conditions, the estimate of 6 obtained in this manner is
a good approximation to the estimate that would be obtained if more sophisticated
methods of numerical analysis were used to search for a root of the log-likelihood
function's first derivative.

The interval between 6=-5.00 and 6=+5.00 will contain at least 96% of the 0
estimates in any group that is used to parameterize test items. This is because
latent trait item parameterization procedures scale the theta metric such that the
mean 6 estimate equals zero and the standard deviation among the estimates is 1.0
(again, the Rasch model provides an exception to this general result), and by
virtue of Tchebycheff's inequality which states that the proportion of cases which
fall more than S standard deviations from the mean cannot exceed (I/SZ) in any
distribution (Hays, 1973, p. 253). If the distribution of © estimates is peaked
and unimodal, virtually all of the 6 estimates will be between -5.00 and +5.00.

Figure 7
Relative Likelihood and Posterior Probability Curves After 1 Item
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Figures 7, 8, and 9 show graphs of the data likelihood function in the
interval from 6=-3.00 to 6=+3.00 following the administration of 1, 2, and 3 items,
respectively. For plotting purposes, the raw likelihood values were expressed
relative to the largest likelihood value in the interval 6=-5.00 to 0=+5.00 and
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Figure 8
Relative Likelihood and Posterior Probability Curves After 2 Items
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then rounded to the nearest .02. As can be seen in Equation 3, after one item is
administered the likelihood function corresponds to either PZ(G) or QZ(G), depending

on whether a keyed or non-keyed response is emitted (compare Figure 7 and Figure 3).
The MAXL estimate after a "correct" answer to the first item is +5.49. Actually,
since Pg(e) is strictly increasing in 0, the estimate should be 8=+», but a finite

estimate is certainly more reasonable. After an "incorrect' answer to the second
item, with b2=1.00, the peak of the likelihood curve occurs near 98=+.36 (Figure 8).

After the third item, the peak occurs near 98=.67 (Figure 9).

"Weighted-by-likelihoods" (WBL) estimates of latent trait status appear in
the fifth column of Table 1. The WBL estimates were obtained by taking a weighted
average of 101 equally spaced 6 values in the interval from 6=-5.00 to 6=+5.00.
The weights used were the data likelihoods at each 6 value. That is,

WBL Est. = [I(Z_(8) 8)1/[Z(Z ()] [4]
| ) 5 Y

where 6 takes on the values -5.00, -4.90, «ees +5.00. The WBL estimate is influ-
enced by the entire set of 101 likelihood values instead of just the maximum of
the likelihood function.

The MAXL and WBL estimates can differ considerably when only a few items have
been administered, as can be seen in Table 1. Inspection of the relative likeli-
hood curve in Figure 8 shows why these two estimators differ after two items have
been administered. The WBL estimate is lower due to the fact that the left tail
of the likelihood curve is high relative to the right tail. Table 1 also shows
that the MAXL and WBL estimators become more similar as the number of items admin-
istered increases. Since the WBL estimator has not been proposed previously, .
future research is planned to study its characteristics.

The procedure by which item bg values were determiried during the simulated

test now can be outlined. The general rule followed was: Let the next item have a
difficulty level equal to the current value of the WBL estimator, except that in no
case shall the new bg value be more than 1.00 units from the immediately preceding

bg value. Thus, as can be seen in Table 1, item difficulties changed by 1.00

until the third item had been administered and the WBL estimate was .18. After
this, each item difficulty corresponded to the value of the WBL estimate following
the preceding item. 1In actual practice, an item is seldom found with bg exactly

equal to the current estimate of latent trait status. In such cases, an item that
has bg close to the desired value is selected for administration.

Bayesian estimation. Columns six and seven of Table 1 contain Bayesian
estimates of latent trait status. Given a specified form for the continuous distri-
bution of latent trait scores in a population (i.e., the prior probability density
function of theta), the item parameters for the items administered, and a vector
of item responses (u_ values), it is possible, in principle, to derive the

posterior probability density function of theta using the inverse probability rule
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of Bayes (Hays, 1973, p. 819). In practice, it becomes difficult to obtain
analytic expressions for the posterior theta distribution unless the prior distrib-
ution and the data likelihood function take on certain restricted forms. To avoid
such difficulties, the following approximate procedure can be used.

First, the continuous prior density function of theta is approximated with a
discrete probability distribution in which the probabilities are concentrated at
101 equally spaced points along the theta continuum. Thus, for example, the area
under the prior density curve between 6=-.05 and 6=+.05 is assigned to the point
0=.00. This is done for 6=-5.00, -4.90, ..., +5.00. Areas beyond 6=-5.05 and
0=+5.05 are assigned to the points 6=-5.00 and 6=+5.00, respectively. (These
extreme tail areas should be trivially small. If they are not, the region of
the theta continuum in which the procedure is applied can be shifted or extended.)
Next, data likelihoods are generated at the same 101 values of 6 using Equation 3.
The prior probabilities, f(8), and the data likelihoods, Lv(e), are then entered

into into Equation 5 in order to determine the posterior probability of each given
0 value.

P(8|v) = [L,(8) f(8)1/IIL,(8) F£(6)] | [5]
6

The resulting 101 posterior probabilities provide a discrete approximation to

the continuous posterior distribution of theta. Finally, the mean of the discrete
posterior distribution is obtained with Equation 6 and this value is referred to
as the "SBAYES" (simplified Bayesian) estimate at that stage of the testing
procedure.

SBAYES Est. = g[P(elv) 6] [61

SBAYES estimates of © appear in column six of Table 1. Figures 7, 8, and 9 show
three of the posterior probability distributions that were generated with the
SBAYES procedure when the prior distribution of latent trait scores was specified
to be a normal density function with zero mean and unit variance. The first three
SBAYES estimates in Table 1 are the means of these discrete distributions.

The "OBAYES" (Owen Bayesian) latent trait estimates that appear in column
seven of Table 1 were obtained using a procedure described by Owen (1975). While
Owen has described both a method for estimating latent trait status and a method
for selecting test items, only his estimation procedure was used here. Owen intro-
duced his procedure in the context of a three-parameter normal ogive latent trait
model. The close similarity of this model to the logistic model given in Equation 1
allows its application here.

The OBAYES procedure has two drawbacks. First, it is limited to prior distri-
butions that follow a normal density function. The SBAYES procedure described
above can accept any type of prior distribution. Second, the OBAYES procedure is
order dependent. That is, if a set of items is administered and the item responses
are recorded, then the value of the OBAYES estimator will depend partly on the
order in which the items are processed by the scoring procedure. The OBAYES proce-
dure implicitly generates an updated prior distribution after each item is scored
and then combines this new prior distribution with the likelihood function for the
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response to the next item. This in itself would not make the OBAYES procedure
order dependent but, in order to simplify the mathematics, Owen proceeded as if
each updated prior distribution could be described by a normal density function.
This approximation introduces a small amount of inaccuracy into the estimation
process and makes the procedure order dependent. The SBAYES procedure does not
utilize this type of approximation and is not order dependent.

After administering a single item, SBAYES and OBAYES estimates generally agree
to three decimal places when the initial prior distribution of 6 is a normal
density function. Since the OBAYES estimate is optimal in this particular situa-
tion, this level of agreement can be viewed as an indication that very little
inaccuracy is introduced by the discrete approximations in the SBAYES procedure.
When more than one item has been administered, or when the prior distribution
specified for the SBAYES procedure is non-normal, the two estimation methods will
not necessarily agree.

Figure 10
Relative Likelihood and Posterior Probability Curves After 20 Items
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Comparisons between likelihood-based and Bayesian estimates. Figure 10 shows
the relative likelihood and posterior probability curves that resulted after 20
items had been administered. The likelihood curve peaks near 0=1.05 and the
posterior probability distribution has a mean of .92 (see Table 1). Both the
likelihood curve and the posterior probability curve have shifted to the region of
the theta continuum near 6=1.00, and both curves have become more peaked. 1In fact,
as test length (k) approaches infinity, both of these curves approach a vertical
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line (i.e., a single-valued distribution) located at the value of § that is
generating the item responses.

Note in Table 1 that the Bayesian estimates of § tend to stay closer to 6=.00
than the likelihood-~based estimates throughout the testing process. This is
because Bayesian estimators are "drawn toward" the high density region of the prior
distribution. This is appropriate when one's objective is to minimize squared
errors of estimation in the population specified by the prior distribution.
Unfortunately, for tests of moderate length, a certain amount of bias at the tails
of the theta distribution must be accepted in order to achieve this minimization
(McBride & Weiss, 1976).

For moderate k, the maximum-likelihood estimator can also be biased. However,
for a given value of kX and values of 6 deviant from the high density region of a
peaked prior distribution, the maximum~likelihood estimator will tend to be less
biased than the Bayesian estimator. The Bayesian estimator's bias can be reduced
by increasing k as the estimate of 6 deviates from the high density region of the
prior distribution. This can be done readily in an adaptive testing situationm.

An interesting relationship exists between the likelihood-based estimators
and Bayesian estimators. If one applied the SBAYES estimation procedure and
specified that the prior distribution of theta was rectangular in the inter-
val 6=-5.05 to 6=+5.05, then the SBAYES estimate of 0, as determined by Equation
6, would be identical to the WBL estimator. Moreover, the MAXL estimate would
closely approximate the mode of the Bayesian posterior probability distribution.
Thus, all four types of latent trait estimators that have been presented here
can be viewed as Bayesian estimators. The MAXL estimator is a Bayesian modal
estimate of O when the implicit prior is restricted to a rectangular form, the
WBL estimator is a least-squares estimate of 0 when the implicit prior is
restricted to a rectangular form, and the OBAYES estimator is a least-squares
estimate of 0 when the explicit prior is restricted to a normal form. The
SBAYES procedure is the only one of the four methods that does not restrict
the form of the prior distribution. By virtue of this flexibility, the SBAYES
estimation procedure appears to be the most widely applicable of the four
methods.

Total Test Information

Birnbaum (1968, p. 454) has defined the information function of a test as
I(e)y = zfr(e, .
(8) g[ ( ug)] [7]

This function is the sum of the constituent item information functions and
defines the maximum amount of information that can be extracted from a set
of items. The amount of information actually extracted depends on how the
items are scored.

Information in the adaptive test. Figure 11 shows a graph of the test
information function for the 20 items administered in the simulated adaptive
test. It was obtained by evaluating Equation 7 at 61 equally spaced points
along the theta continuum in the interval from 6=-3.00 to 6=+3.00. This curve
shows the maximum amount of information available from these items. The curve
peaks near 6=1.00, thus indicating that this set of items provides maximum
discrimination among individuals whose latent trait locations fall near
6=1.00. The maximum value of the curve is about 9.00.
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Figure 11
Information Curve for 20-Item Adaptive Test
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Information in two conventional tests. Figure 12 shows a graph of the test
information function for a set of 20 items having ag=l.0, ca=.20, and bg values

equally spaced in the interval from -3.00 to +3.00 (i.e., b;5—3.00, -2.68, -2.37,

<

. « «5 +3.00). This would commonly be referred to as a "rectangular" distribution
of item difficulties. This test provides a fairly uniform level of information
across a broad range of the theta continuum. Unfortunately, the level of infor-

mation is relatively low. The curve attains its maximum value of about 3.20
in the interval -1.00 < 6 < 1.90.

Figure 13 shows a graph of the test information function for a set of 20
items having ag=l.0, cg=.20, and bg=0'0 for all items. This is a "perfectly

peaked" test. The shape of this information curve is rather similar to the
curve in Figure 11, but it is shifted to the left. The curve in Figure 13

attains its maximum value of 9.80 near 6=.16. At 6=1.00, the value of this
information curve is about 5.80.

Figures 12 and 13 represent two rather idealized non-adaptive tests. Both
of these tests deliver less information at 0=1.00 than the items selected by the
adaptive testing procedure. What is the implication of this result? If, for
some practical purpose, it were necessary to order a testee with 621.00 relative
to other individuals falling at nearby 6 values, fewer errors would be made if
O estimates derived from the adaptive test's items were used than if estimates
derived from either conventional test were used.

INFBRMATION VALUES
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Information Curve for 20-Item Rectangular Test (
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Figure 13
Information Curve for 20-Item Peaked Test (b=0.0 for all items)
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Summary

Several procedures for estimating latent trait status have been presented.
It has also been suggested that adaptive testing procedures often can provide
more accurate estimates of latent trait status than conventional tests. Though
there is no necessary connection between latent trait theory and adaptive testing,
there is a strong natural impetus toward their joint application. Latent trait
theory provides adaptive testing with a coherent theoretical foundation. It is a
guide to procedures for designing and scoring adaptive tests. On the ather
hand, adaptive testing offers the opportunity to take maximum advantage of the
potentialities of latent trait theory. At this point in time, both a new type
of test theory and a new type of testing technology are available. Their joint
effect might possibly exceed the sum of the two parts.



ADAPTIVE TESTING AND THE PROBLEM OF CLASSIFICATION
C. DAVID VALE

University of Minnesota

Two basic goals in the use of ability tests are measurement and classification.
When a test is used for measurement, the objective is to accurately determine where a
testee's ability lies on the latent ability continuum. When a test is used for class-
ification, the objective is to determine on which side of a cutting score (or between
which cutting scores) a testee's ability lies. Such classification decisions should
be made so as to minimize the errors of misclassification. Once a classification is
made, there is no necessity for a more precise determination of an individual's
ability level.

This paper is concerned with the classification of abilities into discrete
categories. The general goals of classification will be explicated and alternative
means that may practically be used to achieve these goals will be presented and
compared using monte carlo computer simulactions.

The Classification Problem

Classification Errors and Utility Functions

The goal of this classification is to determine, with a minimal probability of
being in error, on which side of a cutting score or between which of several cutting
scores, a testee's ability falls. There are two kinds of error probabilities that
can be examined in making these classifications. One is the conditional probability
of being in error (i.e., for a single testee or at a specific ability level); the
other is the expected or unconditional probability of being in error across a group of
testees. The conditional probability is a function of the test, the testee's ability
level and the placement of the cutting score (for the moment, limiting the discussion
to one cutting score). For a given test of fixed length, the probability of making an
error of classification for a testee is usually high if the testee's ability level (0)
is near a cutting score (60), and lower if the ability level is distant from the cut-

ting score. This conditional probability of misclassification [P(M|e)] is described
by a function like that shown in Figure 14.

The unconditional probability of misclassification for a group of testees
[PM)], is a function of the conditional reliability function and the distribution
of abilities within the group under consideration. For a large group with
abilities distributed N(0,1), this probability is given by Equation 8.

P (M) =/°° P(M|0) ¢ (8) dO 8]

o]

-k

where ¢(0) = [2meexp(0?)]

In practical situations, it may be desirable to minimize the quantity in
Equation 8. This unconditional probability is a scalar quantity and as such can be

This research is supported by contract NO0014-76-C-0243, NR150-382, with the
Personnel and Training Research Programs, Office of Naval Research.
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minimized. A function such as the conditional probability function can only be
minimized at a single point and this is typically of little practical value
because theoretically, assuming a continuous distribution of ability, the proba-
bility of anyone having an ability at that point is zero.

Figure 14
A Conditional Probability of Misclassification Curve
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A more viable approach to making classification decisions is one that will,
over a group of individuals, maximize some form of utility such as the quality of
performance extracted from the work force. The unconditional probability of
misclassification reflects errors of classification into categories along a latent
continuum and it may be errors of classification along an observable success-failure
continuum that are of interest. This possibility is important because two indi-
viduals, one with an ability level slightly above a cutting score on the latent
continuum and the other with ability slightly below the cutting point, probably
have a trivial difference between their probabilities of success on a job. 1If
both are classified above the cutting score, however, one will be considered a
"hit" and the other a "miss" when classification occurs on the latent continuum.

In order to assess the practical value (i.e., cost effectiveness) to an organiza-
tion of an adaptive testing strategy, utility functions of 0 for each decision
must be specified. As an example of such utility functions, consider the following:
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For three classifications--low, middle, and high~-three utility functions
might be:

Uiow = 2 191
U edium = ®(3.0(640.7)) [10]
Uhigh = 2.0(0(3.0(8-0.7))) [11]

where ®(x) i/ﬂx o (t)dt

A practical situation in which these utility functions might arise is as
follows: There are three jobs requiring an ability, 6. One is so easy that almost
anyone can do it but when performed satisfactorily, it is only .5 utility units of

Figure 15
Conditional Utilities for each of Three Decisions
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value to the organization. A second job is fairly easy and 50% of people with 6
above -.7 can perform it satisfactorily. Differences in ability near -.7 make
greater changes in the probability of success than do differences around, say,
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8=0.0. Ninety-eight percent of people with 0 above 0.0 will be successful on the
job and additional increments in O are of little importance in predicting job
success. Success in this job is worth one unit of value. A third job requires
higher 6 to be successful, but 1s worth two units of value when performed satis-
factorily. The utility functions defined by Equations 8, 9, and 10 result in the
three utility curves presented in Figure 15. As can be seen, there is a clear
reason for assigning high 0 people to the third job and lower 6 people to the
second and first jobs.

Test Design for Classification Problems

Although it may be possible to determine that .quantity (e.g., probability
of misclassification or expected utility) which is to be minimized or maximized,
it is difficult to design a test explicitly for that purpose. The goal of optimal
test design can be approached practically via one of several approximation stra--
tegies. Two general types of testing strategies that have been researched in the
ability measurement domain are the conventional testing strategy and the adaptive
testing strategy. In the former, test items are selected to best measure the
abilities of members of a group, and the same test is given to everyone. In the
latter, a test is tailored, during the testing process, to each individual's level of
ability, and a different test may be given to each person. This permits higher
measurement precision over most of the ability continuum than that attained with
a conventional test.

In the remainder of this paper, two forms of a conventional test and one form
of an adaptive test will be compared. The conventional tests will be a unimodally
peaked test with all item difficulties of one value and a bimodally peaked test
(i.e., the simplest form of a multimodally peaked test) with difficulties of two
values. As will be discussed later, these are, respectively, attempts to put
items at a level where they best measure most people or at a level where people
need to be measured best. The adaptive test to be compared will be Owen's (1975)
Bayesian strategy. This strategy starts with some estimate of an individual's
ability, chooses an appropriate item, administers the item, and forms a new
estimate of the individual's ability. Using this estimate, it chooses the next
item and continues this procedure until the end of the test.

These strategies will be compared along the criteria previously discussed.
Since utility functions are peculiar to an organization, the majority of the
comparisons will be in terms of misclassification probabilities. The utility
functions presented above will, however, be discussed as examples in some later
comparisons.

Simulation Procedures

The comparisons presented in this paper assume that classification decisions
are made in the following way:

1). A testing strategy selects a subset of items from a large pool of items;

2) These items are then administered to a testee, and from his responses
to those items an estimate of ability level is obtained;
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3) The testee is then classified into that category which:

a) in the case where probability of misclassification is of interest,
is the one in which his estimated ability falls, or '

b) 1in the case where utility maximization is of interest, is the one
which for his estimated ability predicts the highest utility.

To simplify the analyses and interpretations, availability of an infinitely
large item pool was assumed. This pool contained items of all difficulties with
their discriminating powers fixed at a constant level. It was further assumed that
these items could not be correctly answered by guessing. These assumptions reduced
the problem of item selection to determining the difficulty of the next item to be
administered in the adaptive test. Finally, to make a determination of the
unconditional probability of misclassification possible, ability was assumed
distributed N(0,1).

Owen's (1975) Bayesian testing procedure requires a prior estimate of a
testee's ability to administer and score a test. For all data presented in this
paper, a fixed prior ability distribution which was N(0,1) was used for all testees.
Owen's scoring procedure was used to score the conventional tests and again a N(0,1)
prior was used.

Generation of Misclassification Probabilities and Expected Utilities

Conditional probability of misclassification was calculated for each of 30
values of 6 equally spaced between 6=-1.45 and 6=1.45. The simulation procedure
followed that described by McBride and Weiss (1976) or Vale and Weiss (1975).
Ten-item "tests" were administered to 200 "testees" at each of 30 points. The means
and standard deviations of the ability estimates were calculated at each point, a
normal distribution with these parameters was determined, and the proportion of
that distribution falling outside the correct cutting score interval was taken as
the probability of misclassification at that level of ability. These probabilities
were then visually fitted into the smooth curves shown in the figures.

To determine the unconditional probability of misclassification, ten-item
"tests" were administered to 2,000 "testees" with ability levels randomly sampled
from a N(0,1) population of ability levels (the same sample of 2000 ability levels
was used for all comparisons). The predicted category for individuals was the
score interval in which their ability estimate fell. The true category was the
interval in which their true ability fell. An individual was considered misclass-—
ified if the predicted category was not the same as the true category. The number
of misclassified individuals divided by 2000 was taken as the unconditional proba-
bility of misclassification.

Expected utility was determined by generating 2000 ability estimates following
the same procedures used in the calculation of expected probability of misclassifi-
cation. The optimal decision to make for an individual was taken as the decision
corresponding to the utility function with the highest value at the estimated level
of ability. The actual utility was the value of the utility function corresponding
to the decision made, evaluated at the "testee's'" true level of ability. The
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expected utility was simply the mean of these 2000 actual utility values. These

values are reported only in comparisons of tests in decisions involving more than
one cutting score.

Results

A Single Cutting Score

The simplest categorization situation to investigate is where there is one
cutting score placed in the middle of the ability distribution at ec=0.o. The best

conventional test for making this decision is one with all of its items peaked at
b=0.0. Figure 16 shows curves representing standard error of measurement functions

Figure 16
Standard Error of Measurement Curves for Three Tests
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(the reciprocal square root of the information functions) for three ten-item tests
with a=2.0; a peaked conventional test with all items having »=0.0, an ideal
adaptive test with all items having 5=0, and a practical adaptive test with items
having difficulties at the estimated ability level at each stage. The conventional
test provides a low error level at 6=0.0, but higher error levels distant from that
point. The ideal adaptive test provides the same low level of error at all ability
levels but is unrealistic because in order to implement it, it is necessary to know
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a testee's ability level before the test is administered. A practical adaptive test
provides a standard error function lower than that of the conventional test at abil-
ity levels distant from 6=0.0, but relatively higher near 6=0.0.

Assuming errors of measurement at a level of 6 are distributed N(8, SEM?), the
probability of misclassifying an individual is given by Equation 12.

|o-0]
P(MIG) =1-~-9 SEM
=1 - 3[/1(B) (60-—6)2] [12]

where 9@ is the cutting score, and I(8) is the test information

function evaluated at 6,

It can be shown from Equation 12 that when O is fixed, P(M|6) is a monotonic

increasing function of the standard error of measurement. Thus, the ordering of the

Figure 17
Conditional Probability of Misclassification, a=1.0
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three testing strategies on P(M!G) is the same as their ordering on conditional
standard errors of measurement at any level of 6. It can then be seen from these
curves that a practical adaptive test can provide a lower expected probability of
misclassification if it approximates the ideal adaptive test. How well a given
adaptive testing strategy approximates the ideal is, or course, an empirical
question.

Figure 17 presents the P(M!G) curves for a ten-item conventional test, with
difficulties peaked at b=0.0, and a ten-item Bayesian adaptive test, both with item
discrimination fixed at a¢=1.0 and both scored by Owen's method. The curves appear
very similar, being high near the cutting point (indicating a high probability of
making an error) and low distant from the cutting point. The conventional test
allows somewhat better decisions for values of 6 nearer to the cutting score. The
differences in the conditional probability of misclassification function yield a
very small difference between unconditional probability of misclassification values
for the two strategies, which were .120 for the conventional test and .122 for the
Bayesian test. (Unconditional probabilities are shown in parentheses beside the
legend in Figure 17 and successive figures.)

Figure 18
Conditional Probability of Misclassification, a=2.0
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Figure 18 shows P(M|6) curves for the same strategies with item discriminina-
tions of ¢=2.0. The same general results were obtained, except that the differences
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at values of 3 distant from the cutting score were more pronounced, and the range
of superiority of the conventional test was smaller. Due to the N(0,1) shape of
the ability distribution, however, small differences near the cutting point are as
important in the determination of the expected probability of misclassification as
large differences distant from the cutting point. Difference in expected probabil-
ity was still very low (.076 versus .075).

Figure 19
Conditional Probability of Misclassification, @=3.0
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Figure 19 shows curves for tests with high item discrimination (aq=3.0). Again,
similar results were obtained and the difference in expected probability of mis-
classification was still small (.052 versus .054).

These results suggest that an adaptive test makes classification decisions
about as well as a conventional test in this simple case where a conventional test
should perform better in comparison to an adaptive test. However, it should be
noted that the conventional test was superior to the adaptive test in an increas-
ingly narrower range of 6 with increasing item discriminations.

More than One Cutting Score

Design of conventional tests is more complicated, however, when the cutting
scores deviate from the center of the ability distribution. A given increase in
information, which corresponds to a given decrease in standard error, has its
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greatest effect on the conditional probability of misclassification at ability
levels near a cutting score. This suggests that items should be peaked at the
cutting scores. But a given reduction in conditional probability of misclassifica~
tion has its greatest effect on the expected probability of misclassification at
levels of ability where most of the people are located. This, assuming 6N(0,1),
suggests peaking the item difficulties at b=0.0. As a result, when the cutting
score is at some value of 6 other than 0.0, the two suggestions are in conflict.
The optimal point(s) to peak the difficulties will be some function of the location
of the cutting scores, the discriminating powers of the items, and the underlying
ability distribution. Determination of such an optimal design of a conventional
test is beyond the scope of this paper. However, comparisons of some standard
conventional test designs with an adaptive test will be informative.

Figure 20
Conditional Probability of Misclassification, a=1.0
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Assume that there are two cutting scores, one at 60=—.7 and the other at ec=.7,

and that all errors of misclassification are equivalent in terms of importance.

One classical approach to designing a conventional test involves peaking half of
the items at each of the two cutting scores, where the fine distinctions need to be
made; such a test can be referred to as a bimodal conventional test. Another
approach is to peak all the items at 5=0.0; this test can be called a unimodal
conventional test.
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Figures 20 through 22 present the conditional probabilities of misclassifica-
tion for each of the unimodal and bimodal conventional tests, and the Bayesian
adaptive test, at three levels of item discrimination. TFigure 20 shows the curves
for the case when g=1.0. There is little suggestion in Figure 20 as to which
strategy is better. But an interesting discontinuity is observed for estimates
from all testing strategies at the cut points. This characteristic is due to the
fact that, for finite-length tests (which include 10-item tests like those used
here), the Owen's Bayesian score is biased (i.e., the expected value of the score
at a given level of O is not 6). Specifically, in this case, the Bayesian score is
biased in the vicinity of the cutting scores toward the center of the population
ability distribution at 6=0.0. This causes more testees to be classified into the
middle interval than would be by an unbiased score. The effect is that fewer errors
of classification are made for ability levels in the middle interval and more are
made for individuals in the two extreme intervals. Comparing expected probabilities
of misclassification, the adaptive test yields the lowest probability (.197) and
the bimodal conventional, the highest (.224).

Figure 21
Conditional Probability of Misclassification, ¢=2.0
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It is difficult to say in this case, however, whether the adaptive test
provides a lower expected probability of misclassification because it makes better
decisions or because it is conservative. The conservatism results in more classifi-
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cations errors in the extreme categories, and fewer errors at central ability
levels where more individuals' ability levels lie.

When a=2.0 (Figure 21), the unimodal conventional test shows pronounced
discontinuity suggesting that scores are too extreme near the cutting points. The
adaptive test provides the smallest conditional probabilities of misclassification
over most of the ability range. It makes a few more errors in the extreme intervals
than does the unimodal conventional test, but the unimodal test's superiority is
offset by extreme error rates in the middle interval. 1In terms of expected proba-
bilities of misclassification, the adaptive test is again superior [P(M)=.110].

With an expected probability of misclassification of .126, the bimodal conventional

test, its nearest competitor, is expected to make 1.15 times as many errors of
classification.

Figure 22
Conditional Probability of Misclassification, a=3.0
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When a=3.0, as shown in Figure 22, the same general results were obtained.
The expected probability of misclassification for the bimodal conventional test
(.085) was 1.18 times as large as that of the Bayesian adaptive test (.072). It
should be noted, however, that items this discriminating are rare in practice.
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Utility Comparisons

It is tempting to take these values at this point and say that adaptive
testing can greatly reduce overall errors of classification by up to 15 percent
in a realistic classification situation. But, as was discussed earlier, the
errors of classification presented thus far are based on a latent ability contin-
uum rather than an observable success—-failure continuum. Using the utility
functions presented earlier and choosing the decision yielding the highest expected
utility for the estimate of ability, average utilities for the bimodal conventional
test (the best conventional test in previous comparisons) and the Bayesian test
were .808 and .820, respectively, using the items of g=1.0. For the same sample
of abilities and @=2.0, the utilities were .831 and .849. With ¢=3.0, the values
were .855 and .858. Whether these differences are practically significant depends
on what these units of utility mean in a particular context. But such utilities
(of which these are only an example) must ultimately be considered in determining
the comparative values of conventional versus adaptive testing for classification
decisions.

Conclusions

These results suggest that adaptive testing may offer important advantages
to an organization involved in making classification (e.g., selection and place-
ment) decisions. Specifically, the data show that while a conventional test
classifies as well as an adaptive test when there is one cutting score at the
middle of the ability distribution, an adaptive test will provide better categor-
ization when there is more than one. The determination of the cost effectiveness
of adaptive testing in an organization, however, will depend on the utility
functions specified by the organization.



APPLICATIONS OF ITEM CHARACTERISTIC CURVE THEORY
' TO THE PROBLEM OF TEST BIAS

STEVEN M. PINE

University of Minnesota

One of the most challenging and important issues facing test developers and
users today is whether or not ability tests are biased against minority groups, and
if so, how test bias can be reduced. 1In recent years, there has been considerable
research activity concerned with the identification and reduction of bias and
unfairness in various settings. For the most part, these efforts have been unsuc-
cessful. One possible reason for this lack of progress is the fact that almost
all the research on test bias and fairness has been based on classical test theory,

In his recent review of test theory, Lumsden (1976) refers to the true score
model of classical test theory as the '""Model-T Theory" and suggests that classical
test theory reflects a very restricted range of test behavior. For example, class-
ical test theory emphasizes group-oriented measurement; but group-oriented measure-
ment is likely to be unproductive if tests are to be relevant to individuals of
varied backgrounds. Consequently, it is unlikely that this approach will be useful
in resolving problems as complex as those involved in test bias.

Bias in testing is caused by the failure of tests to take into account a
number of important variables in their construction, administration, and scoring
(Angoff, 1975; Green, 1976; Pine ‘& Weiss, 1976; Sattler, 1974). These variables
include individual differences in motivation, ethnic background and related
variables.

Tests based on classical test theory may ignore certain types of individual
differences because they are constructed using item statistics which can be expected
to vary between population subgroups, and because they require all testees to take
identical test items. If progress is to be made in this critical research area, a
test theory that permits the testing process to be adapted or tailored to individ-
uals is needed. This capability now exists in the form of item characteristic
curve theory, coupled with the technology of adaptive test administration.

An Ttem Response Model of Bias

Item characteristic curve theory. Recently, a new test theory called "item
characteristic curve (or latent trait) theory," specifically designed for the
measurement of individuals, has emerged. Item characteristic curve theory (Lord &
Novick, 1968) is based on the idea that the responses which individuals make to a
given ability test item are determined by their ability on one or more underlying
dimensions (latent traits), and the parameters of the test items, i.e., their
difficulty, discriminating power, and probability of being guessed correctly by
chance. This idea is expressed mathematically by the Item Characteristic Curve (ICC)
which gives the probability that a testee with a given ability level on the
underlying dimension will correctly answer a given test item.

This research is supported by contract N0O0014-76-C-0244, NR No. 150-383, with the
Personnel and Training Research Programs, Office of Naval Research.
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The ICC curves and their associated item parameters are the building blocks
of this new test theory. Once item parameters are determined for each test item,
they can be used to describe how individuals at a given ability level are likely
to perform on each item. ICC theory allows probabilistic statements to be made
about the ability level of testees regardless of their subgroup membership or which
subset of items they have been administered. This property provides a means for
creating tests which can be adapted to individual testees since it is no longer
necessary that identical items be administered to every testee, thus making ICC
theory potentially valuable for developing less biased tests. Furthermore, the
bias-reducing potential of ICC theory is not tied to its use with any particular
testing strategy, although the greatest benefits can be expected when it is used
in conjunction with adaptive testing (Pine & Weiss, 1977; Weiss, 1974).

- Definition of item bias. A test item can be considered to be unbiased if all
- individuals having the same underlying ability level have an equal probability of
correctly answering the item, regardless of their subgroup membership.

As indicated, the ICC gives the probability of correctly answering an item at
a given ability level. Therefore, the above definition of an unbiased item is
equivalent to requiring that a test item have the same ICC for all subgroups.
Since an ICC is described by its difficulty, discrimination and guessing parameters,
this is also equivalent to requiring that the values of these parameters be invar-
iant within a linear transformation from subgroup to subgroup. The linear trans-
formation assumption is necessary to account for the fact that subgroups in which
the parameters are calculated may have ability distributions with different means
and variances.

Applying the Model to Detect Test Bias

The following discussion is restricted to tests that consist entirely of
homogeneous items. Homogeneity implies that the items measure essentially one
ability dimension. This definition allows for the possibility that a homogeneous
set of items may measure one or more extraneous dimensions in addition to the single
primary dimension which the test is purported to measure. For instance, test items
.intended to measure vocabulary ability may inadvertently also measure several
cultural variables. Although the present discussion is restricted to homogeneous
items, the concepts developed here could in principle be extended to the multidi-
mensional case.

It is also assumed here that test items fit an underlying response model for
all subgroups. This model is the function which specifies the shape of the ICC
curve and indicates, at each ability level, the probability that an individual
at that level will correctly answer the administered item. This constraint is not
as limiting as it may appear to be, since one can empirically test the fit of the
item data to the assumed response model and eliminate those items that do not fit
prior to carrying out any of the analyses described here.

Given the above restrictions, the first step in investigating whether a set
of items is biased is to screen out those items which do not fit the underlying
response model. Most of the existing computer programs for estimating item response
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parameters (e.g., Urry, 1974a; Wingersky & Lord, 1973) reject items that do not
fit the assumed model as a matter of course. Therefore, with these programs, it
can be assumed that all items for which parameter values are available fit the
response model. ' '

The next step is to demonstrate that these items are homogeneous, i.e., the
same trait accounts for the major portion of underlying variance in each subgroup's
inter-item correlation matrix. If they are homogeneous, Lord and Novick (1968,
pP- 359-360) have shown that their item response parameters will be invariant
(within a linear transformation) across subgroups. According to the definitions
given earlier, invariant test items are unbiased. Therefore, a sufficient method
for demonstrating that a set of test items is unbiased is first to factor analyze
the matrix of inter-item correlation coefficients within each of two or more sub-
groups and demonstrate that the same single factor accounts for the major portion
of variance in each subgroup's matrix, and then show that this is the factor that
the test was intended to measure.

Figure 23
Item Bias Shown as a Perpendicular Distance
in a Scatter Plot of Subgroup Item Difficulties

Item Difficulty Parameters
Minority Subgroup

Item Difficulty Parameters
Majority Subgroup

A second approach for determining whether a set of test items is biased is
also implicit in the work of Lord and Novick. If the same dimension underlies a set
of test items for a population of testees (which would, therefore, make the items
unbiased), the item parameters for any two subgroups in the population should have
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a linear relationship (Lord. & Novick, 1968, p. 380). This condition can be tested
directly by plotting the discrimination (a), difficulty (b), or guessing (¢) para-
meters of a set of items derived from one subgroup against those from another and
and testing for linearity. A plot of this type, based on the item response diffi-
culty parameters for a 10-item test, is shown in Figure 23. If factor analysis
indicates that a single dimension underlies a set of items, the presence of a linear
relation between subgroups for ICC parameters is both a necessary and sufficient
demonstration that these items are unbiased.

In Figure 23, the perpendicular distance between each item and the best
fitting line through all the points can be interpreted as the degree of item bias;
the greater the distance, the more item bias is implied. By comparing the relative
item parameter values between subgroups, it is possible to identify the specific
test items which contribute the most to a non-linear relationship between subgroup
parameters. In the language of analysis of variance, this non-linear relationship
would be an item-by-group Interaction. Plots similar to Figure 23 and related
interpretations could also be made for item discrimination and guessing parameters.

The degree-of-item-bias index illustrated in Figure 23 has several applica-
tions. It could be used to screen out the most biased items during the construc-
tion of a conventional test. Or, it could be used within an adaptive testing
framework as an additional criterion for item selectionm.

The assessment of item bias by plotting a scatter diagram of item parameters
for one subgroup against another is not in itself new. A very similar method has
been used at Educational Testing Service (ETS) for several years. The essential
difference between the present method and the ETS method is that ETS uses item
parameters based on classical test theory. It can be shown (Lord & Novick, 1968,
p. 301) that classical item parameters will generally not be linearly related across
subgroups of a population. This means that the test for bias using classical
parameters can lead to an artifactual detection of bias. Furthermore, the diffi-
culty parameter of classical test theory is confounded by level of discrimination
and guessing effects (Urry, 1974b). Thus, if an item is relatively more difficult
for one subgroup than another, it is not clear whether this is because the item
varies only on difficulty, or whether this result is caused by differences in
discrimination and/or guessing. The item parameters from ICC theory, on the other
hand, provide relatively unconfounded measures of difficulty, discrimination, and
guessing. Therefore, by plotting these parameters on separate graphs, it is
possible to determine exactly why an item is biased. For instance, it may be that
a given item is biased not because it is relatively more difficult for a minority
subgroup, but because that subgroup is less effective at guessing. This kind of
detailed analysis is impossible using classical item parameters.

Another interesting consideration in the use of ICC versus classical item
parameters is the fact that if classical item parameters are linearly related among
subgroups, thereby implying an unbiased set of items, ICC parameters will of
necessity not be linearly related and will, therefore, imply the presence of bias
in these same items. This fact would seem to have particular relevance for the
work of researchers such as Jensen (1975) who have concluded that tests are gener-
ally not biased against Blacks based on the presence of a linear relationship
between classical item parameters correlated across Black and White subgroups.



-41-

An example with real data. To demonstrate how these analyses might be used
and interpreted, they have been applied to the difficulty parameter from 75
multiple~-choice vocabulary items administered in a racially mixed high school in
Minneapolis. The sample sizes in this study were not optimal (58 Blacks,
168 Whites), but the data provide a good example of the technique.

First the homogeneity assumption was tested by factor analyzing the inter-
item correlation matrices. A subset of 45 items was chosen and two tetrachoric
intercorrelation matrices were calculated, one for the Black and one for the White
subsamples. The matrices were then factor analyzed using the principal axis method;
communalities were estimated using the highest off-diagonal entry for each item,
and the factor solution was iterated until the estimated communalities stabilized.
Eight factors were extracted from each matrix, in each case accounting for all of
the estimated common variance. The eigenvalues from the two factor analyses are
shown in Table 2.

Table 2
Eigenvalues from Factor Analyses of Black and White
Subgroup Item-Intercorrelation Matrices

Percent of

Common Cumulative
Subgroup Factor Eigenvalue Variance Percent
Whites
1 19.26 64.8 64.8
2 2.32 7.8 72.7
3 1.67 5.6 78.3
4 1.58 5.3 83.7
5 1.37 4.6 88.3
6 1.20 4.1 92.4
7 1.18 4.0 96.4
8 1.08 3.6 100.0
Blacks
1 16.33 47.9 47.9
2 3.70 10.9 58.7
3 3.01 8.8 67.5
4 2.64 7.7 75.3
5 2.35 6.9 82.2
6 2.26 6.6 88.8
7 2.06 6.0 94.9
8 1.75 5.1 100.0

For both the Black and the White data, the first eigenvalue was very large in
comparison to the remaining eigenvalues, providing evidence supportive of the uni-
dimensionality assumption. Furthermore, the items appear to be measuring the. same
dimension in both subgroups, since the coefficient of congruence (Rummel, 1970,

p. 461) calculated between the 45 corresponding loadings for Factor 1 in the two
subgroups was .97. It also seems reasonable to conclude, based on the pattern of
loadings, that Factor 1 is measuring vocabulary ability.
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The results of a further analysis of bias for these 75 items are shown in
Figure 24. The scatter plot in Figure 24 is based on the estimated ICC difficulty
parameter values calculated separately for the White and Black subsamples.

Figure 24 ‘
Graphical Analysis of the Bias in ?5 Multiple-Choice
Vocabulary Items*
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The data plotted in Figure 24 show that almost all of the items are relatively
more difficult for Blacks than for Whites. This is indicated by the fact that the
dots representing the items tend to fall below the diagonal line. If the items were
equally difficult for Blacks and Whites, the data points would fall on this line.

However, the mere fact that the items are relatively more difficult for Blacks
cannot necessarily be taken as an indication of bias, since bias in the test items
is assessed by evaluating the degree of linearity in the plot. The Pearson product-
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moment correlation coefficient between the item parameter values for Blacks and
Whites is r=.86, indicating a high degree of linear relationship. This is consis-
tent with the results of the factor analysis and suggests that these vocabulary
items, when taken as a group, are essentially unbiased. It is possible, however,
that even though the items taken as a group are unbiased, one or more of the items
taken individually might be biased. For instance, in these data, several items
appear to have larger departures from the dotted line fitted through the item points
in Figure 24. Of course, it is possible that these large departures may be due only
to sampling error. To eliminate possible misinterpretations that would occur if
this were the case, a technique is under development to establish confidence limits
for the best fitting line. This technique will permit the identification, with

some known degree of confidence, of biased items.

Related Developments

The material presented here is only one example of how item characteristic
curve theory can potentially be applied to the problem of test bias. It is only
a small part of the research related to test bias and unfairness currently underway
at the University of Minnesota. '

Additional developments involve a method of correcting for bias in the ICC
item parameters. Very briefly, this method consists of determining item parameter
estimates that will depend only on the extent to which an item loads on the factor
it is supposed to be measuring. In essence, this approach is based on the notion
that to obtain unbiased test items, all that is necessary is to know how each test
item behaves (i.e., what its parameters are) in the various subgroups which comprise
our test population. Using the method now under development, bias in an item can
be eliminated by correcting its parameter values to account for the degree of bias.
Then, if the resulting ability estimates are based not on the total number of
correct answers, but on some function of the corrected item parameter values, the
resulting ability estimates will be unbiased.

This method for correcting item bias is now being studied by computer simu-
lation techniques. 1In this way, the bias-corrected item parameter values can be
directly compared to the known, true item parameter values. If the results of
these studies are favorable, the technique will permit the reduction or elimination
of the effects of item bias on ability test scores.

Does this mean that we can now write the final chapter on test unfairness?
Not at all! First, some may disagree that bias has been eliminated as long as
differences exist in the mean test scores of various subgroups. Secondly, bias
in the estimation of item parameters is only one source of possible unfairness in
the testing process. A test can be unfair for a myriad of other reasons, including
those attributable to elements in the testing environment, and to the psychometric
properties of the procedure used to select and administer test items (Pine & Weiss,
19775 Weiss, 1975). To explore the possible psychometric influences on test
unfairness, a series of computer simulations designed to investigate how item
characteristics interact with the choice of a testing strategy is currently in
progress. Also in progress is a live computerized testing study designed to
investigate how well some of the bias-reducing procedures described in this paper
operate in a real test administration. This study will also investigate a compu-
terized adaptive test designed explicitly to reduce bias in test scores. In addition,
the study is designed to replicate a previous finding that computerized tests
increase the test-taking motivation of minority testees (Betz & Weiss, 1976b;
Weiss, 1976).



APPLICATIONS OF ADAPTIVE TESTING IN
MEASURING ACHIEVEMENT AND PERFORMANCE

ISAAC 1. BEJAR

University of Minnesota

The purpose of achievement testing is to locate individuals on an achievement
scale. Usually, to interpret achievement test scores, a transformation is applied
to the scores which allows an interpretation in terms of the relative standing of
an individual with respect to the norming group. In many instructional settings,
this interpretation is not adequate and, as a result, instructional personnel
have requested more concrete kinds of interpretation. Criterion-referenced
testing, mastery testing and similar approaches have been developed to meet
these needs.

What is unique about criterion-referenced and mastery testing is that the
items that constitute the test are sampled from a population of items which is
isomorphic with the objectives of the instructional program in which achievement
is to be measured (Shoemaker, 1975). Because of this, it is possible to inter-
pret scores in terms of the specific areas of achievement that a student has
mastered in relation to the objectives of the instructional program.

Undoubtedly, this attention to content is bound to increase the quality
of achievement test scores. However, the degree of improvement possible in
achievement test scores using any approach to achievement test construction is
limited by the nature of the test item. When typical multiple-choice test
items are used, a very limited range of student performance is measured. The
cognitive skills involved appear to be the processes of recall of information
coupled with recognition of the correct answer, and the result is usually
expressed as either '"correct" or "incorrect'". However, achievement or knowledge
is seldom all or none, and proceeding as if it were, as in the typical "cor-
rect-incorrect" multiple-choice achievement test, does not extract all the
potential information about an individual's achievement level. This paper
describes research concerned with the integration of testing procedures which
take partial information into account with methods of computerized adaptive
achievement test administration, and discusses some implications of this re-
search for performance testing.

Partial Knowledge

Background. Intuitively it seems clear that extracting partial knowledge
from test responses should lead to better assessment of achievement. However,
the research literature (e.g., Wang & Stanley, 1970) does not show consistent

This research is supported by contract N00014-76-C-0627, NR 150-389, with the
Personnel and Training Research Programs, Office of Naval Research.
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increases in both reliability and validity when partial knowledge is taken

into account. The results of the typical investigation (e.g., Hakstian & Kansup,
1975) show that, while reliability is usually increased by taking partial know-
ledge into account, the validity of the scores remains the same or even dimin-
ishes. Such findings are usually interpreted as evidence against the useful-
ness of the assessment of partial knowledge. However, a careful consideration
of the problem suggests that something is amiss. One possible explanation is
that the test and the criterion are not unidimensional.

To illustrate, consider two tests, A and B, measuring a single construct.
Test B can be referred to as the '"criterion test'; the correlation between A
and B will be referred to as the validity of Test A. Both Test A and Test B
correlate .60 with the construct. This can be summarized as follows:

Test
A .60 B [

Then the intertest correlation matrix can be expressed (Joreskog, 1971; Max-—
well, 1971) as Equation 14.

T = A~ + y2, [14]

where ¥? is a diagonal matrix of error variances. TFor the A in Equation 13,
Equation 14 becomes,

A A . y2
s - [-60 [.60 .60] + .64 .00
.60 .00 .64
AT Y2 )
_ [-36 .36:] + [.64 .ooJ
L.36 .36 .00 .64
AT+ y2?
= [1.00 .36
| .36 1.00 [15]

The off-diagonal element of AA” is equal to the validity of A and the
diagonal elements are reliabilities. 1In this case both A and B have reliabilities
of .36 and the validity of Test A is .36.

Now, suppose Test A is administered under conditions that allow for par-
tial knowledge and that, as a result, its correlation with the construct goes
from .60 to .70. Following the same procedure shown in Equation 15, the re-
liability of Test A becomes .49 while that of Test B remains at .36. At the
same time, the validity of Test A increases from .36 to .42. In short, when
there is a single common factor underlying the responses to a criterion and a
predictor, an increase in the reliability of the predictor will lead to an
increase in its validity. This is not so when more than one factor is common.
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To illustrate this, assume that Tests A and B, both administered conven-
tionally, have in common a method factor (em), in addition to the comstruct,
and that both correlate .40 with it. That is,

% O

Test
A= [.60 .40} A :
.60 .40 B [16]
Assuming that the construct and the method factor are uncorrelated, the

correlation matrix for Tests A and B, according to the model in Equation 14,
is given by:

A I\ y?
5 = [-60 .40] [.60 .60] + [.48 .oo:l
.60 .40] [.40 .40 .00 .48
AA” y?
_ [.52 .52} + [.48 .oo]
.52 .52 .00 .40
_ [1.00 .52
.52 1.00 [17]

In this case, the validity of Test A is .52.

Now, suppose that the same Test A is again administered under conditions
that allow for the scoring of partial information and that, as a result of
this, its correlation with the construct becomes .70. At the same time the
correlation of Test A with the method factor drops from .40 to .20; i.e., A
becomes:

0
e m .
A= [-70 .20} Test A (with partial knowledge)
60 .40 Test B [18]
and
. _[.53 .50
A= [.50 .52] [19]

Thus, as a result of introducing partial knowledge, the validity was reduced
from .52 to .50. However, it is clear that this seemingly disappointing re-
sult is not inconsistent with the true improvement that occurred, namely an
increase in the correlation of Test A with the construct.

Although this example contains many assumptions, it seems that something
similar occurs with real data. Hakstian and Kansup (1975) compared the validity
of a verbal ability test administered under conventional and elimination scoring
(Coombs, Millholland, & Womer, 1956) instructions. Validity was defined as the
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correlation with school grades in language arts. This correlation was .49 under
conventional administration and .39 under elimination scoring. However, the
correlation with another verbal ability test was .59 under conventional scoring
and .67 under elimination scoring. Thus, when validity is defined as the cor-
relation with school grades, elimination scoring appears to be less valid;

but when validity is defined as the correlation with another verbal ability
score, elimination scoring is more valid. These results are not contradictory
but simply provide evidence of the fact that performance on verbal ability
tests measured either with multiple-choice or elimination items is explained

by the same ability, whereas school grades on language arts do not depend ex—
clusively on verbal ability.

Advantages of using partial information. If methods for the assessment
of partial knowledge are to yield improved test scores, the tests must be
such that there will be an opportunity for partial knowledge to emerge. With
few exceptions, most notably Coombs et al. (1956), the presence of partial
knowledge is never tested. Some theoretical results suggest that when partial
knowledge is allowed to emerge and is scored, dramatic improvements in test
scores follow.

To illustrate this, consider the information functions of two latent trait
models. Information at a given point on the underlying trait is the reciprocal
of the variance of the maximum likelihood estimator at that point. Therefore,
the larger the information value, the more precise is the estimate of the lo-
cation of an individual on the trait. One latent trait model studied was the
two-parameter normal ogive (Lord & Novick, 1968, Chap. 16) which is appro-
priate for dichotomous scoring. The other model was Samejima's (1969) graded
response model, which is an extension of the two-parameter normal ogive model to
polychotomous scoring. Information levels of the graded model can be considered
to be the case when partial knowledge is taken into account, whereas the informa-
tion provided by the dichotomous model is that provided when partial information
is ignored.

To simplify the comparison, the mean information for each model was com-
puted, assuming that the underlying trait was normally distributed. In addi-
tion, it was assumed that each test consisted of 60 items, each having the
same item—~trait correlation (). The distribution of item difficulty in the
dichotomous case can be described as a truncated normal distribution with a mean
of 0.0 and maximum and minimum equal to 1/r and -1/r, respectively. The dis-
tribution of difficulty of the highest category in the graded model was also a
truncated normal distribution but with a mean of .40/r and maximum and minimum
1/r and -.20/r. Within each graded item, the difficulty of each of the lower
categories was set in such a way that the categories would be chosen by the
same proportion of testees. The comparison assumes that there are five graded-
response categories. This choice of difficulties approaches the optimal con-
ditions for the two models.

The ratio of the mean information for the graded model over that of the
dichotomous model for several levels of test homogeneity is seen in Table 3.
For example, at an item—trait correlation of » =.55 the ratio was 1.42. This
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means that, on the average, the use of partial knowledge will be 42% more
informative than if it is ignored. Note that this improvement, due to
incorporating partial information into the scores, increased as the discrim-
ination of the test increased. In other words, the better the test, the more

it will benefit from adding partial knowledge. This is also true when reliability
rather than information is used as the evaluative criterion (Bejar & Weiss, in
press).

Table 3
Ratio of Mean Information of Graded to
Dichotomous Model, as a Function of Item-Trait Correlation

Ttem-Trait correlation
.55 .63 .71 .77 .84 .95
Ratioc of mean information 1.42 1.43 1.48 1.52 1.58 1.90

The advantages derived frum taking partial knowledge into account can
only materialize under the proper conditions. 1In the typical multiple-choice
test item, even though partial knowledge influences which alternative is
chosen, the response is scored as correct or incorrect. One way of allowing
credit to be given for partial knowledge is to instruct testees to segregate
alternatives into different categories. Coombs' (1956) procedure is an in-
stance of the approach where the categories are "correct" and "incorrect".
Other categories are possible, though; e.g., verbal items may be classified
as "synonyms", "antonyms", or '"neither".

Computerized Testing

Recording and scoring responses to non-dichotomous test items is not,
however, convenient with paper-and-pencil test administration. One obvious
use of interactive computers, therefore, is to handle the recording and
scoring of responses to non-dichotomous achievement test items. But, as
previous presentations in this report suggest, the computer can also be used
to adapt or tailor the test to each individual.

These presentations (and indeed most of the research in computerized
adaptive testing) have been oriented toward ability measurement. In
achievement testing, it is possible to distinguish between two kinds of
adaptive test administration: One involves adapting the length of the test;
in the other, the difficulty of the test is adapted.

Adapting the length of the test to the individual is appropriate in
instructional settings where each individual is allowed as much time as is
necessary to complete a given unit of instruction. Under those conditionms,
individual differences with respect to knowledge are minimized and it becomes
profitable to adapt the length of the test rather than its difficulty. The
research of Ferguson (1970) is an example of this type of adaptive testing.
In his system, an individual is tested until he is classified into a non-
mastery or mastery category. The statistical basis of this system is Wald's
sequential likelihood ratio test. Ferguson's model assumes that the dif-
ficulty and discrimination of all items are the same. It is not known how
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sensitive the procedure is with respect to violation of these assumptions.
Thus, research addressed to this question is needed. It would also be
desirable to study the possibility of relaxing the model to allow for unequal
item difficulties and discriminations as well as allowing for polychotomous
responses.

Although self-paced instruction has many advantages, limited resources
often do not permit its full implementation. As a result, the sample under
instruction will likely be heterogeneous with respect to achievement. Sim—
ilarly, if a test is intended to measure retention of achievement or levels
of achievement acquired prior to instruction, there will be wide variation in
levels of performance. Under these conditions, adapting the test to an
individual's level of achievement will be more efficient than the conventional
non-adaptive procedure.

Most of the research on adaptive testing has been done in the context
of dichotomous response models. The exceptions are to be found in the work
of Bayroff, Thomas, and Anderson (1960), Wood (1971), and Samejima (1976).
One of the major aims of the achievement/performance testing research at
the University of Minnesota is to combine the advantages of partial knowledge
scoring and adaptive testing. Bayroff et al. (1960) seem to be the only
researchers who have actually implemented an adaptive testing strategy using
non—dichotomous items. Essentially what they did was to branch an individual
according to the correctness of the alternative chosen. Although they used
a polychotomous item f«r the first item only, this can be readily extended
to include all items. Other branching rules are possible. Wood (1971) sug-
gested that the optimal branching rule will administer as the next item the
most discriminating of those items with a midpoint of adjacent categories
closest to the individual's current estimated achievement. Samejima (1976)
implemented a simulation on live data of a similar procedure, which she
referred to as tailoring the dichotomization of the item to the individual.
She noted substantial improvements by comparing the plot of scores based on
a uniform dichotomization and tailored dichotomization against the scores
based on the polychotomous responses.

Summary and Conclusions

Two recent developments in test theory hold promise for the improvement
of achievement test scores. In combination, adapting the test to the indi-
vidual and simultaneously extracting more information from each response by
recording partial knowledge should result in greater improvements in achievement
test scores than either taken alone. The use of non-dichotomous item formats,
now made possible by the administration of achievement test items on interactive
computers, should result in achievement tests which more accurately measure
what a student has learned as a result of instruction.

Although the use of polychotomous models in the measurement of partial
knowledge has been emphasized here, it is clear that these models have much
to offer in performance testing as well. Fitzpatrick and Morrison (1970)
define a performance test as "'one in which some criterion situation is
simulated to a much greater degree than represented by the usual paper-and-



~50~

pencil test." TUnlike paper-and-pencil tests, performance tests are relatively
expensive and it is this cost consideration that highlights the necessity

for extracting as much information as possible from a testee's set of re-
sponses. Polychotomous response models make this feasible. The use of
interactive computers also has much to offer in the area of performance testing,
for computerized test administration can make it possible to represent simulated
situations conveniently and economically. Additional savings are likely by
testing individuals only on those skills which match the individual's level

of training.

In short, it seems that coupling polychotomous response model theory with
interactive computer administration of tests is likely to result in more
accurate and, in the long run, more economical assessments of achievement and
performance.
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