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Assessing the efficiency of item selection in CAT

Abstract

This study investigated the efficiency of item selection in a computerized adaptive
test (CAT), where efficiency was defined in terms of the accumulated test information at
an examinee's true ability level. A simulation methodology compared the efficiency of
two item selection procedures with five ability estimation procedures for CATs of 5-, 10,
15-, and 25-items in length. The two item selection procedures included maximum
Fisher information (FI) and maximum Fisher interval information (FIl) item selection.
The five ability estimation procedures included maximum likelihood (ML), modal a
posteriori (MAP), golden section search (GSS), and two new procedures proposed in this
study. These procedures, ML/AIlt and MAP/AIt, adjusted ML or MAP estimates
according to a specific decision rule based on hypothesis-testing.

For the conventional item selection procedure (FI) and ability estimation
procedures (ML and MAP), the best performance was observed for FI with MAP at
middle ability levels, with efficiency attaining or exceeding 90% even for the shortest test
length. In contrast, larger gaps in efficiency were observed for FI with MAP at extreme
ability levels, and for FI with ML across all ability levels. Utilizing FlI item selection
with ML and MAP narrowed the gaps in efficiency at the lowest ability levels for 5- and
10-item tests. The greatest increase in test efficiency was observed when the alternative
ability estimation procedures (ML/AIlt, MAP/AIt, and GSS) were used. Thegainsin
efficiency were most pronounced for shorter tests, but were noticeable even for longer
tests. Overall, it appearsthat ability estimation procedure impacts the efficiency of item

selection to alarger extent than item selection procedure.
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1 Introduction

Efficiency is often cited as an advantage of computerized adaptive tests (CATS)
over traditional paper-and-pencil tests. Typically, a CAT version of atest requires half as
many items to be administered as its paper-and-pencil counterpart, without compromising
measurement precision (Stocking, Smith & Swanson, 2000). Nevertheless, the efficiency
of a CAT at the early stages of test administration has been a point of contention in the
literature. At the early stages of a CAT administration, provisional ability estimates are
typically imprecise, inaccurate, or both. Because item selection is dependent on ability
estimation, the arguments contend that item selection based on these early provisional
ability estimates is likely to be mismatched with respect to an examinee’ s true ability.
Chen, Ankenmann, and Chang (2000) point out that the inaccuracy of these provisional
ability estimates early in CAT administration is “a persistent problem” and that “the more
accurate [the provisional ability estimate] is, the more appropriate the selected item will
be.”

The recognition that provisional ability estimates at the early stages of testing are
inaccurate has generated an area of research which seeks to improve the efficiency of a
CAT by means of alternative item selection procedures and alternative ability estimation
procedures. Recent studies examining the efficacy of alternative item selection
procedures suggest that all perform similarly to each other aswell asto Fl item selection
after ten items have been administered (Chen, Ankenmann, & Chang, 2000; Cheng &
Liou, 2000). Although it is perhaps unlikely that a CAT of 10 or less items would be
administered operationally, the question remains as to whether the efficiency of a CAT

might be improved at the early stages of administration by perhaps another item selection
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or ability estimation procedure not yet considered, and that such potential gainsin
efficiency obtained early on might translate into more precise measurements after
considerably more items have been administered.

It should be noted that ailmost all research on improving the efficiency of CAT
item selection has concentrated on aternative item selection procedures. However,
ability estimation plays an equally important role in CAT item selection, as any item
selection procedure must utilize provisional ability estimates. Xiao (1999) demonstrated
that an alternative ability estimation procedure utilizing a golden section search (GSS)
optimization technique was as accurate as the more common expected a posteriori (EAP)
ability estimation procedure in classifying examinees in a computerized adaptive
classification test.

A related issue is the precise meaning of the term “ efficiency” and how it should
be measured. In studies by Chang & Ying (1996), Chen, Ankenmann, & Chang (2000),
and Cheng & Liou (2000), it appears that efficiency is defined in terms of the
appropriateness of a selected item with respect to an examinee’s true ability. By this
definition, therefore, efficient item selection is characterized by the selection of items
appropriate to an examinee' strue ability. Nevertheless, all of these studies use as
outcome measures characteristics of the ability estimates (e.g., root-mean-square errors,
bias, and standard errors), as opposed to the characteristics of the selected items
themselves.

Davey (2002, personal communication) suggests that a less confounded outcome
measure is accumulated test information at an examinee’ s true ability 6. This measure is

calculated on the basis of the items selected for administration, and does not incorporate
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errors in ability estimation.® Through this measure, a precise definition of efficiency may
be obtained, one that follows naturally from the statistical concepts of efficiency and
relative efficiency.

The objectives of the present Sudy are then: (1) define precisely the efficiency of
item selection in a CAT; (2) quantify the efficiency (or inefficiency) of item selection
when conventional item selection and ability estimation procedures are utilized; (3)
propose a new alternative ability estimation procedure that addresses potential
inefficiencies in CAT item selection; (4) quantify the efficiency of item selection under
alternative item selection procedures, aternative ability estimation procedures, or both;
and (5) examine the extent to which these alternative configurations improve upon the

efficiency of item selection over the conventional procedures.
2 Theoretical framewor k

2.1 Defining the efficiency of item selection in CAT
Consider two tests, A and B, administered to an examinee possessing true

ability 8. The precision with which this examinee may be measured by test A is given by
the accumulated test information at the examinee' s true ability 8, or 1" (6). Likewise,

1 {7 (8) indicates the precision afforded by test B. The relative efficiency of test A over
test B, indicated by RE(A,BJB), istheratio 1 " (6)/1(6). Thus, if test A is more
efficient than test B, RE(A, B|9) >1.

This definition of relative efficiency may be extended to the CAT context,

yielding an operational definition for the efficiency of a CAT. Supposethat a CAT of |

! There can be no question that the specific items selected by the CAT areinfluenced by the ability
estimation method; however, this measure is afunction defined only in terms of item parametersand a
given value of true ahility.
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items is administered to an examinee possessing true ability 6, and that these items are
drawn from an item bank of finite size. Then the quantity |1 ). () characterizesthe
accumulated test information from these j items at the examinee’s ability level. Now for
any given 0, there exists an optimal set of items, also of size j, such that no other
combination of j items yields a greater measure of accumulated test information. Thus, if
1§ (8) represents the accumulated test information for this optimal set of items, the
relative efficiency of the set of items selected by the CAT administration over the optimal
setis 102(8)/157(8). Noting, however, that | {”(8) places an upper bound on the
precision with which an examinee with true ability 8 may be measured by a set of j items
drawn from the item bank, it must be the case that 1), (8)/1" () <1. Itisthisratio that
operationally defines the efficiency of a CAT in the present context.
2.2 Item selection procedures

Of the two item selection procedures considered in this study, one is conventional

(maximum Fisher information), the other is alternative (maximum Fisher interval

information). Maximum Fisher information (FI) item selection is taken here to be the
process whereby: (1) an examinee's provisional ability estimate éj is obtained after the

j™ item has been administered; and (2) the j+1" item is selected such that it both
possesses maximum Fisher information at the provisional ability estimate and has not
already been administered. Item selection by Fisher interval information (Fl1) is closely
related to maximum Fl item selection, but instead of evaluating item information at a
single point (i.e., the provisional ability estimate), an information index is evaluated

instead (Veerkamp & Berger, 1997). Thisindex is obtained by performing a
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mathematical integration of the information function associated with an item along a
specified interval of the ability continuum.
2.3 Ability estimation procedures

Of the five ability estimation procedures in the study, two are conventional;
namely, maximum likelihood (ML) and maximum a posteriori (MAP) estimation. ML

estimation finds the ability estimate éML,j that maximizes the likelihood function for an

examine€' s responses to j administered items. MAP estimation finds the ability estimate

A

Buap,; that occurs at the maximum of the posterior density function after j items have

been administered, where the posterior density is proportional to the likelihood multiplied
by the prior density, taken here to be N(0,1). The alternative ability estimation
procedures—Xiao’s (1999) golden section search (GSS) strategy and the proposed
alternative procedure—Lutilize hypothesis-testing. Xiao (1999) obtains provisional ability
etimates 9 by a golden-section search (GSS) dtrategy; the next item is selected based on
this most current provisional ability estimate. Using GSS, a starting estimate él IS
identified as the midpoint of a search interval along the ability continuum; a hypothesis
test is conducted by comparing optimally-weighted observed and expected scores given
él (see Birnbaum, 1968 for a discussion on optimally-weighted scores). If the
hypothesis test results in rejection, then a new search interval isidentified, aswell asa
new estimate éz. The search strategy continues until the null hypothesis is not rejected.
The last estimate 8 obtained is then taken asthe provisional ability estimate.

The proposed aternative ability estimation procedure operates concurrently with

a conventional ability estimation procedure such as ML and MAP, yielding two more
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aternative ability estimation procedures, denoted as ML/AIt and MAP/AIt. Like

Xiao (1999), the alternative procedure conducts a hypothesis test after the j™ item in the
test has been administered. However, the null hypothesis in the procedure is that all j
items administered to an examinee are maximally informative at that examinee’s true
ability 0; failure to reject the null suggests that the ability estimate obtained by ML or
MAP should be used for the subsequent selection of the j+1™ item, while rejection of the
null suggests a modified ability estimation procedure. This modified ability estimate is
found using the expected proportion correct under the null hypothesis, its confidence
limits, and the average item characteristic curve for the j administered items.

Here, the null hypothesisis constructed under strict model assumptions. These
assumptions follow from the IRT model in the case where all items administered to an
examinee are maximally discriminating (i.e., possess maximum information) at that
examinee' strue ability. Such a scenario characterizes ideal item selection in a CAT;
namely, that items administered to an examinee should possess maximum measurement
precision at that examinee’ s true ability. Thus, the hypothesis-testing procedure used
here is essentially atest of whether the CAT is operating as intended. In brief, if this null
hypothesis is not rejected, then the decision isto use the most recent provisional ability
estimate obtained by a conventional ability estimation procedure (e.g., ML or MAP) to
select the next item. If evidence warrants its rejection, however, an alternative selection
method is suggested. Thus, the alternative procedure functions concurrently with a
conventional ability estimation procedure such as ML or MAP, and in this sense acts as
an adjustment to the conventional ability estimate when model assumptions do not

conform to the observed data.
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The overall rationale for this hypothesis-testing procedure is that when a CAT is
targeting items exactly at an examinee’ strue ability, the expected proportion of items
correctly answered is approximately equal to 0.5 in the case of items modeled under the
3P IRT model, and is exactly equal to 0.5 in the case of 1P and 2P items. The presence
of a pseudo-guessing parameter c in the 3P IRT model increases the expected proportion
correct from 0.5 to a higher number, with larger values of ¢ corresponding to higher
expected proportions correct. After an examinee has responded to an administered item,
the hypothesis-testing procedure compares the observed proportion of correct responses
with what would be expected if the CAT was selecting items perfectly targeted to an
examinee' s ability. If the observed proportions correct are less than expected, the
interpretation isthat the current ability estimate istoo high. Alternatively, if the observed
proportions correct are greater than expected, the interpretation is that the current ability
estimate istoo low. Thus, a new adjusted ability estimate may be introduced in order to
compensate for the discrepancy. It should be noted that the expected proportion correct
under this ideal situation may be calculated without knowledge of examinee ability, as
will be discussed shortly.

The assumptions underlying the null hypothesis for this procedure are rooted in

how IRT characterizes item information. Under the 1, 2, and 3-parameter models, the

probability of correct response P(Ui = Jje) for anitemi is modeled as a monotonically

increasing function of 8. However, for each curve suggested by this function, there exists
exactly one point where its first derivative isat amaximum. It isalso at this point where

the item possesses maximum information. Thus, if 6 represents the value on the

max, i
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ability scale corresponding to this point, then the item possess maximum measurement

precision for an examinee whose own true ability 6 isequal to 6

max,i *
Now suppose that a set of N items are administered to an examinee with true

ability 8, and impose the restriction that for each itemi, 0 =0. That is, al N items

max,i
possess maximum information at the examinee’s true ability 6. (Note, however, that
thereis no restriction that all items be equally informative, so it is permissible that

1,(8)#1,(8) for i # j.) Thus, inthissituation where al items are ideally suited for this

examinee in terms of measurement precision,
emax,l = emax,z == emax,N =0 (Eq 1)
The next relationship links Equation 1 with the statement of the null hypothesis

employed by this procedure. Since there is a probability P(Ui = Jjem% ) associated with

each item i, an expected proportion correct may be constructed, under the constraints
imposed by Equation 1. This expected proportion correct, or p, isthen defined as

N

Z P(UI = ]"emax,i )

p=-= (Eq. 2)
N

The observed proportion correct, or p, isdefined as

p="21—, X ={0g (Ea. 3)
N

where X; = 0 indicates an incorrect response and X; = 1 indicates a correct response.

The null hypothesisisthenthat p issampled from a distribution with mean p.

Thus, a decision not to reject the null hypothesis implies that the observed proportion

10
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correct does not differ from the expected proportion correct p. Because an examinee’s
ability is assumed fixed at some true value 6, this decision further suggeststhat the
relationship in Equation 1 be retained®. In this case, the model would fit the data.
However, if the null hypothesisis rejected, then an alternative hypothesis is
required. Rejection of the null impliesthat the observed proportion correct is inconsistent
with what would be expected under Equation 1; that is, a discrepancy must therefore exist

betweenthe 0, . forthei ={1, 2,..., N} itemsadministered and that examinee’'strue

ability 6. Thus, the model does not fit the data.
In order to conduct the necessary hypothesis tests, atest statistic and its
distribution isrequired. To begin, consider an examinee’ s dichotomous response X; to

itemi. Then according to the IRT model, X; ~ BIN(Z1, pi), such that X; is a Bernoulli

random variable with parameter p;, and the parameter p; = P(Xi = 119) for congtant 6.

Now assume that a sample of size n is taken, where the X; are independent but not
identically distributed. (Thus, local independence of item responses is assumed here.)
The proportion correct for X; (or, the mean of the X;) may then be defined as

2%

p=-2 (Eq. 4
n

2 |f items are perfectly targeted at examinee ability, then Equation 2 follows by deduction. However, the
inductive step is somewhat moreinvolved. Satisfying Equation 2 isanecessary but not sufficient condition
for concluding Equation 1. Caution must be exercised in interpreting model-data fit under retention of the
null hypothesis. Nevertheless, if Equation 2 isnot satisfied (i.e., when thenull isrgected), it cannot be the
casethat Equation 1istrue
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Now the expectation E[ |6] , denoted by p, is

n

Xi n n !
p:E[ﬁ]:E;— :EE[ZX,}:EZE[X]‘;p (Eq. 5)

n i=1 n i=1 n

since for X; ~ BIN(L, py), E[X,] = p,. Thevarianceof p, denoted by Var[p], is

n Xi
Var[p| =Var| 12— | = =L var
n n?

> X ——ZVar[X =12 (Eq. 6)

i 2 i=1

[n } > pa

n?

since the variance of the sum of independent random variables is equal to the sum of their
variances, and Var[X,]= p,q , where g, =1- p, .

The test satistic is constructed as

7 =220 (Eq7)

War ]
where, under the null hypothesis, z* is asymptotically normally distributed with mean 0
and variance 1, that is, z' [Tf — N(0).
For utilizing this hypothesis-testing procedure in the CAT environment, the
guantities p and Var[f)] from Equations 5 and 6 are calculated based on the items

administered to the examinee, with the assumption under the null hypothesis that all
items possess maximum information at the examinee' s true ability, as given by

Equation 1. Thus, under the 3P model, the p, for anitemi used in these equationsis

given by

12
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- = J=c + (1_Ci)
" P(XI ].‘ema(’l) | [1"' exp(— Da, (emao<,i _bu))] =

where 0, . isdirectly attainable from the item parameters for itemi, and is given by

(Hambleton and Swaminathan, 1985)
1 o
emao(,i :bl +_|n(%+% 1+8Ci) (Eq 9)
Da,
and the a;, by, and ¢; are the discrimination, difficulty, and pseudo-guessing parameters,

respectively, for itemi; D isascaling constant. Substituting the expression for 0

max, i

from Equation 9 into Equation 8 results in the following simplification for p.

-1

p, = P(X, :qem): ¢ +-c)1e— 2 (Eq 10)

1+,1+8c

Using this expression for p, , the necessary quantities E[p] and Var[p] may be
calculated by means of Equations 5 and 6.

Equation 7 is used to test the null hypothesis that all items administered to an
examinee are maximally informative at that examinee’s true ability 6. If the absolute
value of the test statistic Z exceeds a critical value z, then the null hypothesis is rejected.
Otherwise, the null hypothesisisretained. The provisional ability estimate used for
selecting the next item depends on this decision rule.

Null hypothesis not rejected. 1n instances where the null hypothesis is not

rejected (i.e., ‘z‘ < z.), there is not sufficient evidence to suggest that items are not

maximally informative at an examinee’s ability 8. The recommendation therefore is that

13
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the most recently-obtained provisional ability estimate (from ML or MAP, for example)
be used to select the next item.

Null hypothesisregected. Sufficient evidence warrants the rejection of the null
hypothesis in this case (i.e., ‘z‘ > z.). Selection of the next item based on the most

recently-obtained provisional ability estimate is not recommended, and so an alternative

ability estimate is suggested. A new provisional ability estimate 9", different from that
estimated either by ML or MAP, isthus identified. This estimate is found using the
expected proportion correct p, its confidence limits under the null hypothesis, and the
average item characteristic curve for the administered items. Item selection then
proceeds based on this new provisional estimate 9.

In this case where the null hypothesisisrejected, it is concluded that the sample
proportion correct p isnot from adistribution with mean p. Since the hypothesistest is
constructed under the null hypothesis, inference does not extend to the distribution from
which p issampled. That is, the hypothesis test alone cannot characterize the alternative
mean of E[ f)] . However, a conservative estimate of the location of this alternative
distribution is possible.

Let p, denote the expected proportion correct under the null hypothesis, and p,
the expected proportion correct under the alternative. At the very least, the aternative
distribution becomes distinguishable from the null distribution at the decision threshold;

that is, at either one of the confidence limits set for p,. Thus, adecision to reject the null

hypothesiswhen p < p, isequivalent to stating that p lies outside the confidence

interval for p,, and specifically, beyond its lower confidence limit of p, — zc1/Var| po| .

14
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Likewise, rejection of the null when p > p, demandsthat p must lie beyond the upper

confidence limit p, + ch/Var| p0| :

Thus, an approximationto p, may be denoted by p’, such that

p = Po +Zc\/;ar[po]’ P> p,
e . (Eg. 11)
p = po_zc\/;arlpoli p< Po

where each of the quantities p,, Var [ po] , and z; are as defined under the hypothesis-
testing procedure.
By itself, the etimate P~ is not particularly useful for identifying a new

provisional ability estimate, since it is a proportion, not avalue on the ability scale.

However, the average item characteristic curve (ICC) provides a means for relating
proportions to ability values. Through the average ICC, the p” obtained from the
hypothesis-testing procedure may be converted to a new provisional ability estimate 9.
The use of the average |CC in such a manner is justified under the IRT model, since the
probabilities associated with a correct response for a given item are dependent only on
examinee ability 6.

The average of the ICCs from all administered items, or the average ICC, is
equivalent to the test characteristic curve (TCC) divided by the number of items
administered. Because an analytical solution is not available to transform P’ to 8
through the average |CC, anumerical search procedure isrequired. The procedure uses

the method of halving, where a discrete interval [a, b] is halved at each iteration,

producing a midpoint ¢ = (a+b)/2. The average |CC function P(X =16), defined as

15
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B i P(Xi :ZIIG)
P(x =10)= 2 — (Eq. 12)
N

foritems 1, 2, ..., Nisthen evaluated at 6 ={a,c,b}. If p* iswithintheinterval [a,c],
that is, when p’ < 5(X =16= c), then the interval boundary points are updated to be

[a, c] for the next iteration. Otherwise, P~ iswithin the interval [c, b] and the interval
boundary points are updated as [c, b] . This method of halving continues until the
maximum number of iterations has been met. For this study, the lower bound on ability
was set at 0 = -4, the upper bound a 6 = +4, and the maximum number of iterations for
the method of halving was set to 15.

Recall that the aternative ability estimation procedure employs a critical z-value
for hypothesis-testing. In many applications, the critical z-value is set beforehand to
correspond to anominal a-level, such as z. = 1.96 for a = 0.05, in order to control the
Typel error rate. However, in the context of the alternative ability estimation procedure,
adecision to set a to asmall value (such as 5%) translates into infrequent invocation of
the procedure, and hence the hypothesis test may be too conservative. What isrequired is
amethod for determining an optimal value of z; that will allow the alternative procedure
to function more frequently while maximizing correct decisions and minimizing incorrect
decisions.

Two optimal z. values were determined empirically, one for Alt/ML estimation
and the other for AIlt/MAP estimation. The values were found by conducting simulations
under these procedures and examining two measures. (1) the accuracy of the )

aternative ability estimates with respect to examinee true ability; and (2) the relative

16
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efficiency of tests administered using the alternative procedures (i.e., Alt/ML or
Alt/MAP) as compared to tests administered using the corresponding conventional
procedures (i.e., ML or MAP). Maximum Fl item selection was used for all simulations,
and the item pool used for these simulations was the same as that used for the full study.
It was found that z. = 0.9 was optimal for Alt/ML, and z; = 1.3 was optimal for Alt/MAP.
While these critical z-values may appear small, it should be noted that Xiao (1999), for
her hypothesis-testing procedure, suggested a critical value of z= 0.7; this value was also
determined empirically.

3 Experimental design

This study employed a CAT simulation methodology; the simulations used an
item bank of 367 pre-calibrated and dichotomously-scored 3-parameter IRT items from a
recently-administered large-scale CAT assessment of mathematics ability. The four
factorsin the fully-crossed experimental design were: (1) item selection procedure
(maximum Fl or maximum FlI item selection); (2) ability estimation procedure (ML,
MAP, GSS, ML/AIt, or MAP/ALt); (3) true ability level at discrete points along the ability
continuum (at 8 ={-2, -1, 0, +1, +2}); and (4) test length (5, 10, 15, or 25 items). For
each of the experimental conditions, 1000 replications were generated. The layout of the
experimental designisgivenin Table 1.

Efficiency, as defined earlier, isthe primary dependent measure. Since analyses
indicate that this measure is highly skewed to the left, the median efficiency is reported as
ameasure of central tendency, and the interquartile range is reported as a measure of
variability.

[Insert Table 1 about here]

17
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4 Results

One objective of this research was to quantify the efficiency (or inefficiency) of
item selection when conventional item selection and ability estimation procedures were
utilized. The efficiency measure 15, (8)/17(8) helped to address this question, asiit
indicated how efficient a given procedure was with respect to the maximum efficiency
attainable. Table 2 provides efficiency measures for the conventional item selection
procedure (FI) and ability estimation procedures (ML and MAP). Under maximum Fl
item selection, MAP was more efficient than ML at the middle ability levels® ={-1, O,
1}, and less efficient than ML at the extreme ability levels 8 = { -2, 2} for all tests lengths
(5, 10, 15, and 25 items), although these differences became smaller as test length
increased.

[Insert Table 2 about here]

The quantification of efficiency indicates how well, in terms of optimal
performance, the procedures are operating. As shown in Table 2, while ML was indeed
more efficient than MAP at the extreme ability levels, median efficiencies at these ability
levels did not exceed 62% for 5 items, and did not exceed 82% for 10 items. In contrast,
at the middle ability levels where MAP was more efficient, MAP efficiencies exceeded
88% for 5 items, and 91% for 10 items. Thus, onefinding here isthat little room for
improvement exists for maximum Fl item selection with MAP ability estimation at
middle ability levels, as it attained nearly 90% or greater efficiency even for the shortest
test length. Where room for improvement does exist is for ML ability estimation, across
al levels of ability, and for MAP at the extremes. For both of these cases, the largest

gaps in performance occurred for the shorter test lengths.

18
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It was hypothesized that alternative item selection procedures, aternative ability
estimation procedures, or a combination of both might prove useful for narrowing the
gaps in efficiency observed under conventional procedures. The extent to which each of
these alternative configurations might improve upon the efficiency of item selection over
the conventional procedures is now examined.

4.1 Alternativeitem selection with conventional ability estimation

One possibility for narrowing the gaps in efficiency isto utilize an alternative
item selection procedure, but maintain conventional ability estimation. Maximum Fl|
item selection, an alternative procedure, was examined in conjunction with ML and MAP
ability estimation. Asshown in Table 3, under maximum Fl1 item selection, the
performance of MAP and ML is enhanced at the extreme ability levels for short tests, but
no change is observed for longer tests. Interestingly, some of these results are consistent
with prior research; e.g., Chen, Ankenmann, & Chang (2000). Although Chen et
al.’s (2000) dependent measures were different from those utilized here (bias, standard
error, and RMSE of ability estimates versus efficiency measures) and ability estimation
procedure was different (EAP versus ML and MAP), they also found that maximum Fl|
item selection performed better than maximum Fl item selection at the lower extreme of
ability (6 = —2) for tests 10 items in length or shorter.

[Insert Table 3 about here]

In the present study it was found that in addition to increased efficiency at the
lower extreme of ability, FlI item selection benefited MAP estimation (but not ML) at the
higher extreme of ability (6 = 2), for the 5- and 10-item tests. Maximum FlI item

selection raised median efficiency measures in the case of MAP by about 10% for 5-item
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tests, and 6% for 10-item tests. The greatest increase in median efficiency under
maximum Fll selection was observed for ML at the lowest ability level, with an increase
of 30% over maximum Fl selection at 5 items.
4.2 Conventional item selection with alternative ability estimation

Another possibility for narrowing the gaps in efficiency is to maintain
conventional item selection, but utilize an alternative ability estimation procedure. The
efficiency measures from the alternative ability estimation procedures ML/Alt, MAP/AIt,
and GSS under maximum Fl item selection are provided in Table 2. In general, the
aternative procedures ML/AIt and MAP/AIt helped fill the gaps in the efficiency of the
conventional ML and MAP procedures under maximum Fl item selection, without
negatively impacting them in cases where performance was already high. The alternative
ability estimation procedures yielded higher median efficiency measures while
simultaneously maintaining or decreasing variability in those measures. The
improvement in efficiency was greater than that observed for ML and MAP under
maximum Fll selection, and occurred across more ability levels. For instance, ML
estimation only benefited from maximum Fl1 selection at 8 = -2, whereas efficiency
measures for ML/Alt were higher for al ability levels. Further, while maximum F|
selection did augment the median efficiency of 5- and 10-itemtestsat 6 = -2 for ML
estimation under maximum FI selection by 30% and 8%, respectively, ML/AIt saw a
corresponding increase of 47% and 20%, respectively, under maximum Fl selection.

Both ML/AIt and MAP/Alt were new methods proposed in this study. However,
the GSS ahility estimation procedure had been previously investigated by Xiao (1999).

As shown in Table 2, median efficiency measures from GSS are aways higher than those

20
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from ML, and the differences are most pronounced for shorter test lengths. Interestingly,
results from the GSS procedure closely parallel those from ML/AIt. This correspondence
may result from the fact that GSS, like ML/AIt, utilizes hypothesis-testing and an interval
search strategy.
4.3 Alternativeitem selection with alternative ability estimation

Y et another possibility for narrowing the gaps in efficiency is to utilize both
aternative item selection and ability estimation procedures. The efficiency measures
from the alternative ability estimation procedures ML/Alt, MAP/AIt, and GSS under
maximum Fll item selection are provided in Table 3. Under maximum Fl1, the
aternative ability estimation procedures again narrow the gaps in efficiency observed for
ML and MAP. However, there is no clear performance advantage for using the
aternative ability estimation procedures under maximum Fll selection as opposed to
maximum FI selection. The results were mixed for 5- and 10-item tests, and were
essentially unchanged for longer test lengths. Two median efficiency measures were
lower under maximum Fl item selection for 5-item tests; they occurred for ML/AIt and
GSS a 6 = 2. One measure was higher, also for ML/AIt but & 6 = 0. No clear pattern
for the change in variability measures was observed. In the nine cases where differences

in variability were detected, three were increases.
5 Discussion

Overall, it appearsthat ability estimation procedure impacts the efficiency of item
selection to alarger extent than item selection procedure. The effect of alternative ability
estimation procedures (ML/Alt, MAP/AIt, and GSS) on test efficiency was greater than

the effect of the alternative item selection procedure (FI1). Thus, incorporating ability
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estimation error into item selection procedures (asis the case with alternative item
selection procedures such as Fl1) may be less effective at increasing test efficiency than
utilizing alternative ability estimation procedures.

Item selection and ability estimation are two necessary ingredients for a CAT.
However, improvements in one area may be offset by weaknesses in the other. The
present study attemptsto isolate the effects of item selection on efficiency by utilizing an
outcome measure that is not confounded by ability estimation. In addition, the proposed
upper bound on efficiency is independent of the particular ability estimation employed
and serves as the theoretical limit for measurement precision.

While it has been posited that maximum Fl item selection with conventional
ability estimation procedures is inefficient at the early stages of testing, this study
addressed the question, to what extent is maximum Fl item selection with these ability
estimation procedures inefficient? It further addressed the question, what is the utility in
employing alternative item selection or ability estimation procedures? The answersto
these questions are likely of interest to the measurement practitioner who must assemble
CATsfor large-scale administration. Alternative item selection and ability estimation
proceduresthat are relatively easy to implement in an operational setting were suggested

and evaluated.
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Table 1. Layout of experimental design.

Item salection Ability Test length True ability 6

estimation | (initems) 2 [ -1 ] o [ +1 [ +2

ML 5,10, 15,25
ML/AIt | 5,10, 15, 25
Maximum FI MAP 5,10, 15,25
MAP/AIt | 5,10, 15, 25

GSS 5,10, 15,25

ML 5,10, 15,25
ML/AIt | 5,10, 15, 25
Maximum FlI MAP 5,10, 15,25
MAP/AIt | 5,10, 15, 25

GSS 5,10, 15,25

Dqgmde’]t measures provi ded: . EfflClmcy at 50th pacmtlle (majlm), |QR
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Table 2. Medians and interquartile ranges of the efficiency measure under maximum Fl
item selection.

Median efficiency Efficiency interquartile range (IQR)
Ability Test
estimetion | length | 6=-2 6=-1 ©6=0 ©6=1 6=2 |[6=2 6=-1 6=0 6=1 6=2

ML 5 530 732 542 448 616 | 443 121 293 454 171
10 818 839 719 701 80.7 | 188 189 290 351 133
15 930 871 801 803 909 | 91 159 218 220 71
25 96.7 927 895 893 958 | 55 96 122 116 32

ML/AIt 5 1000 943 633 830 939|185 78 267 400 164
10 995 918 811 862 1000 11.7 165 270 30.6 138
15 999 928 874 892 995 | 40 143 214 206 50
25 9.0 961 937 945 996 | 22 84 126 112 22

MAP 5 310 914 885 959 236|492 196 156 236 0.0
10 732 942 917 925 643 | 291 202 149 136 136
15 871 929 932 946 854|184 160 124 110 91
25 908 9.1 971 97 939 | 81 91 59 74 31

MAP/AIt 5 79.7 902 885 906 546|225 149 213 222 00
10 818 923 917 903 745|218 192 145 171 196
15 914 928 930 928 883 | 191 147 122 139 102
25 943 962 965 955 948 | 87 7.8 67 83 32

GSS 5 9.1 865 736 811 811|170 209 198 317 29
10 909 885 781 836 876|157 118 259 311 123
15 96.2 893 844 878 957 | 72 122 202 184 6.3
25 974 948 912 941 983 | 56 97 121 101 29
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Table 3. Medians and interquartile ranges of the efficiency measure under maximum Fl|
item selection.

Median efficiency Efficiency interquartile range (IQR)
Ability Test
estimetion | length | 6=-2 6=-1 ©6=0 ©6=1 6=2 |[6=2 6=-1 6=0 6=1 6=2

ML 5 828 745 542 457 654| 499 108 293 463 34
10 897 857 721 724 833|179 149 280 267 139
15 96.2 882 809 804 923| 88 149 195 198 58
25 980 939 892 904 95| 55 92 110 104 29

ML/AIt 5 1000 899 716 827 848 202 132 171 215 152
10 993 923 816 873 99| 123 160 240 243 163
15 999 923 872 906 987| 50 140 203 149 69
25 990 962 931 9.1 986| 52 88 107 96 26

MAP 5 428 930 908 924 321|492 199 156 179 00
10 791 911 920 912 702| 293 196 128 112 99
15 898 921 935 947 859|189 153 111 99 70
25 912 958 967 970 938| 91 85 59 65 32

MAP/AIt 5 79.7 895 908 924 577|225 129 213 226 00
10 819 906 917 897 713| 277 189 148 115 185
15 914 922 932 931 877|221 144 117 108 97
25 943 959 963 963 943| 121 81 64 73 43

GSS 5 96.1 880 732 827 716| 170 212 198 215 268
10 943 863 781 877 899| 157 145 269 261 152
15 96.2 898 854 889 963| 53 119 223 165 64
25 974 945 914 946 986| 55 88 118 97 25
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