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Abstract 

 

This study investigated the efficiency of item selection in a computerized adaptive 

test (CAT), where efficiency was defined in terms of the accumulated test information at 

an examinee’s true ability level.  A simulation methodology compared the efficiency of 

two item selection procedures with five ability estimation procedures for CATs of 5-, 10-, 

15-, and 25-items in length.  The two item selection procedures included maximum 

Fisher information (FI) and maximum Fisher interval information (FII) item selection.  

The five ability estimation procedures included maximum likelihood (ML), modal a 

posteriori (MAP), golden section search (GSS), and two new procedures proposed in this 

study.  These procedures, ML/Alt and MAP/Alt, adjusted ML or MAP estimates 

according to a specific decision rule based on hypothesis-testing. 

For the conventional item selection procedure (FI) and ability estimation 

procedures (ML and MAP), the best performance was observed for FI with MAP at 

middle ability levels, with efficiency attaining or exceeding 90% even for the shortest test 

length.  In contrast, larger gaps in efficiency were observed for FI with MAP at extreme 

ability levels, and for FI with ML across all ability levels.  Utilizing FII item selection 

with ML and MAP narrowed the gaps in efficiency at the lowest ability levels for 5- and 

10-item tests.  The greatest increase in test efficiency was observed when the alternative 

ability estimation procedures (ML/Alt, MAP/Alt, and GSS) were used.  The gains in 

efficiency were most pronounced for shorter tests, but were noticeable even for longer 

tests.  Overall, it appears that ability estimation procedure impacts the efficiency of item 

selection to a larger extent than item selection procedure. 
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1  Introduction 

Efficiency is often cited as an advantage of computerized adaptive tests (CATs) 

over traditional paper-and-pencil tests.  Typically, a CAT version of a test requires half as 

many items to be administered as its paper-and-pencil counterpart, without compromising 

measurement precision (Stocking, Smith & Swanson, 2000).  Nevertheless, the efficiency 

of a CAT at the early stages of test administration has been a point of contention in the 

literature.  At the early stages of a CAT administration, provisional ability estimates are 

typically imprecise, inaccurate, or both.  Because item selection is dependent on ability 

estimation, the arguments contend that item selection based on these early provisional 

ability estimates is likely to be mismatched with respect to an examinee’s true ability.  

Chen, Ankenmann, and Chang (2000) point out that the inaccuracy of these provisional 

ability estimates early in CAT administration is “a persistent problem” and that “the more 

accurate [the provisional ability estimate] is, the more appropriate the selected item will 

be.”  

The recognition that provisional ability estimates at the early stages of testing are 

inaccurate has generated an area of research which seeks to improve the efficiency of a 

CAT by means of alternative item selection procedures and alternative ability estimation 

procedures.  Recent studies examining the efficacy of alternative item selection 

procedures suggest that all perform similarly to each other as well as to FI item selection 

after ten items have been administered (Chen, Ankenmann, & Chang, 2000; Cheng & 

Liou, 2000).  Although it is perhaps unlikely that a CAT of 10 or less items would be 

administered operationally, the question remains as to whether the efficiency of a CAT 

might be improved at the early stages of administration by perhaps another item selection 
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or ability estimation procedure not yet considered, and that such potential gains in 

efficiency obtained early on might translate into more precise measurements after 

considerably more items have been administered. 

It should be noted that almost all research on improving the efficiency of CAT 

item selection has concentrated on alternative item selection procedures.  However, 

ability estimation plays an equally important role in CAT item selection, as any item 

selection procedure must utilize provisional ability estimates.  Xiao (1999) demonstrated 

that an alternative ability estimation procedure utilizing a golden section search (GSS) 

optimization technique was as accurate as the more common expected a posteriori (EAP) 

ability estimation procedure in classifying examinees in a computerized adaptive 

classification test. 

A related issue is the precise meaning of the term “efficiency”  and how it should 

be measured.  In studies by Chang & Ying (1996), Chen, Ankenmann, & Chang (2000), 

and Cheng & Liou (2000), it appears that efficiency is defined in terms of the 

appropriateness of a selected item with respect to an examinee’s true ability.  By this 

definition, therefore, efficient item selection is characterized by the selection of items 

appropriate to an examinee’s true ability.  Nevertheless, all of these studies use as 

outcome measures characteristics of the ability estimates (e.g., root-mean-square errors, 

bias, and standard errors), as opposed to the characteristics of the selected items 

themselves. 

Davey (2002, personal communication) suggests that a less confounded outcome 

measure is accumulated test information at an examinee’s true ability θ.  This measure is 

calculated on the basis of the items selected for administration, and does not incorporate 
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errors in ability estimation.1  Through this measure, a precise definition of efficiency may 

be obtained, one that follows naturally from the statistical concepts of efficiency and 

relative efficiency. 

The objectives of the present study are then:  (1) define precisely the efficiency of 

item selection in a CAT; (2) quantify the efficiency (or inefficiency) of item selection 

when conventional item selection and ability estimation procedures are utilized; (3) 

propose a new alternative ability estimation procedure that addresses potential 

inefficiencies in CAT item selection; (4) quantify the efficiency of item selection under 

alternative item selection procedures, alternative ability estimation procedures, or both; 

and (5) examine the extent to which these alternative configurations improve upon the 

efficiency of item selection over the conventional procedures. 

2  Theoretical framework 

2.1  Defining the efficiency of item selection in CAT 

Consider two tests, A and B, administered to an examinee possessing true 

ability θ.  The precision with which this examinee may be measured by test A is given by 

the accumulated test information at the examinee’s true ability θ, or ( )θ)(T
AI .  Likewise, 

( )θ)(T
BI  indicates the precision afforded by test B.  The relative efficiency of test A over 

test B, indicated by ( )θBARE , , is the ratio ( )θ)(T
AI / ( )θ)(T

BI .  Thus, if test A is more 

efficient than test B, ( ) 1, >θBARE . 

This definition of relative efficiency may be extended to the CAT context, 

yielding an operational definition for the efficiency of a CAT.  Suppose that a CAT of j 

                                                
1 There can be no question that the specific items selected by the CAT are influenced by the ability 
estimation method; however, this measure is a function defined only in terms of item parameters and a 
given value of true ability. 
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items is administered to an examinee possessing true ability θ, and that these items are 

drawn from an item bank of finite size.  Then the quantity ( )θ)(T
CATI  characterizes the 

accumulated test information from these j items at the examinee’s ability level.  Now for 

any given θ, there exists an optimal set of items, also of size j, such that no other 

combination of j items yields a greater measure of accumulated test information.  Thus, if 

( )θ)(
0
TI  represents the accumulated test information for this optimal set of items, the 

relative efficiency of the set of items selected by the CAT administration over the optimal 

set is ( )θ)(T
CATI / ( )θ)(

0
TI .  Noting, however, that ( )θ)(

0
TI  places an upper bound on the 

precision with which an examinee with true ability θ may be measured by a set of j items 

drawn from the item bank, it must be the case that ( ) ( ) 1/ )(
0

)( ≤θθ TT
CAT II .  It is this ratio that 

operationally defines the efficiency of a CAT in the present context. 

2.2  Item selection procedures 

Of the two item selection procedures considered in this study, one is conventional 

(maximum Fisher information), the other is alternative (maximum Fisher interval 

information).  Maximum Fisher information (FI) item selection is taken here to be the 

process whereby:  (1) an examinee’s provisional ability estimate jθ̂  is obtained after the 

jth item has been administered; and (2) the j+1th item is selected such that it both 

possesses maximum Fisher information at the provisional ability estimate and has not 

already been administered.  Item selection by Fisher interval information (FII) is closely 

related to maximum FI item selection, but instead of evaluating item information at a 

single point (i.e., the provisional ability estimate), an information index is evaluated 

instead (Veerkamp & Berger, 1997).  This index is obtained by performing a 
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mathematical integration of the information function associated with an item along a 

specified interval of the ability continuum. 

2.3  Ability estimation procedures 

Of the five ability estimation procedures in the study, two are conventional; 

namely, maximum likelihood (ML) and maximum a posteriori (MAP) estimation.  ML 

estimation finds the ability estimate jML,θ̂  that maximizes the likelihood function for an 

examinee’s responses to j administered items.  MAP estimation finds the ability estimate 

jMAP,θ̂  that occurs at the maximum of the posterior density function after j items have 

been administered, where the posterior density is proportional to the likelihood multiplied 

by the prior density, taken here to be N(0,1).  The alternative ability estimation 

procedures—Xiao’s (1999) golden section search (GSS) strategy and the proposed 

alternative procedure—utilize hypothesis-testing.  Xiao (1999) obtains provisional ability 

estimates θ̂  by a golden-section search (GSS) strategy; the next item is selected based on 

this most current provisional ability estimate.  Using GSS, a starting estimate 1θ̂  is 

identified as the midpoint of a search interval along the ability continuum; a hypothesis 

test is conducted by comparing optimally-weighted observed and expected scores given 

1θ̂  (see Birnbaum, 1968 for a discussion on optimally-weighted scores).  If the 

hypothesis test results in rejection, then a new search interval is identified, as well as a 

new estimate 2θ̂ .  The search strategy continues until the null hypothesis is not rejected.  

The last estimate θ̂  obtained is then taken as the provisional ability estimate. 

The proposed alternative ability estimation procedure operates concurrently with 

a conventional ability estimation procedure such as ML and MAP, yielding two more 
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alternative ability estimation procedures, denoted as ML/Alt and MAP/Alt.  Like 

Xiao (1999), the alternative procedure conducts a hypothesis test after the jth item in the 

test has been administered.  However, the null hypothesis in the procedure is that all j 

items administered to an examinee are maximally informative at that examinee’s true 

ability θ; failure to reject the null suggests that the ability estimate obtained by ML or 

MAP should be used for the subsequent selection of the j+1th item, while rejection of the 

null suggests a modified ability estimation procedure.  This modified ability estimate is 

found using the expected proportion correct under the null hypothesis, its confidence 

limits, and the average item characteristic curve for the j administered items. 

Here, the null hypothesis is constructed under strict model assumptions.  These 

assumptions follow from the IRT model in the case where all items administered to an 

examinee are maximally discriminating (i.e., possess maximum information) at that 

examinee’s true ability.  Such a scenario characterizes ideal item selection in a CAT; 

namely, that items administered to an examinee should possess maximum measurement 

precision at that examinee’s true ability.  Thus, the hypothesis-testing procedure used 

here is essentially a test of whether the CAT is operating as intended.  In brief, if this null 

hypothesis is not rejected, then the decision is to use the most recent provisional ability 

estimate obtained by a conventional ability estimation procedure (e.g., ML or MAP) to 

select the next item.  If evidence warrants its rejection, however, an alternative selection 

method is suggested.  Thus, the alternative procedure functions concurrently with a 

conventional ability estimation procedure such as ML or MAP, and in this sense acts as 

an adjustment to the conventional ability estimate when model assumptions do not 

conform to the observed data. 
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The overall rationale for this hypothesis-testing procedure is that when a CAT is 

targeting items exactly at an examinee’s true ability, the expected proportion of items 

correctly answered is approximately equal to 0.5 in the case of items modeled under the 

3P IRT model, and is exactly equal to 0.5 in the case of 1P and 2P items.  The presence 

of a pseudo-guessing parameter c in the 3P IRT model increases the expected proportion 

correct from 0.5 to a higher number, with larger values of c corresponding to higher 

expected proportions correct.  After an examinee has responded to an administered item, 

the hypothesis-testing procedure compares the observed proportion of correct responses 

with what would be expected if the CAT was selecting items perfectly targeted to an 

examinee’s ability.  If the observed proportions correct are less than expected, the 

interpretation is that the current ability estimate is too high.  Alternatively, if the observed 

proportions correct are greater than expected, the interpretation is that the current ability 

estimate is too low.  Thus, a new adjusted ability estimate may be introduced in order to 

compensate for the discrepancy.  It should be noted that the expected proportion correct 

under this ideal situation may be calculated without knowledge of examinee ability, as 

will be discussed shortly. 

The assumptions underlying the null hypothesis for this procedure are rooted in 

how IRT characterizes item information.  Under the 1, 2, and 3-parameter models, the 

probability of correct response ( )θ= 1iUP  for an item i is modeled as a monotonically 

increasing function of θ.  However, for each curve suggested by this function, there exists 

exactly one point where its first derivative is at a maximum.  It is also at this point where 

the item possesses maximum information.  Thus, if imax,θ  represents the value on the 
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ability scale corresponding to this point, then the item possess maximum measurement 

precision for an examinee whose own true ability θ is equal to imax,θ . 

Now suppose that a set of N items are administered to an examinee with true 

ability θ, and impose the restriction that for each item i, θ=θ imax, .  That is, all N items 

possess maximum information at the examinee’s true ability θ.  (Note, however, that 

there is no restriction that all items be equally informative, so it is permissible that 

( ) ( )θ≠θ ji II  for ji ≠ .)  Thus, in this situation where all items are ideally suited for this 

examinee in terms of measurement precision, 

 θ=θ==θ=θ Nmax,2max,1max, �  (Eq. 1) 

The next relationship links Equation 1 with the statement of the null hypothesis 

employed by this procedure.  Since there is a probability ( )
iiUP

max,
1θ=  associated with 

each item i, an expected proportion correct may be constructed, under the constraints 

imposed by Equation 1.  This expected proportion correct, or p , is then defined as 

 
( )

N

UP
p

N

i
ii�

=
θ=

= 1
max,1

 (Eq. 2) 

The observed proportion correct, or p̂ , is defined as 

 { }1,0,ˆ 1 ==
�

=
i

N

i
i

X
N

X
p  (Eq. 3) 

where Xi = 0 indicates an incorrect response and Xi = 1 indicates a correct response. 

The null hypothesis is then that p̂  is sampled from a distribution with mean p.  

Thus, a decision not to reject the null hypothesis implies that the observed proportion 
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correct does not differ from the expected proportion correct p.  Because an examinee’s 

ability is assumed fixed at some true value θ, this decision further suggests that the 

relationship in Equation 1 be retained2.  In this case, the model would fit the data. 

However, if the null hypothesis is rejected, then an alternative hypothesis is 

required.  Rejection of the null implies that the observed proportion correct is inconsistent 

with what would be expected under Equation 1; that is, a discrepancy must therefore exist 

between the imax,θ  for the i ={ 1, 2,…, N}  items administered and that examinee’s true 

ability θ.  Thus, the model does not fit the data. 

In order to conduct the necessary hypothesis tests, a test statistic and its 

distribution is required.  To begin, consider an examinee’s dichotomous response Xi to 

item i.  Then according to the IRT model, Xi ~ BIN(1, pi), such that Xi is a Bernoulli 

random variable with parameter pi, and the parameter pi = ( )θ= 1iXP  for constant θ.    

Now assume that a sample of size n is taken, where the Xi are independent but not 

identically distributed.  (Thus, local independence of item responses is assumed here.)  

The proportion correct for Xi (or, the mean of the Xi) may then be defined as 

 
n

X
p

n

i
i�

== 1ˆ  (Eq. 4) 

                                                
2 If items are perfectly targeted at examinee ability, then Equation 2 follows by deduction.  However, the 
inductive step is somewhat more involved.  Satisfying Equation 2 is a necessary but not sufficient condition 
for concluding Equation 1.  Caution must be exercised in interpreting model-data fit under retention of the 
null hypothesis.  Nevertheless, if Equation 2 is not satisfied (i.e., when the null is rejected), it cannot be the 
case that Equation 1 is true. 
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Now the expectation [ ]pE ˆ , denoted by p, is 

 [ ] [ ]
n

p
XE

n
XE

nn

X
EpEp

n

i
in

i
i

n

i
i

n

i
i �

��
�

=

==

= ==�
�

�
�
�

�=

�
�
�
�

�

�

�
�
�
�

�

�

== 1

11

1 11
ˆ  (Eq. 5) 

since for Xi ~ BIN(1, pi), [ ] ii pXE = .  The variance of p̂ , denoted by [ ]pVar ˆ , is 

 [ ] [ ]
2

1

1212

1 11
ˆ

n

qp
XVar

n
XVar

nn

X
VarpVar

n

i
iin

i
i

n

i
i

n

i
i �

��
�

=

==

= ==�
�

�
�
�

�=

�
�
�
�

�

�

�
�
�
�

�

�

=  (Eq. 6) 

since the variance of the sum of independent random variables is equal to the sum of their 

variances, and [ ] iii qpXVar = , where ii pq −= 1 . 

The test statistic is constructed as 

 
[ ]pVar

pp
z

ˆ

ˆ* −=  (Eq 7) 

where, under the null hypothesis, *z  is asymptotically normally distributed with mean 0 

and variance 1, that is, ( )1,0* Nz d→ . 

For utilizing this hypothesis-testing procedure in the CAT environment, the 

quantities p and [ ]pVar ˆ  from Equations 5 and 6 are calculated based on the items 

administered to the examinee, with the assumption under the null hypothesis that all 

items possess maximum information at the examinee’s true ability, as given by 

Equation 1.  Thus, under the 3P model, the ip  for an item i used in these equations is 

given by  
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 ( ) ( )
( )( )[ ]iii

i
iiii

bDa

c
cXPp

−θ−+

−
+=θ==

max,

max,

exp1

1
1  (Eq 8) 

where imax,θ  is directly attainable from the item parameters for item i, and is given by 

(Hambleton and Swaminathan, 1985)  

 ( )i

i

ii c
Da

b 81ln
1

2
1

2
1

max, +++=θ  (Eq 9) 

and the ai, bi, and ci are the discrimination, difficulty, and pseudo-guessing parameters, 

respectively, for item i; D is a scaling constant.  Substituting the expression for imax,θ  

from Equation 9 into Equation 8 results in the following simplification for ip  

 ( ) ( )
1

max,

811

2
111

−

�
�
�

�

�

�
�
�

�

�

++
+−+=θ==

i

iiiii

c
ccXPp  (Eq 10) 

Using this expression for ip , the necessary quantities [ ]pE ˆ  and [ ]pVar ˆ  may be 

calculated by means of Equations 5 and 6. 

Equation 7 is used to test the null hypothesis that all items administered to an 

examinee are maximally informative at that examinee’s true ability θ.  If the absolute 

value of the test statistic z* exceeds a critical value zc, then the null hypothesis is rejected.  

Otherwise, the null hypothesis is retained.  The provisional ability estimate used for 

selecting the next item depends on this decision rule. 

Null hypothesis not rejected.  In instances where the null hypothesis is not 

rejected (i.e., czz ≤* ), there is not sufficient evidence to suggest that items are not 

maximally informative at an examinee’s ability θ.  The recommendation therefore is that 
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the most recently-obtained provisional ability estimate (from ML or MAP, for example) 

be used to select the next item.   

Null hypothesis rejected.  Sufficient evidence warrants the rejection of the null 

hypothesis in this case (i.e., czz >* ).  Selection of the next item based on the most 

recently-obtained provisional ability estimate is not recommended, and so an alternative 

ability estimate is suggested.  A new provisional ability estimate *θ̂ , different from that 

estimated either by ML or MAP, is thus identified.  This estimate is found using the 

expected proportion correct p, its confidence limits under the null hypothesis, and the 

average item characteristic curve for the administered items.  Item selection then 

proceeds based on this new provisional estimate *θ̂ . 

In this case where the null hypothesis is rejected, it is concluded that the sample 

proportion correct p̂  is not from a distribution with mean p.  Since the hypothesis test is 

constructed under the null hypothesis, inference does not extend to the distribution from 

which p̂  is sampled.  That is, the hypothesis test alone cannot characterize the alternative 

mean of [ ]pE ˆ .  However, a conservative estimate of the location of this alternative 

distribution is possible. 

Let 0p  denote the expected proportion correct under the null hypothesis, and αp  

the expected proportion correct under the alternative.  At the very least, the alternative 

distribution becomes distinguishable from the null distribution at the decision threshold; 

that is, at either one of the confidence limits set for 0p .  Thus, a decision to reject the null 

hypothesis when 0ˆ pp <  is equivalent to stating that p̂  lies outside the confidence 

interval for 0p , and specifically, beyond its lower confidence limit of [ ]00 pVarzp c− .  
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Likewise, rejection of the null when 0ˆ pp >  demands that p̂  must lie beyond the upper 

confidence limit [ ]00 pVarzp c+ . 

Thus, an approximation to αp  may be denoted by *p̂ , such that 

 
[ ]
[ ] 000

*
000

*

ˆ,ˆ

ˆ,ˆ

pppVarzpp

pppVarzpp

c

c

<−=
>+=

 (Eq. 11) 

where each of the quantities 0p , [ ]0pVar , and zc are as defined under the hypothesis-

testing procedure. 

By itself, the estimate *p̂  is not particularly useful for identifying a new 

provisional ability estimate, since it is a proportion, not a value on the ability scale.  

However, the average item characteristic curve (ICC) provides a means for relating 

proportions to ability values.  Through the average ICC, the *p̂  obtained from the 

hypothesis-testing procedure may be converted to a new provisional ability estimate *θ̂ .  

The use of the average ICC in such a manner is justified under the IRT model, since the 

probabilities associated with a correct response for a given item are dependent only on 

examinee ability θ. 

The average of the ICCs from all administered items, or the average ICC, is 

equivalent to the test characteristic curve (TCC) divided by the number of items 

administered.  Because an analytical solution is not available to transform *p̂  to *θ̂  

through the average ICC, a numerical search procedure is required.  The procedure uses 

the method of halving, where a discrete interval [ ]ba,  is halved at each iteration, 

producing a midpoint ( ) 2/bac += .  The average ICC function ( )θ= 1XP , defined as 
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 ( )
( )

N

XP
XP

N

i
i�

=
θ=

=θ= 1

1
1  (Eq. 12) 

for items 1, 2, …, N is then evaluated at { }bca ,,=θ .  If *p̂  is within the interval [ ]ca, , 

that is, when ( )cXPp =θ=≤ 1ˆ * , then the interval boundary points are updated to be 

[ ]ca,  for the next iteration.  Otherwise, *p̂  is within the interval [ ]bc,  and the interval 

boundary points are updated as [ ]bc, .  This method of halving continues until the 

maximum number of iterations has been met.  For this study, the lower bound on ability 

was set at 4−=θ , the upper bound at 4+=θ , and the maximum number of iterations for 

the method of halving was set to 15. 

Recall that the alternative ability estimation procedure employs a critical z-value 

for hypothesis-testing.  In many applications, the critical z-value is set beforehand to 

correspond to a nominal α-level, such as zc = 1.96 for α = 0.05, in order to control the 

Type I error rate.  However, in the context of the alternative ability estimation procedure, 

a decision to set α to a small value (such as 5%) translates into infrequent invocation of 

the procedure, and hence the hypothesis test may be too conservative.  What is required is 

a method for determining an optimal value of zc that will allow the alternative procedure 

to function more frequently while maximizing correct decisions and minimizing incorrect 

decisions. 

Two optimal zc values were determined empirically, one for Alt/ML estimation 

and the other for Alt/MAP estimation.  The values were found by conducting simulations 

under these procedures and examining two measures:  (1) the accuracy of the *θ̂  

alternative ability estimates with respect to examinee true ability; and (2) the relative 
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efficiency of tests administered using the alternative procedures (i.e., Alt/ML or 

Alt/MAP) as compared to tests administered using the corresponding conventional 

procedures (i.e., ML or MAP).  Maximum FI item selection was used for all simulations, 

and the item pool used for these simulations was the same as that used for the full study.  

It was found that zc = 0.9 was optimal for Alt/ML, and zc = 1.3 was optimal for Alt/MAP.  

While these critical z-values may appear small, it should be noted that Xiao (1999), for 

her hypothesis-testing procedure, suggested a critical value of z = 0.7; this value was also 

determined empirically. 

3  Experimental design 

This study employed a CAT simulation methodology; the simulations used an 

item bank of 367 pre-calibrated and dichotomously-scored 3-parameter IRT items from a 

recently-administered large-scale CAT assessment of mathematics ability.  The four 

factors in the fully-crossed experimental design were:  (1) item selection procedure 

(maximum FI or maximum FII item selection); (2) ability estimation procedure (ML, 

MAP, GSS, ML/Alt, or MAP/Alt); (3) true ability level at discrete points along the ability 

continuum (at θ = { −2, −1, 0, +1, +2} ); and (4) test length (5, 10, 15, or 25 items).  For 

each of the experimental conditions, 1000 replications were generated.  The layout of the 

experimental design is given in Table 1. 

Efficiency, as defined earlier, is the primary dependent measure.  Since analyses 

indicate that this measure is highly skewed to the left, the median efficiency is reported as 

a measure of central tendency, and the interquartile range is reported as a measure of 

variability. 

[Insert Table 1 about here] 
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4  Results 

One objective of this research was to quantify the efficiency (or inefficiency) of 

item selection when conventional item selection and ability estimation procedures were 

utilized.  The efficiency measure ( ) ( )θθ )(
0

)( / TT
CAT II  helped to address this question, as it 

indicated how efficient a given procedure was with respect to the maximum efficiency 

attainable.  Table 2 provides efficiency measures for the conventional item selection 

procedure (FI) and ability estimation procedures (ML and MAP).  Under maximum FI 

item selection, MAP was more efficient than ML at the middle ability levels θ = { −1, 0, 

1} , and less efficient than ML at the extreme ability levels θ = { −2, 2}  for all tests lengths 

(5, 10, 15, and 25 items), although these differences became smaller as test length 

increased. 

[Insert Table 2 about here] 

The quantification of efficiency indicates how well, in terms of optimal 

performance, the procedures are operating.  As shown in Table 2, while ML was indeed 

more efficient than MAP at the extreme ability levels, median efficiencies at these ability 

levels did not exceed 62% for 5 items, and did not exceed 82% for 10 items.  In contrast, 

at the middle ability levels where MAP was more efficient, MAP efficiencies exceeded 

88% for 5 items, and 91% for 10 items.  Thus, one finding here is that little room for 

improvement exists for maximum FI item selection with MAP ability estimation at 

middle ability levels, as it attained nearly 90% or greater efficiency even for the shortest 

test length.  Where room for improvement does exist is for ML ability estimation, across 

all levels of ability, and for MAP at the extremes.  For both of these cases, the largest 

gaps in performance occurred for the shorter test lengths. 



Assessing the efficiency of item selection in CAT 

19 

It was hypothesized that alternative item selection procedures, alternative ability 

estimation procedures, or a combination of both might prove useful for narrowing the 

gaps in efficiency observed under conventional procedures.  The extent to which each of 

these alternative configurations might improve upon the efficiency of item selection over 

the conventional procedures is now examined. 

4.1  Alternative item selection with conventional ability estimation 

One possibility for narrowing the gaps in efficiency is to utilize an alternative 

item selection procedure, but maintain conventional ability estimation.  Maximum FII 

item selection, an alternative procedure, was examined in conjunction with ML and MAP 

ability estimation.  As shown in Table 3, under maximum FII item selection, the 

performance of MAP and ML is enhanced at the extreme ability levels for short tests, but 

no change is observed for longer tests.  Interestingly, some of these results are consistent 

with prior research; e.g., Chen, Ankenmann, & Chang (2000).  Although Chen et 

al.’ s (2000) dependent measures were different from those utilized here (bias, standard 

error, and RMSE of ability estimates versus efficiency measures) and ability estimation 

procedure was different (EAP versus ML and MAP), they also found that maximum FII 

item selection performed better than maximum FI item selection at the lower extreme of 

ability (θ = −2) for tests 10 items in length or shorter. 

[Insert Table 3 about here] 

In the present study it was found that in addition to increased efficiency at the 

lower extreme of ability, FII item selection benefited MAP estimation (but not ML) at the 

higher extreme of ability (θ = 2), for the 5- and 10-item tests.  Maximum FII item 

selection raised median efficiency measures in the case of MAP by about 10% for 5-item 
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tests, and 6% for 10-item tests.  The greatest increase in median efficiency under 

maximum FII selection was observed for ML at the lowest ability level, with an increase 

of 30% over maximum FI selection at 5 items. 

4.2  Conventional item selection with alternative ability estimation 

Another possibility for narrowing the gaps in efficiency is to maintain 

conventional item selection, but utilize an alternative ability estimation procedure.  The 

efficiency measures from the alternative ability estimation procedures ML/Alt, MAP/Alt, 

and GSS under maximum FI item selection are provided in Table 2.  In general, the 

alternative procedures ML/Alt and MAP/Alt helped fill the gaps in the efficiency of the 

conventional ML and MAP procedures under maximum FI item selection, without 

negatively impacting them in cases where performance was already high.  The alternative 

ability estimation procedures yielded higher median efficiency measures while 

simultaneously maintaining or decreasing variability in those measures.  The 

improvement in efficiency was greater than that observed for ML and MAP under 

maximum FII selection, and occurred across more ability levels.  For instance, ML 

estimation only benefited from maximum FII selection at θ = −2, whereas efficiency 

measures for ML/Alt were higher for all ability levels.  Further, while maximum FII 

selection did augment the median efficiency of 5- and 10-item tests at θ = −2  for ML 

estimation under maximum FI selection by 30% and 8%, respectively, ML/Alt saw a 

corresponding increase of 47% and 20%, respectively, under maximum FI selection. 

Both ML/Alt and MAP/Alt were new methods proposed in this study.  However, 

the GSS ability estimation procedure had been previously investigated by Xiao (1999).  

As shown in Table 2, median efficiency measures from GSS are always higher than those 
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from ML, and the differences are most pronounced for shorter test lengths.  Interestingly, 

results from the GSS procedure closely parallel those from ML/Alt.  This correspondence 

may result from the fact that GSS, like ML/Alt, utilizes hypothesis-testing and an interval 

search strategy. 

4.3  Alternative item selection with alternative ability estimation 

Yet another possibility for narrowing the gaps in efficiency is to utilize both 

alternative item selection and ability estimation procedures.  The efficiency measures 

from the alternative ability estimation procedures ML/Alt, MAP/Alt, and GSS under 

maximum FII item selection are provided in Table 3.  Under maximum FII, the 

alternative ability estimation procedures again narrow the gaps in efficiency observed for 

ML and MAP.  However, there is no clear performance advantage for using the 

alternative ability estimation procedures under maximum FII selection as opposed to 

maximum FI selection.  The results were mixed for 5- and 10-item tests, and were 

essentially unchanged for longer test lengths.  Two median efficiency measures were 

lower under maximum FII item selection for 5-item tests; they occurred for ML/Alt and 

GSS at θ = 2.  One measure was higher, also for ML/Alt but at θ = 0.  No clear pattern 

for the change in variability measures was observed.  In the nine cases where differences 

in variability were detected, three were increases. 

5  Discussion 

Overall, it appears that ability estimation procedure impacts the efficiency of item 

selection to a larger extent than item selection procedure.  The effect of alternative ability 

estimation procedures (ML/Alt, MAP/Alt, and GSS) on test efficiency was greater than 

the effect of the alternative item selection procedure (FII).  Thus, incorporating ability 
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estimation error into item selection procedures (as is the case with alternative item 

selection procedures such as FII) may be less effective at increasing test efficiency than 

utilizing alternative ability estimation procedures. 

Item selection and ability estimation are two necessary ingredients for a CAT.  

However, improvements in one area may be offset by weaknesses in the other.  The 

present study attempts to isolate the effects of item selection on efficiency by utilizing an 

outcome measure that is not confounded by ability estimation.  In addition, the proposed 

upper bound on efficiency is independent of the particular ability estimation employed 

and serves as the theoretical limit for measurement precision. 

While it has been posited that maximum FI item selection with conventional 

ability estimation procedures is inefficient at the early stages of testing, this study 

addressed the question, to what extent is maximum FI item selection with these ability 

estimation procedures inefficient?  It further addressed the question, what is the utility in 

employing alternative item selection or ability estimation procedures?  The answers to 

these questions are likely of interest to the measurement practitioner who must assemble 

CATs for large-scale administration.  Alternative item selection and ability estimation 

procedures that are relatively easy to implement in an operational setting were suggested 

and evaluated. 
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Table 1.  Layout of experimental design. 

True ability θ Item selection 
Ability 

estimation 
Test length 
(in items) −2 −1 0 +1 +2 

ML 5, 10, 15, 25 

ML/Alt 5, 10, 15, 25 

MAP 5, 10, 15, 25 

MAP/Alt 5, 10, 15, 25 

Maximum FI 

GSS 5, 10, 15, 25 

ML 5, 10, 15, 25 

ML/Alt 5, 10, 15, 25 

MAP 5, 10, 15, 25 

MAP/Alt 5, 10, 15, 25 

Maximum FII 

GSS 5, 10, 15, 25 

 

Dependent measures provided: • Efficiency at 50th percentile (median), IQR 
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Table 2.  Medians and interquartile ranges of the efficiency measure under maximum FI 
item selection. 
 

Median efficiency 
 

Efficiency interquartile range (IQR) 
 Ability 

estimation 
Test 

length θ=-2 θ=-1 θ=0 θ=1 θ=2 θ=-2 θ=-1 θ=0 θ=1 θ=2 
            

ML 5 53.0 73.2 54.2 44.8 61.6 44.3 12.1 29.3 45.4 17.1 
 10 81.8 83.9 71.9 70.1 80.7 18.8 18.9 29.0 35.1 13.3 
 15 93.0 87.1 80.1 80.3 90.9 9.1 15.9 21.8 22.0 7.1 
 25 96.7 92.7 89.5 89.3 95.8 5.5 9.6 12.2 11.6 3.2 
            

ML/Alt 5 100.0 94.3 63.3 83.0 93.9 18.5 7.8 26.7 40.0 16.4 
 10 99.5 91.8 81.1 86.2 100.0 11.7 16.5 27.0 30.6 13.8 
 15 99.9 92.8 87.4 89.2 99.5 4.0 14.3 21.4 20.6 5.0 
 25 99.0 96.1 93.7 94.5 99.6 2.2 8.4 12.6 11.2 2.2 
            

MAP 5 31.0 91.4 88.5 95.9 23.6 49.2 19.6 15.6 23.6 0.0 
 10 73.2 94.2 91.7 92.5 64.3 29.1 20.2 14.9 13.6 13.6 
 15 87.1 92.9 93.2 94.6 85.4 18.4 16.0 12.4 11.0 9.1 
 25 90.8 96.1 97.1 96.7 93.9 8.1 9.1 5.9 7.4 3.1 
            

MAP/Alt 5 79.7 90.2 88.5 90.6 54.6 22.5 14.9 21.3 22.2 0.0 
 10 81.8 92.3 91.7 90.3 74.5 21.8 19.2 14.5 17.1 19.6 
 15 91.4 92.8 93.0 92.8 88.3 19.1 14.7 12.2 13.9 10.2 
 25 94.3 96.2 96.5 95.5 94.8 8.7 7.8 6.7 8.3 3.2 
            

GSS 5 96.1 86.5 73.6 81.1 81.1 17.0 20.9 19.8 31.7 2.9 
 10 90.9 88.5 78.1 83.6 87.6 15.7 11.8 25.9 31.1 12.3 
 15 96.2 89.3 84.4 87.8 95.7 7.2 12.2 20.2 18.4 6.3 
 25 97.4 94.8 91.2 94.1 98.3 5.6 9.7 12.1 10.1 2.9 
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Table 3.  Medians and interquartile ranges of the efficiency measure under maximum FII 
item selection. 
 

Median efficiency 
 

Efficiency interquartile range (IQR) 
 Ability 

estimation 
Test 

length θ=-2 θ=-1 θ=0 θ=1 θ=2 θ=-2 θ=-1 θ=0 θ=1 θ=2 
            

ML 5 82.8 74.5 54.2 45.7 65.4 49.9 10.8 29.3 46.3 3.4 
 10 89.7 85.7 72.1 72.4 83.3 17.9 14.9 28.0 26.7 13.9 
 15 96.2 88.2 80.9 80.4 92.3 8.8 14.9 19.5 19.8 5.8 
 25 98.0 93.9 89.2 90.4 96.5 5.5 9.2 11.0 10.4 2.9 
            

ML/Alt 5 100.0 89.9 71.6 82.7 84.8 20.2 13.2 17.1 21.5 15.2 
 10 99.3 92.3 81.6 87.3 96.9 12.3 16.0 24.0 24.3 16.3 
 15 99.9 92.3 87.2 90.6 98.7 5.0 14.0 20.3 14.9 6.9 
 25 99.0 96.2 93.1 95.1 98.6 5.2 8.8 10.7 9.6 2.6 
            

MAP 5 42.8 93.0 90.8 92.4 32.1 49.2 19.9 15.6 17.9 0.0 
 10 79.1 91.1 92.0 91.2 70.2 29.3 19.6 12.8 11.2 9.9 
 15 89.8 92.1 93.5 94.7 85.9 18.9 15.3 11.1 9.9 7.0 
 25 91.2 95.8 96.7 97.0 93.8 9.1 8.5 5.9 6.5 3.2 
            

MAP/Alt 5 79.7 89.5 90.8 92.4 57.7 22.5 12.9 21.3 22.6 0.0 
 10 81.9 90.6 91.7 89.7 71.3 27.7 18.9 14.8 11.5 18.5 
 15 91.4 92.2 93.2 93.1 87.7 22.1 14.4 11.7 10.8 9.7 
 25 94.3 95.9 96.3 96.3 94.3 12.1 8.1 6.4 7.3 4.3 
            

GSS 5 96.1 88.0 73.2 82.7 71.6 17.0 21.2 19.8 21.5 26.8 
 10 94.3 86.3 78.1 87.7 89.9 15.7 14.5 26.9 26.1 15.2 
 15 96.2 89.8 85.4 88.9 96.3 5.3 11.9 22.3 16.5 6.4 
 25 97.4 94.5 91.4 94.6 98.6 5.5 8.8 11.8 9.7 2.5 

 


