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This study investigated the efficiency of item selection in a computerized adaptive 

test.  Efficiency was defined in terms of the accumulated test information at an 

examinee’s true ability level, with a measure of 100% indicating maximally efficient item 

selection.  The study employed a simulation methodology to compare the efficiency of 

two item selection procedures with five ability estimation procedures for fully-adaptive 

tests of 5-, 10-, 15-, and 25-items in length.  The two item selection procedures included 

maximum Fisher information (FI) and maximum Fisher interval information (FII) item 

selection.  The five ability estimation procedures included maximum likelihood (ML), 

modal a posteriori (MAP), golden section search (GSS), and two new procedures 

proposed in this study.  These procedures, ML/Alt and MAP/Alt, adjusted ML or MAP 

estimates according to a specific decision rule based on hypothesis-testing. 

For the conventional item selection procedure (FI) and ability estimation 

procedures (ML and MAP), the best performance was observed for FI with MAP at 

middle ability levels, with efficiency attaining or exceeding 90% even for the shortest test 

length.  In contrast, larger gaps in efficiency were observed for FI with MAP at extreme 
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ability levels, and for FI with ML across all ability levels.  Utilizing FII item selection 

with ML and MAP narrowed the gaps in the efficiency of item selection at the lowest 

ability levels for 5- and 10-item tests.  The greatest increase in test efficiency was 

observed when the alternative ability estimation procedures (ML/Alt, MAP/Alt, and 

GSS) were used.  The gains in efficiency were most pronounced for shorter tests, but 

were noticeable even for longer tests.  Overall, it appears that ability estimation 

procedure impacts the efficiency of item selection to a larger extent than item selection 

procedure. 
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CHAPTER 1 

Introduction 

 

Efficiency of item selection in the context of 

computerized adaptive testing 

Efficiency is often cited as an advantage of computerized adaptive tests (CATs) 

over traditional paper-and-pencil tests.  Typically, a CAT version of a test requires half as 

many items to be administered as its paper-and-pencil counterpart, without compromising 

measurement precision (Stocking, Smith & Swanson, 2000).  The CAT administers items 

targeted to examinee ability, where higher-ability examinees generally receive more 

difficult items and lower-ability examinees generally receive less difficult items.  Under 

the formulation of item response theory (IRT), it is suggested that much is to be gained in 

terms of test efficiency by administering items to examinees that are well-targeted to their 

ability. 

Nevertheless, the efficiency of a CAT at the early stages of test administration has 

been a point of contention in the literature.  At the early stages of a CAT administration, 

provisional ability estimates are typically imprecise (i.e., estimates possess large standard 

errors of measurement), inaccurate (i.e., estimates are biased), or both.  Because item 

selection is dependent on ability estimation, the arguments contend that item selection 

based on these early provisional ability estimates is likely to be mismatched with respect 
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to an examinee’s true ability.  Chen, Ankenmann, and Chang (2000) point out that the 

inaccuracy of these provisional ability estimates early in CAT administration is “a 

persistent problem” and that “the more accurate [the provisional ability estimate] is, the 

more appropriate the selected item will be” (p. 241). 

 The recognition that provisional ability estimates at the early stages of testing are 

inaccurate has generated an area of research which seeks to improve the efficiency of a 

CAT by means of alternative item selection procedures and alternative ability estimation 

procedures.  While most commonly, maximum information (or Fisher information) item 

selection is used to select items in a CAT, it has been argued that maximum Fisher 

information (FI) item selection is inefficient at the early stages of a CAT because it 

selects items whose information is at the maximum of an inaccurate or imprecise 

provisional ability estimate as opposed to an examinee’s true ability.  Thus, a number of 

other methods have been proposed which seek either to incorporate the error of ability 

estimation into item selection (i.e., methods addressing imprecision), or to use a 

likelihood-ratio based method to identify more suitable items across a range of plausible 

ability levels (i.e., methods addressing bias).  Methods developed under the former 

approach include the general weighted information criterion (Veerkamp & Berger, 1997) 

which leads to Fisher interval information (FII) and Fisher information weighted by a 

posterior distribution (FIP).  Methods developed under the latter approach use Kullback-

Leibler (KL) information, which is a global information measure (Chang & Ying, 1996; 

Chen, Ankenmann, & Chang, 2000). 

 Recent studies examining the efficacy of these alternative item selection 

procedures suggest that all perform similarly to each other as well as to FI item selection 
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after ten items have been administered (Chen, Ankenmann, & Chang, 2000; Cheng & 

Liou, 2000).  Although it is perhaps unlikely that a CAT of 10 or less items would be 

administered operationally, the question remains as to whether the efficiency of a CAT 

might be improved at the early stages of administration by perhaps another item selection 

or ability estimation procedure not yet considered, and that such potential gains in 

efficiency obtained early on might translate into more precise measurements after 

considerably more items have been administered. 

It should be noted that almost all research on improving the efficiency of CAT 

item selection has concentrated on alternative item selection procedures.  However, 

ability estimation plays an equally important role in CAT item selection, as any item 

selection procedure must utilize provisional ability estimates.  Xiao (1999) demonstrated 

that an alternative ability estimation procedure utilizing a golden section search (GSS) 

optimization technique was as accurate as the more common expected a posteriori (EAP) 

ability estimation procedure in classifying examinees in a computerized adaptive 

classification test.  Further, the average test lengths under the alternative procedure were 

shorter than those under EAP estimation. 

 In their discussion, Chen, Ankenmann & Chang (2000; p. 253) suggest that 

“nothing is to be lost” by incorporating alternative item selection procedures in a CAT.  

Given the apparent convergence in performance among the more common FI item 

selection and the alternative item selection procedures after approximately 10 items, an 

interesting question is, “what is to be gained?”  Answering this question requires a 

method for evaluating the inefficiency in CAT item selection, thereby suggesting how 

much room remains for improvement. 
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A related issue, not directly addressed in the current literature on CAT item 

selection, is the precise meaning of the term “efficiency” and how it should be measured.  

In studies by Chang & Ying (1996), Chen, Ankenmann, & Chang (2000), and Cheng & 

Liou (2000), it appears that efficiency is defined in terms of the appropriateness of a 

selected item with respect to an examinee’s true ability.  By this definition, therefore, 

efficient item selection is characterized by the selection of items appropriate to an 

examinee’s true ability.  Nevertheless, all of these studies use as outcome measures 

characteristics of the ability estimates (e.g., root-mean-square errors, bias, and standard 

errors), as opposed to the characteristics of the selected items themselves. 

Davey (2002, personal communication) suggests that a less confounded outcome 

measure is accumulated test information at an examinee’s true ability �.  This measure is 

calculated on the basis of the items selected for administration and is not directly 

influenced by errors in ability estimation.1  Through this measure, a precise definition of 

efficiency may be obtained, one which follows naturally from the statistical concepts of 

efficiency and relative efficiency. 

In order to utilize the concept of relative efficiency, it is useful to consider two 

tests, A and B, administered to an examinee possessing a true ability �.  The precision 

with which this examinee may be measured by test A is given by the accumulated test 

information at the examinee’s true ability �, or � ��)(T
AI .  Likewise, � ��)(T

BI  indicates the 

precision afforded by test B.  The relative efficiency of test A over test B, indicated by 

� ��BARE , , is the ratio � ��)(T
AI / � ��)(T

BI .  If test A is more efficient than test B (i.e., test A 

                                                 
1 There can be no question that the specific items selected by the CAT are influenced by the ability 
estimation method; however, this measure is a function only of item parameters and a given value of 
ability. 
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yields more precise measurements at �), � � 1, ��BARE .  Conversely, if test B is more 

efficient, � � 1, ��BARE . 

This definition of relative efficiency may be extended to the CAT context, 

yielding an operational definition for the efficiency of a CAT.  Suppose that a CAT of j 

items is administered to an examinee possessing true ability �, and that these items are 

drawn from an item bank of finite size.  Then the quantity � ��)(T
CATI  characterizes the 

accumulated test information from these j items at the examinee’s ability level.  Now for 

any given �, there exists an optimal set of items, also of size j, such that no other 

combination of j items yields a greater measure of accumulated test information.  Thus, if 

� ��)(
0
TI  represents the accumulated test information for this optimal set of items, the 

relative efficiency of the set of items selected by the CAT administration over the optimal 

set is � ��)(T
CATI / � ��)(

0
TI .  Noting, however, that � ��)(

0
TI  places an upper bound on the 

precision with which an examinee with true ability � may be measured by a set of j items 

drawn from the item bank, it must be the case that � � � � 1/ )(
0

)(
���

TT
CAT II .  It is this ratio that 

operationally defines the efficiency of a CAT in the present context. 

The argument presented here for a measure of efficiency parallels that of Spanos’ 

(1999, p. 609) discussion of relative and full efficiency.  He maintains that since relative 

efficiency alone is not necessarily useful (e.g., a poor estimator is relatively more 

efficient than an even poorer estimator), some fixed point of reference, namely the 

Cramer-Rao lower bound for the variance of an estimator, is required.  In IRT 

applications where ability estimates are obtained by maximum likelihood (ML), the 

asymptotic variance of the ML estimator is in fact equal to the Cramer-Rao lower bound, 
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or � ��)(/1 TI , where � ��)(TI  is the accumulated test information at the true ability �.  

However, the items contributing to � ��)(TI  in a CAT environment are not fixed, and 

hence an additional lower bound—this one resulting from the choice of items—is needed 

to define efficiency.  It is the quantity � ��)(
0
TI  described above that sets the lower bound 

on the variance for an estimator of � (or, an upper bound on the precision of such an 

estimator) in the CAT environment.  Thus, the ratio � ��)(T
CATI / � ��)(

0
TI  is not simply a 

measure of relative efficiency, but of efficiency itself, and may be used to define the 

efficiency of a CAT.  The primary advantage of this definition is that the efficiency of 

item selection from different procedures (e.g., alternative item selection procedures or 

alternative ability estimation procedures) may be compared to a fixed point of reference, 

one which characterizes the most efficient estimator possible. 

With a clearly defined measure of CAT efficiency, it is possible to identify any 

gaps in the efficiency of item selection.  Thus, the question of what is to be gained by 

utilizing alternative procedures may be addressed directly, as the difference between the 

efficiency measure for a particular procedure and the upper bound on efficiency may be 

quantified.  It is this difference that indicates exactly how much room for improvement 

exists. 

 

Statement of the Problem 

The efficiency of CAT item selection is dependent on item selection procedures 

as well as ability estimation procedures.  Most commonly, maximum Fisher information 

(FI) item selection is employed in conjunction with either maximum likelihood (ML) or 

modal a posteriori (MAP) ability estimation.  Because maximum FI item selection (under 
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either ML or MAP) has been criticized as being inefficient, the first purpose of this study 

is to quantify the efficiency (or, inefficiency) of this most common item selection 

procedure.  The second purpose of this study is to propose an alternative ability 

estimation procedure that addresses potential inefficiencies in CAT item selection, where 

this alternative procedure operates concurrently with either ML or MAP estimation and 

functions as an adjustment to either of these procedures.  The third purpose of this study 

is to evaluate the efficiency of CAT item selection given five ability estimation 

procedures (i.e., ML, MAP, GSS, the proposed alternative procedure concurrent with 

ML, and the proposed alternative procedure concurrent with MAP) and two item 

selection procedures (i.e., maximum FI and maximum FII).  Efficiency in this context is 

defined as above; namely, the ratio � ��)(T
CATI / � ��)(

0
TI .  As this definition is predicated on 

evaluating information measures at an examinee’s true ability �, a simulation 

methodology is necessary, one which simulates a CAT administration for the following 

configurations:  (a) item selection by maximum FI, and ability estimation either by ML, 

MAP, GSS, ML concurrent with the proposed alternative procedure, or MAP concurrent 

with the proposed alternative procedure; and (b) item selection by maximum FII, and 

ability estimation either by ML, MAP, GSS, ML concurrent with the proposed alternative 

procedure, or MAP concurrent with the proposed alternative procedure. 

Maximum FI item selection is taken here to be the process whereby:  (1) an 

examinee’s provisional ability estimate j�̂  is obtained after the jth item has been 

administered; and (2) the j+1th item is selected such that it both possesses maximum 

Fisher information at the provisional ability estimate and has not already been 

administered.  Item selection by FII is closely related to maximum FI item selection, but 
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instead of evaluating item information at a single point (i.e., the provisional ability 

estimate), an information index is evaluated instead.  This index is obtained by 

performing a mathematical integration of the information function associated with an 

item along a specified interval of the ability continuum.  The item with the greatest value 

for the FII index is then selected for administration. 

Ability estimation by both Xiao’s (1999) GSS strategy and the proposed 

alternative procedure utilize hypothesis-testing.  Xiao (1999) obtains provisional ability 

estimates �̂  by a golden-section search (GSS) strategy; the next item is selected based on 

this most current provisional ability estimate.  Using GSS, a starting estimate 1�̂  is 

identified as the midpoint of a search interval along the ability continuum; a hypothesis 

test is conducted by comparing observed and expected scores given 1�̂ .  If the hypothesis 

test results in rejection, then a new search interval is identified, as well as a new estimate 

2�̂ .  The search strategy continues until the null hypothesis is not rejected.  The last 

estimate �̂  obtained is then taken as the provisional ability estimate. 

The proposed alternative ability estimation procedure operates concurrently with 

a conventional ability estimation procedure such as ML and MAP; this alternative 

procedure is also based on a series of hypothesis tests.  Like Xiao (1999), the alternative 

procedure conducts a hypothesis test after the jth item in the test has been administered.  

However, the null hypothesis in the procedure is that all j items administered to an 

examinee are maximally informative at that examinee’s true ability �; failure to reject the 

null suggests that the ability estimate obtained by ML or MAP should be used for the 

subsequent selection of the j+1th item, while rejection of the null suggests a modified 

ability estimation procedure. 
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Two primary research questions thus follow: 

1.  How might the efficiency of maximum FI item selection under conventional 

ability estimation procedures be characterized, especially at the early stages of a CAT 

administration?  More specific questions subsumed under this primary research question 

include:  (a) After a fixed number of items have been administered, to what extent does 

efficiency of maximum FI item selection under ML or MAP ability estimation vary for 

different points along the ability continuum?  For example, after j items have been 

administered, how does the efficiency of item selection at the middle of the ability 

distribution compare with efficiency in the tails?  (b)  What is the effect of ability 

estimation procedure on the efficiency of maximum FI item selection?  For example, to 

what extent does efficiency vary depending on whether maximum likelihood (ML) 

estimation, a classical approach, or modal a posteriori (MAP) estimation, a Bayesian 

approach, is chosen? 

2.  Is it possible to improve upon the efficiency of maximum FI item selection 

under conventional ability estimation procedures by utilizing alternative item selection 

procedures, alternative ability estimation procedures, or a combination of both?  This 

question is most relevant in cases where sizeable gaps in the efficiency of maximum FI 

item selection in combination with conventional ability estimation procedures (e.g., ML 

or MAP) have been identified.  In parallel with the first primary research question, it is 

also appropriate to consider the following for this second primary research question:  (a) 

After a fixed number of items have been administered, to what extent do the efficiency 

measures for the alternative item selection and ability estimation procedures vary for 

different points along the ability continuum?  Specifically, how do the alternatives to FI 
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item selection with ML or MAP ability estimation compare to one another?  (b)  How do 

these efficiency measures compare with those obtained for maximum FI item selection 

with ML or MAP ability estimation?  That is, to what extent are the alternative item 

selection and ability estimation procedures more (or less) efficient than maximum FI item 

selection in conjunction with conventional ability estimation procedures? 

The two primary research questions were addressed using a simulation 

methodology.  The CAT simulations employed here draw on an item bank of 367 pre-

calibrated and dichotomously-scored 3P items from a recently-administered large-scale 

CAT assessment of mathematics ability.  In the logistic metric where the scaling 

parameter D = 1.7, the mean and standard deviation of the discrimination parameters (i.e., 

a parameters) from the 367 items are 0.950 and 0.341, respectively.  For the difficulty 

parameters (i.e., b parameters), the mean and standard deviation are 0.158 and 1.113, 

respectively.  For the pseudo-guessing parameters (i.e., c parameters), the mean and 

standard deviation are 0.144 and 0.105, respectively.  In its operational form, the CAT 

administered using this item bank is fixed at a length of 28 items; however, as it was 

hypothesized that the greatest variation in CAT efficiency would occur much earlier (e.g., 

at or before the 10th administered item), the CAT simulations were fixed such that no test 

exceeded a length of 25 items. 

The four factors in the experimental design were:  (1) item selection procedure 

(maximum FI or maximum FII item selection); (2) ability estimation procedure (ML, 

MAP, GSS, ML concurrent with the proposed alternative procedure, or MAP concurrent 

with the proposed alternative procedure); (3) true ability level at discrete points along the 

ability continuum (at -2, -1, 0, +1, or +2 logits); and (4) test length (5, 10, 15, or 25 
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items).  For each of the experimental conditions, 1000 replications were generated.  ML 

and MAP ability estimation procedures were included for the following reasons:  (1) ML 

and MAP estimators behave differently, with the classical ML estimators being less 

biased than MAP estimators but prone to variability, while the Bayesian MAP estimators 

are biased but are less variable; (2) ability estimation by expected a posteriori (EAP), 

another popular Bayesian procedure, yields similar point estimates as MAP.  The choice 

of the five discrete ability points is consistent with previous literature examining item 

selection procedures in CAT.  Similarly, the CAT item selection literature suggests that 

alternative item selection procedures are most effective early in a CAT administration, 

with performance gains typically observed before the 10th administered item. 

Efficiency, as defined earlier, is the primary dependent measure.  Since analyses 

indicate that this measure is highly skewed to the left, the median efficiency is reported as 

a measure of central tendency, and the interquartile range (that is, the range in the 

efficiency measure between the 25th and 75th percentile points) is reported as a measure 

of variability.  Efficiency at both the 25th and 75th percentile points is also provided.  In 

addition, the mean and standard deviation for the distribution of provisional ability 

estimates under each of the experimental conditions are reported. 

 

Significance of the Study 

The recognition that provisional ability estimates at the early stages of testing are 

prone to error has recently generated an area of research which seeks to improve the 

efficiency of a CAT primarily by means of alternative item selection procedures.  The 

argument for these alternative item selection procedures is that maximum FI item 
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selection, the most commonly used item selection procedure, is inefficient at the early 

stages of a CAT because it selects items whose information is at the maximum of an 

inaccurate or imprecise provisional ability estimate as opposed to an examinee’s true 

ability. 

What has not yet been fully considered is a method for comparing procedures 

against a common metric, such that the degree of efficiency (or inefficiency) in item 

selection is readily quantified.  An upper bound for the efficiency of CAT item selection 

is proposed here; this upper bound makes possible an efficiency measure that is 

applicable regardless of the specific choice of item selection or ability estimation 

procedure. 

Item selection and ability estimation are two necessary ingredients for a CAT.  

However, improvements in one area may be offset by weaknesses in the other.  The 

present study attempts to isolate the effects of item selection on efficiency by utilizing an 

outcome measure that is not confounded by ability estimation.  In addition, the proposed 

upper bound on efficiency is independent of the particular ability estimation employed 

and serves as the theoretical limit for measurement precision. 

While it has been posited that maximum FI item selection with conventional 

ability estimation procedures is inefficient at the early stages of testing, this study 

addresses the question, to what extent is maximum FI item selection with these ability 

estimation procedures inefficient?  As this study is able to assess the gaps in efficiency, it 

further addresses the question, what is the utility in employing alternative item selection 

or ability estimation procedures?  The answers to these questions are likely of interest to 

the measurement practitioner who must assemble CATs for large-scale administration.  If 
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in fact maximum FI item selection with conventional ability estimation procedures is 

deemed inefficient under certain of the experimental conditions explored here, alternative 

item selection and ability estimation procedures that are relatively easy to implement in 

an operational setting are suggested and evaluated. 

 

Limitations of the Study 

The primary limitation of this study is that it is, by necessity, a simulation study.  

An examinee’s true ability level � must be known in advance in order to evaluate the 

efficiency measure � ��)(T
CATI / � ��)(

0
TI .  Further, controlled comparisons among the item 

selection and ability estimation procedures considered here can only be made using a 

simulation design. 

The items within the pool selected for this simulation study were calibrated from 

actual examinee response data and were utilized in an operational CAT administration for 

a large-scale assessment of mathematics ability.  All items considered in this study are 

modeled under the 3-parameter logistic IRT model, and are thus dichotomously-scored.  

In addition, the alternative item selection procedure proposed here assumes that only 

dichotomously-scored items are being administered, although it should be possible to 

generalize this procedure for multiple-category IRT models such as the graded response 

model (Samejima, 1969).  Thus, the study methodology is limited to dichotomously-

scored items.  Further, the results are dependent on the specific item pool selected for the 

study, and generalization to other CAT item pools should be approached with caution.  It 

should be noted, however, that while the item response is indeed simulated in this design, 



14 

 

the item parameters used for the simulation were calibrated from actual examinee 

response data. 

The purpose of this study is to quantify the efficiency of two item selection 

procedures and five ability estimation procedures under what may be considered 

idealized or “best-case” scenarios.  The rationale here is to minimize the influence of 

extraneous sources of variance on the measurement of CAT efficiency.  It follows then, 

for example, that the simulations conducted for this study do not utilize any form of item 

exposure control.  The addition of exposure control would serve only to lower the 

measured efficiency of the CAT item selection procedures considered here, which is at 

odds with the purpose of the study.  Further, non-model-fitting responses or aberrant 

response patterns are not considered in this study.   
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CHAPTER 2 

Review of Related Literature 

 

A computerized adaptive test (CAT) is a form of tailored testing, as the goal of a 

CAT is to administer items to examinees that are well-targeted to their abilities.  In 

addition to being a tailored test, a CAT is also a dynamic test, since it is assembled item-

by-item based on the responses it observes from the examinee being tested.  Test 

assembly in this adaptive framework relies on procedures for estimating examinee ability 

and selecting items for administration to that examinee.  Both of these procedures must 

function in real-time, that is, they must operate concurrently with an examinee taking the 

test, as they are responsible for the test’s construction. 

In CAT, ability estimation procedures and item selection procedures are 

interdependent.  Ability estimates serve to select the next item for administration, as the 

goal of a CAT is to administer items targeted to an examinee’s ability.  In turn, examinee 

responses to the administered items are used to estimate an examinee’s ability.  If the 

administered items are accurately targeted to an examinee’s ability and the IRT model is 

appropriate, then greater precision in the measurement of that examinee’s ability will be 

obtained.  Once an examinee has completed the test, the ability estimation procedure is 

also responsible for obtaining a final ability estimate for that examinee, as well as the 

associated standard error associated with that estimate. 
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At present, a number of ability estimation and item selection procedures are 

available for use in a CAT.  No one single ability estimation procedure or item selection 

procedure is generally agreed upon as being superior.  How each compares among the 

others has been the focus of relatively recent research (e.g., most within the past 10-15 

years, though insights by Birnbaum (1968) and Lord & Novick (1968) were voiced 

considerably earlier).  The aim of this review is to provide a theoretical background for 

these procedures, to describe how each is utilized in the CAT environment, and to 

evaluate their performance in research studies. 

Among the ability estimation procedures, five are considered here:  maximum 

likelihood (ML), modal a posteriori (MAP), expected a posteriori (EAP), weighted 

likelihood estimation (WLE), and golden section search (GSS).  Among the item 

selection procedures, five are considered here:  maximum Fisher information (FI), Fisher 

interval information (FII), Fisher information with a posterior weight function (FIP), 

Kullback-Leibler (KL) information, and KL information weighted by a posterior density 

(KLP).   

 

IRT ability estimation procedures in a computerized adaptive test 
 

A computerized adaptive test (CAT) necessarily rests on procedures for 

estimating examinee ability, as a CAT attempts to adapt the delivery of administered 

items to the ability of the examinee being tested.  In addition to provisional ability 

estimates—estimates of ability used to help select the items administered to an 

examinee—the CAT must also produce a final ability estimate, which is used to report an 
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examinee’s final score.  Item response theory (IRT) provides a method for calculating 

both provisional and final ability estimates. 

In the sections that follow, three aspects of IRT ability estimation in a CAT are 

explored:  (1) the theoretical development of IRT ability estimation; (2) the 

implementation of ability estimation in an operational CAT; and (3) the evaluation of 

ability estimation procedures in terms of accuracy and precision of measurement. 

Theoretical development 

In IRT, it is assumed that person parameters (latent abilities) and item parameters 

underly examinee response behavior to an administered item.  Response behavior in this 

sense is the probability of an examinee with latent ability � providing a correct response 

to that item, or � ���1iUP  for item i.  The relationship between � and this response 

behavior is governed by the item characteristic curve, which is a function described by a 

set of parameters.  In IRT, these parameters are called item parameters. 

An examinee’s true ability � cannot be measured directly and so must be 

estimated.  The estimation utilizes two sets of information:  first, the pattern of responses 

observed from the examinee; and second, the item parameters from the items 

administered to the examinee.  If the pattern of observed responses is denoted by 

� �
INuuu ,,, 21 ��u  and the item parameters by � �

IN���� ,,, 21 �ω , where NI indicates 

the number of items, then the estimation of � focuses on the probability � �ωuU ,��P .  

What is necessary in practical problems of estimation is a method for relating this 

posterior distribution � �ωuU ,��P  to the likelihood function, denoted by � �ωuU ,��P .   
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A solution to this problem is Bayes’ Theorem (Hambleton & Swaminathan, 1985; 

Suen, 1990).  Using this theorem, we find that  

 � � � � � ������� PPP ωuUωuU ,,   (Eq. 1) 

where � �ωuU ,��P  is the posterior distribution of �,  

� �ωuU ,��P  is the likelihood function,  
and � ��P  is the prior distribution of � 

IRT provides a mechanism for computing the likelihood function � �ωuU ,��P , as will 

be shown next.  The choice of the prior distribution � ��P  will be discussed shortly.   

The principle of local independence figures prominently in the calculation of IRT 

likelihood functions.  Local independence requires that, for a fixed value of � and a set of 

NI test items, the joint distribution of � �ωuU ,��P  is equal to the product of the 

marginal probabilities � �iii uUP ��� ,  for items i = 1, 2, …, NI (Lord and Novick, 1968). 

Thus,  

 � � � ��
�

��������

I

II

N

i
iiiNN uUPuUuUuUP

1
2211 ,,,,, ω�  (Eq. 2) 

The assumption of local independence greatly simplifies the computation of the 

likelihood function and consequently the posterior distribution. 

In addition to the likelihood function, Equation 1 requires a prior distribution 

� ��P  to be specified.  The choice of the prior is often left to the researcher.  If there is 

reasonable evidence to suggest a distributional form for the distribution of ability, then an 

informative prior may be used.  (Note that this choice is Bayesian in nature.)  If the 

researcher prefers to make no assumptions on the distribution of ability, then a non-
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informative prior (i.e., a uniform distribution) may be used.  (Note that this choice is 

classical in nature.) 

Once the posterior distribution is computed from the likelihood function and the 

prior distribution, ability estimation is possible.  Four types of likelihood-based 

estimators are discussed here:  maximum likelihood (ML), modal a posteriori (MAP), 

expected a posteriori (EAP), and Warm’s weighted likelihood estimation (WLE).  Note 

that the fifth ability estimator discussed here, GSS, does not utilize a likelihood function; 

rather, it compares optimally-weighted observed and expected scores under a golden 

section search optimization strategy. 

In maximum likelihood estimation, the prior distribution � ��P  in Equation 1 is 

non-informative.  Thus, both the maxima of the posterior distribution and the likelihood 

function occur at the same value along the ability scale.  This value is the maximum 

likelihood estimate of an examinee’s true ability �, and is indicated by� ML�̂ .  Rather than 

maximizing the likelihood function itself to identify ML�̂ , the logarithm of the likelihood 

function is typically used as it simplifies calculations.  If this log-likelihood is denoted by 

log L, then the maximum likelihood estimate ML�̂  is found by solving for the value of � 

which satisfies the equation 

 0log
�

��

� L  (Eq. 3) 

Modal a posteriori (MAP) is similar to ML estimation in that the maximum of the 

posterior distribution is found to estimate �.  However, in MAP estimation an informative 

prior is chosen, often the normal density.  The mode of the posterior distribution is then 

the estimate MAP�̂ .  If the expected value of the posterior distribution is found instead of 
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the modal point, then the expected a posteriori (EAP) estimate EAP�̂  is obtained.  

Typically, Gauss-Hermite quadrature is used to find EAP�̂ , such that 

 
� � � �

� � � ��

�

�

�

�� q

k
kk

kk

q

k
k

EAP

XWXL

XWXLX

1

1ˆ  (Eq. 4) 

where Xk is one of q quadrature points, W(Xk) is a weight associated with the quadrature 

point (e.g., corresponding to the normal density prior), and L(Xk) is the likelihood 

function evaluated at Xk. 

Although ML estimates are convenient due to their properties of asymptotic 

consistency and asymptotic normality, they are biased (Wang & Vispoel, 1998).  

Lord (1983) derived an expression for the bias in ML estimates, showing that they are 

biased outwards.  Warm (1989) mentions that the magnitude of this bias is larger for 

negative values of ML�̂  than for positive values.  Warm’s weighted likelihood estimation 

(WLE) attempts to correct for this bias in ML estimates up to order 1�n  by removing this 

first-order bias term from the ML estimates.  The weighting function employed in 

Warm’s procedure is specified in advance, but makes no assumptions about the 

distribution of �.  Rather, it is only a function of the items chosen for the test and so 

should not be confused with the informative prior distribution discussed earlier. 

If the weighting function in WLE is denoted by � ��w , then the weighted 

likelihood estimate WLE�̂  is the solution to the equation (Warm, 1989) 

 � � 0lnlog
�

��

��
�

��

� wL  (Eq. 5) 
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The weighting function � ��w  is a function of test information, a concept to be discussed 

shortly. 

When response patterns are either completely correct or completely incorrect, ML 

ability estimates cannot be determined, whereas estimates from MAP, EAP, and WLE are 

available.  The problem with ML estimation in such cases lies in the fact that the 

likelihood function does not possess a maximum; hence, the limiting solution to 

Equation 3 is ����̂  for completely incorrect response patterns and ����̂  for 

completely correct patterns.  In practice, such estimates are untenable; typically, 

examinees with such response patterns are either removed prior to ML estimation and 

assigned a score afterwards, or bounds are imposed on the ML estimation algorithm.  It is 

common to choose 4�  as the bounds for the ability scale. 

While completely correct or incorrect response patterns may occur relatively 

infrequently for a fixed-length linear test, they are certainly guaranteed just after the first 

item is administered in a CAT and still remain likely early in a CAT administration.  If an 

ability estimator with a non-informative prior (such as ML) is chosen for a CAT, it is 

desirable to force a variation in item responses as early as possible; otherwise, an ability 

estimate will not be available.  This problem may be circumvented by using an estimator 

such as MAP or EAP. 

Unlike ML, MAP, EAP, or WLE ability estimation, Xiao’s (1999) golden section 

search (GSS) ability estimation procedure does not utilize a likelihood function to obtain 

an ability estimate.  Rather, it uses an optimization strategy to search the ability 

continuum for an ability estimate consistent with the observed pattern of responses.  The 

first search interval covers the entire (bounded) range of the ability continuum, typically 



22 

 

[-3, +3] or [-4, +4].  If this first search interval is denoted by [a, b], then the midpoint c of 

this interval is taken as the first possible estimate of ability.  A hypothesis test is 

conducted at this point, where the optimally-weighted observed and expected scores, 

which are functions of the observed and expected proportions, are compared.  If the null 

hypothesis is not rejected, then this midpoint c is accepted as the provisional ability 

estimate and no further search is executed.  On the other hand, if the null hypothesis is 

rejected, then a new search section � �ba ��,  is identified, such that [a, b] is reduced by the 

golden section ratio to obtain the new � �ba ��, .  If the sign of the test statistic is negative 

(i.e., observed score is less than the expected score), then the original section is reduced 

by the golden section ratio so that aa ��  and � �abtab ���� , where t is equal to the 

golden ratio2 � � 2/15 � .  If the sign of the test statistic is positive, then bb ��  and 

� �abtba ���� .  The midpoint c�  of this new section is then taken as the next possible 

estimate of ability, and another hypothesis test is conducted.  This process of hypothesis-

testing followed by interval sectioning continues as long as the null hypothesis is 

rejected.  Once a failure to reject the null hypothesis is reached, the midpoint of the 

section is taken as the provisional ability estimate GSS�̂ .  Xiao (1999) considers this 

estimate to be equivalent to the maximum likelihood estimate ML�̂ . 

Xiao uses optimal scoring weights (Birnbaum, 1968) to arrive at observed and 

expected scores.  For any item i, the optimal scoring weight is given by 

                                                 
2 The golden ratio may be found by construction:  given a line divided into two segments a and b with 
a < b, the ratio of a to b should be equal to the ratio of b to the entire line length a + b.  Let t be the golden 
ratio relating segments a and b, such that a = tb.  Then by construction tb/b = b/(tb + b), which reduces to 
the quadratic equation t2 + t – 1 = 0.  The quadratic equation is satisfied by t = � � 2/51�� ; the positive 
root is taken here. 
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Thus, an optimally-weighted observed score for an examinee with responses ui may be 

computed as  

 �
�

�

n

i
iiuWX

1

 (Eq. 7) 

The optimally-weighted expected score for X, given ability � is computed as  

 � � � ��
�

���

n

i
ii PWXE

1

 (Eq. 8) 

and the variance by  

 � � � � � �� ��
�

�����

n

i
iii PPWXVar

1

2 1  (Eq. 9) 

Then the test statistic employed by Xiao is  

 
� �

� ��

��
�

XVar

XEX
z  (Eq. 10) 

Rejection of the null hypothesis occurs when the absolute value of test statistic z 

exceeds a critical value zc.  Xiao (1999) recommends that a value 7.0�cz  be used, based 

on prior studies examining the golden section search strategy.  Further, in cases where the 

optimally weighted scores given by Equation 7 are less than  

 �
�

�

n

i
iicWX

1
min  (Eq. 11) 

where the ci are the pseudo-guessing parameters from the 3P IRT model, the optimally 

weighted observed scores X are replaced by minX . 
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Estimating standard errors 

In addition to finding a point estimate for �, it is often desirable to estimate 

standard errors of measurement (
�̂

SE ).  IRT provides a method for computing conditional 

standard errors of measurement, thus characterizing the varying precision of a test along 

the ability scale.  For all procedures except EAP, 
�̂

SE  is found by means of the test 

information function3.  The test information function � ��I is defined as 

 � � �
�

�
�
�

�

��

�
	
� 2

2 log LEI  (Eq. 12) 

The asymptotic variance of the ML estimate ML�̂  is then related to the test information 

function � ��I  by (Hambleton & Swaminathan, 1985) 

 � � � �� � 1ˆ �

���� IVar ML  (Eq. 13) 

and hence 
ML

SE
�̂

= � �� � 2
1

�

�I .  Further, it is known that ML�̂  is asymptotically normally 

distributed.  For WLE, Warm (1989) notes that the estimate WLE�̂  maintains similarities 

with the ML estimator, in that WLE�̂  is asymptotically normally distributed, with 

asymptotic variance equal to the asymptotic variance of ML�̂ .  Thus, 
MLWLE

SESE
��

� ˆˆ . 

                                                 
3 Xiao (1999) does not explicitly provide the standard error associated with the GSS point estimate; 
however, as the GSS estimator is assumed to be equivalent to the ML estimator, it is likely that the assumed 
equivalence carries over to the standard errors as well. 
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 The standard error of measurement 
MAP

SE
�̂

for the Bayes MAP estimate is usually 

smaller than that obtained for the ML estimate, and is given by (Wainer & Mislevy4, 

1990) 

 � � � �
� �

1
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2 lnˆ
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pEIVar MAP  (Eq. 14) 

where p(�) is the prior distribution of �.  For a prior distributed as N(0,1), the term 

� �� � 12

2 ln
��

��

�� pE . 

The standard error of measurement 
EAP

SE
�̂

 for the EAP estimate is computed from 

the posterior distribution instead of from the test information function.  As shown by 

Wang & Vispoel (1998), the variance of the posterior distribution � ��g  is 

 � � � � � �� �22 uEduguVar ������� �
�

��

 (Eq. 15) 

Gauss-Hermite quadrature may be used to approximate this integration.  The resulting 

expression for the estimated variance is then 

 � � � �
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where Xk is one of q quadrature points, W(Xk) is a weight associated with the quadrature 

point (e.g., corresponding to the normal density prior), and L(Xk) is the likelihood 

function evaluated at Xk.  From Equation 16, the standard error 
EAP

SE
�̂

= � �EAP�� ˆˆ 2 . 

                                                 
4 Their equation, as printed in the text, has been corrected here. 
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Implementation of ability estimation in CAT 

Unlike a conventional fixed-length linear test, where ability estimation occurs 

after the examinee has completed the entire test, a CAT estimates an examinee’s ability 

in a sequential fashion.  The CAT will estimate an examinee’s ability after each item has 

been administered; thus, for any given examinee, a CAT will have as many ability 

estimates for that examinee as the number of items administered to that examinee. 

Some nomenclature is useful for identifying the ability estimates obtained in a 

CAT.  Suppose that NI items are administered to an examinee by a CAT, and for each of 

these items an ability estimate i�̂  where i ={1, 2, …, NI} is available.  Then the estimates 

1
ˆ,,ˆ,ˆ

21
�

���
IN�  are called the provisional ability estimates and the estimate 

IN�̂  is called 

the final ability estimate.  The provisional ability estimates are used by the CAT to select 

the next item for the examinee; the final ability estimate is taken as the best estimate of 

that examinee’s ability and is used to report a final score on the test. 

Calculation of provisional ability estimates during a CAT administration occurs 

each time an examinee responds to an administered item.  At the start of a CAT, typically 

no information is available about an examinee’s ability since no items have been 

administered.  However, adaptive tests could conceivably use collateral information to 

make a very general classification of an examinee’s proficiency.  After the examinee has 

responded to the first item, an estimate of ability may be attempted.  If the item 

parameters for this first item (i = 1) are denoted by 1�  and the examinee response by u1, 

then an estimate 1�̂  may be calculated using Equation 1 and one of the four ability 

estimation procedures described here.  However, if ML estimation is used, no ability 

estimate will be identified since the likelihood function will not possess a maximum.  
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Boundary conditions, as described above, may be imposed.  For example, if u1 = 1, then 

4,ˆ
11 ���� uML .  If either MAP, EAP, or WLE are used, a bounded ability estimate will 

be obtained.  In addition, if GSS is used, a bounded ability estimate is always guaranteed, 

as GSS is a search strategy employed over a bounded interval. 

An item selection algorithm will choose the second item for the examinee based 

on the first provisional estimate 1�̂ .  After responding to this second item, the examinee’s 

response vector is u = {u1, u2} and the vector of item parameters � = {�1, �2}.  The 

second provisional ability estimate, 2�̂ , may then be calculated from the available 

information, namely u and �.  Note that if u1 = u2, then an ML estimate will still be 

unidentified unless boundary conditions are imposed. 

As the CAT administration proceeds, provisional ability estimates are updated 

with each successive item.  After the last item is administered, the ability estimate 
IN�̂  is 

computed for the vector of responses � �
INuuu ,,, 21 ��u  and item parameters 

� �
IN���� ,,, 21 �ω .  This 

IN�̂  is taken as the final ability estimate for the examinee.  

Notice that if any ability estimation procedure is used, this final ability estimate will be 

identical to the ability estimate obtained for a fixed-length linear test possessing the same 

set of items i = {1, 2, …, NI}.  This equivalence is due to the estimation procedures’ 

indifference towards the order in which items are presented.  ML, MAP, EAP, and WLE 

use the likelihood function shown in Equation 2; in that expression, the order of item 

responses is not taken into account.  GSS uses optimally weighted observed and expected 

scores; again, the order of item responses does not influence the computation of these 

scores. 
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Although the estimation procedures themselves do not take order of item 

administration into account, plotting the sequence of provisional ability estimates against 

item administration number can be informative, and illustrates some features of ability 

estimation in CAT.  In Figure 1, a plot of ML, MAP, and EAP provisional ability 

estimates versus item administration number for a particular examinee is shown.  The 

source of this data is from a recent CAT administration of a large-scale assessment of 

mathematics ability; this test is a fixed-length CAT with NI = 28. 

Comparison of ML, MAP, and EAP ability estimates
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Figure 1.  Comparison of ML, MAP, and EAP provisional ability estimates for an 
examinee with final ability estimates ML�

�

 = -1.53, MAP�
�

 = -1.30, and EAP�
�

 = -1.33. 
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The first feature to note from these figures is that all three estimation procedures 

converge to a final ability estimate as the test progresses.  From Figure 1, it can be seen 

that although the three procedures yield slightly different final ability estimates, they are 

rather close to one another.  However, the trend in the sequence of provisional ability 

estimates from commencement to termination of testing is quite different between the 

ML procedure and the MAP and EAP procedures.  Notice that the trend for ML estimates 

is upward, from a negative bound of -4 to the final estimate of -1.53, while the trend for 

the MAP and EAP estimates is downward, from the first provisional estimate of 

approximately -0.4 to the final estimate of approximately -1.3.  Further, notice that the 

first four provisional estimates for ML are all at the negative bound of -4, whereas the 

corresponding estimates for MAP and EAP are not all equal.  Finally, the variability in 

the ML estimates over time is greater than that of the MAP and EAP estimates.  It should 

also be noted that the standard errors associated with the MAP and EAP estimates will 

always be smaller than those associated with the ML estimates. 

The differences in the trends between the ML procedure and the MAP and EAP 

procedures may be attributed to the presence or absence of an informative prior 

distribution in estimating ability.  The informative prior used in the MAP and EAP 

procedures reduces the variability in provisional ability estimates considerably.  Further, 

it moves the initial estimates towards the mode of the prior; in this case, the prior is 

distributed as N(0,1).  Because this examinee incorrectly answered the first four items, 

ML estimation must impose a lower bound of -4 on the ability estimates, as a maximum 

in the likelihood function is not present even after four items have been administered.  In 
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contrast, ability estimates are possible in the MAP and EAP procedures after these four 

items because of the informative prior. 

A comparison of the last few provisional ability estimates and the final ability 

estimates across the three procedures shows that they are similar, with final ability 

estimates ML�
�

 = -1.53, MAP�
�

 = -1.30, and EAP�
�

 = -1.33.  Although they are similar, they 

are not identical, and the slight difference is worthwhile to note.  Even at the end of the 

test, the influence of the prior distribution remains; the two Bayesian procedures MAP 

and EAP yield estimates that are biased inwards towards the mode of the prior 

distribution as compared to the maximum likelihood estimate. 

It was noted that the final estimate of ability is computed after the last item is 

administered in a CAT.  How the CAT determines when to terminate testing depends on 

a decision rule, often referred to as a stopping criterion.  Unlike a conventional fixed-

length linear test, where testing terminates after a fixed number of items have been 

administered, CAT has no such restriction.  In principle, two subsets of items 

administered by a CAT to two different examinees may be of different sizes; that is, the 

number NI,1 of items administered to one examinee may be larger than, equal to, or 

smaller than the number NI,2 of items administered to a different examinee.  Further, the 

degree of overlap or number of items in common between the two subsets may vary from 

0, 1, …, min(NI,1, NI,2). 

Thissen & Mislevy (1990) describe three CAT stopping criteria:  (1) terminate 

testing after a specific number of items have been administered; (2) terminate testing 

when a specific precision in measurement has been reached (e.g., a minimum standard 

error of measurement for all examinees); and (3) terminate testing after a specific amount 
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of time has elapsed.  They note that any one of these criteria may be chosen for a CAT, or 

a mixture of these criteria may be employed.  For power tests, however, the first two 

criteria are most relevant and the advantages and disadvantages of these criteria are 

discussed below. 

Advantages for the first criterion, terminating testing after a specific number of 

items have been administered, include ease of implementation in a CAT algorithm and 

better prediction of item usage for items in the pool.  The primary disadvantage of this 

criterion is that examinees will be measured with differing degrees of precision along the 

ability continuum.  This disadvantage is of greatest concern for those examinees at the 

extremes of the ability scale; it is likely that the first few items selected for these 

examinees will not provide much information for estimating their abilities. 

Advantages for the second criterion, terminating testing when a specific precision 

in measurement has been reached, include the assurance that all examinees will be 

measured with the same degree of precision.  Where this property is particularly useful is 

in statistical analyses on the test data that make assumptions about the homogeneity of 

error variances.  The disadvantage of this criterion is that by design, tests are of variable 

lengths.  Predicting how much time is required to complete tests most likely involves 

simulating the CAT administration for examinees at different points along the ability 

continuum.  Further, operational considerations such as the amount of “seat time” 

required for examinees to complete the test become more complex with variable length 

tests.  This consideration is relevant for large-scale testing operations where the use of 

test center facilities is charged on a per unit time basis. 
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Evaluation of ability estimation procedures 

Five ability estimation procedures have been discussed here:  ML, MAP, EAP, 

WLE, and GSS.  In order to evaluate how each performs in a CAT environment, a 

simulation methodology is required, since an examinee’s true ability is never known in 

advance and so actual test data cannot provide an indication of how well ability is being 

estimated.  To quantify the degree to which ability is being appropriately measured, 

simulation studies typically report one or more of the following:  the bias of an ability 

estimate �̂  from its true value �, the standard error SE( �̂ ) associated with the ability 

estimate, and the root-mean-square error RMSE( �̂ ).  The relationship among these three 

quantities is .222 SEBiasRMSE ��  

Currently, there is no one single published article which compares ML, MAP, 

EAP, WLE, and GSS in a CAT environment.  However, Wang & Vispoel (1998) 

compare the ML, MAP, and EAP estimation procedures, and Cheng & Liou (2000) 

compare the ML and WLE estimation procedures.  Xiao (1999) compares the GSS and 

EAP procedures, but in a CAT environment that differs from Wang & Vispoel’s (1998) 

and Cheng & Liou’s (2000) studies.  That is, Xiao (1999) examines a computerized 

adaptive classification test, whereas Wang & Vispoel (1998) and Cheng & Liou (2000) 

examine a CAT which provides final ability estimates for examinees, as opposed to one 

that assigns them to discrete proficiency categories.  Although Warm (1989) compares 

the ML, MAP, and WLE procedures, the conditions under which the simulation study 

were conducted do not parallel those used in current adaptive testing practice; 

specifically, his study did not draw items from a pre-determined item pool, but rather 

generated item parameters during the simulation based on initial constraints (e.g., all 
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discrimination parameters set to 2.0) and optimal item selection (e.g., item parameters 

corresponding to maximum information were generated as needed).  Therefore, Warm’s 

(1989) study utilized infinite item pools, whereas Wang & Vispoel (1998) and Cheng & 

Liou (2000) used finite item pools whose parameters were chosen a priori.  Thus, the 

studies by Wang & Vispoel (1998), Cheng & Liou (2000), and Xiao (1999) will be 

discussed here.  However, the discussion will focus primarily on Wang & Vispoel’s 

(1998) and Cheng & Liou’s (2000) studies, as the nature of their studies and their 

outcome measures are comparable. 

Wang & Vispoel (1998) compared the ML, EAP, and MAP estimation procedures 

under a number of CAT administration conditions:  (a) fixed- vs. variable-length CATs; 

(b) ideal vs. realistic item pools; and (c) effect of prior distribution on final ability 

estimates for EAP and MAP estimation.  The first of these conditions compared ability 

estimates from fixed-length CATs (with items varying in number from 10 to 50 in steps 

of 10) to those from variable-length CATs (with target reliabilities of 0.80 and 0.90).  The 

second of these conditions compared estimates across three types of item pools all of size 

Npool = 300:  (i)  two ideal item pools with difficulty parameters bi distributed uniformly 

over an interval [-3.6, 3.6], pseudo-guessing parameters ci fixed at 0.15, and average 

discrimination parameters ai drawn from a N(1.1, 0.1) distribution for the moderate 

discriminating items, or from a N(1.9, 0.1) distribution for the high discriminating items; 

and (ii) a realistic item pool with item parameters based on vocabulary items from six 

paper-and-pencil forms of the Iowa Tests of Educational Development.  For the realistic 

item pool, average discrimination parameters were moderate and the majority of items 

were of middle difficulty.  Finally, the third of these conditions used either a fixed prior 
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distribution (i.e., N(0,1)) for all examines, or a variable prior distribution depending on 

the true ability of the examinee.  In the variable prior conditions, the mode of the prior 

was chosen so as to be closest to an examinee’s true ability; one of three possible prior 

distributions (with modes of -2, 0, or +2) was selected for an examinee. 

In terms of the standard error, or SE( �̂ ), Wang & Vispoel (1998) found that ML 

estimates overall had the highest standard errors, and that these were underestimated by 

the test information functions (see Equations 12 and 13) used to calculate the standard 

errors for these estimates.  The standard errors for ML estimates were greatest at the 

extremes of the ability distribution, most likely due to the relative lack of items with 

difficulty parameters located at these points.  For procedures such as EAP, where 

standard errors are based on the posterior distribution and not on the test information 

function, the estimated SE( �̂ ) were consistent with those observed empirically in the 

simulation study.  The manipulation of prior distribution type (fixed or variable) had little 

effect on SE( �̂ ) for the MAP or EAP procedures. 

While the Bayesian procedures performed well in terms of SE( �̂ ), the non-

Bayesian ML estimates were the least biased.  When using the fixed prior distribution for 

the MAP and EAP procedures, ability estimates were biased inwards towards the mode of 

the prior.  This bias was particularly strong for examinees at the extremes of the ability 

continuum.  This bias in Bayesian estimates was exacerbated when few items were 

available at these extremes (i.e., under the realistic item pool condition); it should be 

noted, however, that the ML estimates were also biased at these extreme points, but only 

slightly so.  Additionally, the bias in ML estimates at these extremes was outward, rather 

than inward.  Of the Bayesian procedures, EAP showed less bias as compared to MAP.  
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However, if a variable selection of prior distribution was employed, the bias in MAP and 

EAP estimates was reduced, and quite significantly for the ideal item set conditions. 

The focus of Cheng & Liou’s (2000) study was twofold:  first, it investigated the 

performance of ML and WLE estimation procedures in a CAT; and second, it 

investigated the performance of local and global information item selection procedures.  

For the purposes of this discussion, only the results pertaining to the ability estimation 

procedures will be included.  Their study utilized 204 items from a 1992 NAEP Reading 

Assessment, where the range in discrimination parameters was 0.452 to 2.502, the range 

in difficulty parameters was -2.325 to 3.061, and the range in pseudo-guessing 

parameters was 0 to 0.373.  The mean of the item parameters was ia  = 1.194, 

ib  = �0.024, and ic  = 0.124.  A fixed-length termination rule of 30 items was chosen for 

the simulation study. 

The major finding from Cheng & Liou’s (2000) study regarding ML and WLE 

estimation procedures was that WLE outperformed ML estimation in terms of less bias at 

the early stages of testing.  However, after approximately 10 items were administered, 

both ML and WLE estimates generally possessed the same degree of bias.  This result 

was anticipated by Wang & Vispoel (1998) when they discussed the bias function for the 

ML estimator, derived by Lord (1983).  As items are targeted to examinee ability, the 

bias in ML�̂  approaches zero.  Since Warm’s WLE corrects for this bias, it is logical that 

as the bias approaches zero, the ML estimate will equal the WLE estimate.  In fact, this 

convergence appears to be taking place in Cheng & Liou’s (2000) study.  At the early 

stages of testing, items are not well-targeted to examinee ability; thus, the ML estimates 

are biased and the WLE estimates, which have been corrected for this bias, were indeed 
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found to be less biased than the ML estimates.  However, as the CAT proceeds, and items 

are more accurately targeted to examinee ability, the WLE and ML estimates become 

similar. 

If conclusions are to be drawn based on Wang & Vispoel’s (1998) and Cheng & 

Liou’s (2000) studies, it seems that the choice of ability estimation procedure must take 

into account the researcher’s tolerance for bias versus measurement error.  In general, the 

Bayesian procedures provide smaller measurement error at the expense of larger bias; the 

reverse is true for the non-Bayesian ML and WLE procedures.  Although the degree of 

bias in the Bayesian approaches may be lessened by employing a variable selection of the 

prior distribution, this method rests on the assumption that such a distribution can be 

accurately identified for each examinee.  Routing tests may provide one possible solution, 

but they themselves possess measurement error and could erroneously assign a prior 

distribution which might impose an even larger bias on ability estimates. 

Xiao (1999) explored the EAP and GSS ability estimation procedures in a 

computerized adaptive classification test, or grading test.  The outcome measures in 

Xiao’s (1999) study differ from those in Wang & Vispoel’s (1998) and Cheng & Liou’s 

(2000) studies, and include: (a) the proportion of correct grade assignment decisions; and 

(b) average test length.  Thus, Xiao’s (1999) study employed variable-length CATs, as 

opposed to the fixed-length CATs of Wang & Vispoel (1998) and Cheng & Liou (2000). 

Xiao (1999) simulated computerized adaptive grading tests where the item pool 

consisted of 200 pre-algebra items from an ACT Mathematics test.  The range in 

discrimination parameters was 0.472 to 1.756, the range in difficulty parameters was 

−1.588 to 1.656, and the range in pseudo-guessing parameters was 0.056 to 0.494.  The 
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mean of the item parameters was ia  = 1.025, ib  = 0.086, and ic  = 0.172, and the 

standard deviations were 0.242, 0.666, and 0.067, respectively.  Three specific grading 

tests were examined:  the first possessed three proficiency levels; the second possessed 

five levels; and the third possessed 10 levels.  Although each of the grading tests was 

variable in length, a maximum test length was specified for each.  For the 3-, 5-, and 10-

level tests, the maximum test length was 8, 20, and 20 items, respectively.  Examinee 

ability was simulated by drawing from a N(0,1) distribution.  The item selection method 

used for all conditions was maximum FI selection.  For each test, 500 examinees were 

simulated; however, 10 tests were administered for each ability drawn from the 

distribution.  Thus, the total number of replications per cell in her design was 5000. 

Xiao (1999) found that there was “no general difference among the [ability 

estimation procedures] in the proportion of correct classifications” (p. 145).  She notes 

that EAP estimation led to more correct classifications in the 3-level test; however, that 

effect was not observed in the 5- or 10-level tests.  For the 5-level tests, approximately 

79% of the classifications were correct; for the 10-level tests, approximately 58% of the 

classifications were correct.  In the case of the 3-level tests, the proportion of correct 

classifications for GSS was 83.2%, while it was slightly higher at 85% for EAP.  Thus, 

the GSS and EAP ability estimation procedures led to similar classification accuracy 

across the grading tests, with EAP being more accurate for the 3-level test. 

With respect to average test length, a significant effect was observed for ability 

estimation procedure, with GSS resulting in slightly shorter tests than EAP in the case of 

the 3- and 5-level tests.  For the 10-level tests, the stopping rule could not be met before 

the maximum number of items (i.e., 20) was reached; thus, no effect of ability estimation 
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procedure was observed for the 10-level tests.  For the 5-level test, GSS led to an average 

test length of 7.36 items, while the average test length for EAP was 7.50.  For the 10-

level test, the average test length for GSS was 19.68, whereas it was 19.90 for EAP.  

Overall, it appears that GSS is as effective as EAP in classifying examinees in a grading 

test, and that some reduction in average test length occurs for the GSS ability estimation 

procedure. 

Item selection procedures in a computerized adaptive test 

In traditional test design, test developers carefully select items for a test form 

based on content specifications and psychometric properties.  Drafts of these test forms 

are reviewed by test developers for quality control; once approved, the forms are ready 

for distribution.  In a computerized adaptive test (CAT), however, test assembly is 

altogether different.  Tests are dynamic, in that they are constructed during the 

administration of the test itself.  Because the goal of a CAT is to tailor the administered 

test to examinee ability, tests cannot be assembled in advance.  Rather, the test must be 

assembled item-by-item in real time. 

In the sections that follow, four aspects of item selection procedures in a 

computerized adaptive test are explored:  (1) an overview of computerized adaptive test 

assembly; (2) some item selection procedures available for CAT; (3) operational 

constraints imposed on CAT item selection, including content balancing, item exposure, 

and locally-dependent items; and (4) an evaluation of item selection procedures. 

Overview of CAT assembly 

The goal of CAT is to administer items as closely matched to an examinee’s 

ability as possible.  That is, administered items should be neither too easy nor too 
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difficult for any given examinee.  One advantage of such an adaptive, or tailored, test is 

that it can substantially reduce the number of items needed to achieve a desired level of 

measurement precision; often a test may be shortened to one-half its original length 

(Stocking, Smith & Swanson, 2000). 

Clearly an adaptive test must utilize a mechanism for administering appropriate 

items to examinees.  In a CAT, all items are drawn from one source, commonly called the 

item pool.  This item pool contains all items which have been approved for 

administration to examinees; however, any given examinee should be administered only a 

subset of these items, and these items should be targeted as closely as possible to an 

examinee’s ability.  Within the item pool is information describing the item response 

theory (IRT) parameters for each item, such as item difficulty, discrimination, and 

pseudo-guessing parameters. 

Item selection algorithms certainly take into account the psychometric properties 

of items in order to determine which items are most appropriate for examinees.  

However, there are a number of other constraints in item selection that must be 

considered.  First, like any conventional test which is modeled after a blueprint, content 

specifications must be followed.  Second, and what has become a challenging problem in 

CAT, is item exposure.  Because CATs are administered continuously as opposed to 

periodically, security issues such as item exposure become a concern (Stocking & 

Swanson, 1996).  Thus, administering a CAT is not simply a matter of choosing the 

optimal item based on psychometric criteria, blueprint specifications, or minimal item 

exposure, but a combination of all three constraints.  Further, maximizing one or more of 

these constraints may come at the expense of minimizing any of the remaining 
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constraints.  These issues will be explored in greater depth in the third section, 

operational constraints in item selection. 

Any CAT involves an interaction between item selection and ability estimation.  

Items are selected based on provisional ability estimates, and provisional ability estimates 

are calculated based on examinee responses to selected items.  Although items could be 

selected based on the match between provisional ability estimates and item difficulty, it is 

more common for items to be selected based on the match between provisional ability 

estimates and item information content.  These information selection procedures may 

further be classified into two categories:  those that employ local information, and those 

that employ global information.  These procedures are described in more detail in the 

next section. 

A special case of item selection occurs at the very start of the test, when a 

provisional ability estimate is not available.  Thus, at test commencement, the item 

selection procedure must be modified.  Thissen & Mislevy (1990) point out that although 

no information may be available for a particular examinee at the start of a test, a great 

deal of information may exist regarding the distribution of abilities of examinees who 

have previously taken the test.  In such a situation, then, the mean of this distribution may 

be taken as the initial estimate of an examinee’s ability. 

Item selection procedures 

Citing Davey & Parshall (1995), Stocking & Lewis (1995) maintain that one of 

the goals in CAT is “to maximize test efficiency by selecting the most appropriate items 

for a test taker” (p. 4).  From a psychometric perspective, it may not be immediately clear 

what criteria constitute “most appropriate”.  Thissen & Mislevy (1990) note that early in 
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the development of computerized adaptive testing, it was suggested by Urry (1970) that 

the optimal item for selection was the one whose difficulty parameter (i.e., b value) was 

closest to an examinee’s provisional ability estimate.  They further note that Lord (1977) 

suggested a similar procedure. 

Currently items are selected not based on their difficulty parameters, but on some 

measure of their information.  Item information in IRT describes the precision with which 

an item can measure an examinee’s ability.  Because item information varies as a 

function of ability, any given item will be more informative at certain points along the 

ability continuum than at others.  For a dichotomous item i, this item information 

function is given by 
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where Ii(�) is the information provided by the item i at ability �, � ���1ii UP  is the 

probability of a correct response on item i given ability �, and � ���� 1ii UP  is the first 

derivative � ���
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� 1ii UP . 

To describe the precision of an entire test, rather than a single item, the test 

information function is used.  Conveniently, the test information function is the sum of 

the item information functions given in Equation 17; thus, 
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where � ��NI
�,2,1  is the test information function for a test consisting of N items.  As noted 

by van der Linden & Pashley (2000), Birnbaum (1968) suggested that the test 
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information function be used as the criterion for fixed-length linear test assembly.  If 

maximum likelihood (ML) estimation is used to estimate ability, then the asymptotic 

variance of the ML estimator is the reciprocal of Equation 18. 

van der Linden & Pashley (2000) note that while “no asymptotic motivation 

existed” for using information as the item selection criterion (since the number of items 

administered in a CAT would likely be well below the number required for asymptotic 

results), “the maximum-information criterion was immediately adopted as a popular 

choice” (p. 9).  This method of maximum information item selection (or maximum Fisher 

information item selection) is employed as follows:  given a provisional ability estimate 

�̂  for an examinee, select an item j for administration to that examinee where � ��̂jI  is 

highest at that �̂  among all other available items in the pool. 

This use of Fisher information for item selection is perhaps the most popular.  It is 

relatively straightforward to apply, and has the additional advantage that items may be 

sorted beforehand in what is called an information table (Thissen & Mislevy, 1990).  This 

information table lists items in order based on information; these lists are further 

subdivided according to ability quadrature points.  Quadrature points are discrete points 

along the ability scale that are used to approximate the ability continuum; they are also 

used in EAP ability estimation and typically number between 20 and 30 for a scale 

ranging from -4 to +4.  Thus, once the CAT has obtained a provisional ability estimate �̂  

for an examinee, the item selection algorithm searches the information table for the entry 

whose quadrature point is closest to �̂ , and chooses the highest ranking item available for 

that entry.  Since items have been pre-sorted according to an earlier calculation of item 

information (e.g., using Equation 17), no additional information calculations are 
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necessary during the administration of the test.  This method increases the computational 

efficiency of a CAT. 

Nevertheless, variations on Fisher information item selection (FI) have been 

proposed.  The argument for these methods is that FI does not take into account the error 

associated with the provisional ability estimate �̂ , which may be important to consider 

especially at the start of the CAT.  Chen, Ankenmann, & Chang (2000) describe two 

variations, Fisher interval information (FII) and Fisher information with a posterior 

weight function (FIP), each based on a general weighted information criterion proposed 

by Veerkamp & Berger (1997).  This general weighted information criterion (GWIC) is 

defined for an item j as 
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where W(�) is a weight function and Ij(�) is the information function for item j.  In FII, it 

is proposed that the weight function be uniform over an interval defined in terms of the 

expected error associated with the provisional ability estimate �̂ , such that 
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where � ��
�

ˆ
1,...,2,1 jI  is the test information for the items 1, 2, …, j-1 already administered, 

�̂  is the provisional ability estimate after j-1 items, and z is a standard normal deviate 

specified for a desired degree of confidence.  In contrast to FI, where an item is selected 
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based on maximum information � ��̂jI  at a point �̂ , FII selects an item based on the 

maximum area under the information function with bounds given by � �ul �� ˆ,ˆ . 

For Fisher information with a posterior weight function (FIP), the weight function 

in Equation 19 is the posterior density of the provisional ability estimate �̂ , and the 

integration is performed over the entire range of the ability continuum.  Thus, for FIP, 

this integration becomes 
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where � �121 ,,,
�

� juuup �  is the posterior density for the estimate �̂  after administering 

1�j  items. 

Methods based on Fisher information at a point estimate �̂  or an interval about 

that estimate may be classified as local information methods.  There is an implicit 

assumption in these procedures that the provisional estimate �̂  is in the neighborhood of 

an examinees true ability �0.  Chang & Ying (1996) argue that early in a CAT 

administration, when the number of items administered is small, “the estimator [ �̂ ] may 

not be close to �0, in which case the information inside a small region around [ �̂ ] would 

not be useful.”  It turns out that this argument is not new; Lord & Novick (1968, sect. 

16.5) described it in terms of an “attenuation paradox”, as pointed out by van der Linden 

& Pashley (2000). The problem is that item selection procedures that disregard the 

possibility that �̂  is not in the neighborhood of �0 will choose optimal items with respect 

to the estimate �̂  but not with respect to �0, the quantity of most interest.   
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Chang & Ying (1996) propose that a global information measure, rather than a 

local one, be used for item selection, especially at the early stages of a CAT.  This global 

information measure, or Kullback-Leibler (KL) information, does not impose the 

restriction that �̂  be close to �0, as in local information methods.  Kullback-Leibler (KL) 

information is obtained through the Neyman-Pearson likelihood ratio method.  Chang & 

Ying (1996) note that this method is optimal for testing � = �0 versus � = �1, where �0 

and �1 are two points on the ability continuum.  Thus, while local information methods 

are concerned with the information content of an item at one ability point (and possibly 

the error associated with that point, as in the case of FII and FIP), global information 

methods are concerned with the information content of an item with respect to two ability 

points.  Chang & Ying (1996, p. 217) explain that KL information “is a function of two 

levels, [�0 and �1]” and that it “represents the discrimination power of the item on the two 

levels.”  That is, KL information is a multivariate function, whereas local information 

(i.e., Fisher information) is a univariate function.   

If �0 is an examinee’s true ability, and �̂  is the provisional estimate, then the KL 

item information for item j is 
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where the expectation is over the response variable Uj.  Since the likelihood for a 

(dichotomous) item j is given by 
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the KL item information is then 
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The properties of the KL information follow.  First, it is not symmetric, so 

� � � ������ ˆ,,ˆ
00 jj KK .  Second, � � 0,ˆ

0 ���jK .  Third, if �̂  = �0, then � � 0,ˆ
0 ���jK .  KL 

information then describes the power of an item j to discriminate between two points on 

the ability scale, �̂  and �0.  If in fact these points are equal, as in the third property, the 

item cannot discriminate between two points on the ability scale, since only one point is 

represented. 

The immediate problem with KL information in a practical testing situation is that 

the true ability �0 is unknown.  Chang & Ying (1996) propose to integrate this unknown 

parameter out to calculate an index.  Their procedure builds on the GWIC shown in 

Equation 19.  The resulting integral is 
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where �̂  is the provisional ability estimate, � ���,ˆ
jK  is the KL information, and 

n
z

n �� , 

a decreasing function in n, the number of items administered, and z is a normal deviate 

selected at the desired level of confidence.  Chang & Ying (1996) also propose a 

Bayesian information index, similar to the FIP in mathematical form (see Equation 22).  

This KL information method with a posterior weight function (abbreviated KLP) is given 

by 
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where � �121 ,,,
�

� juuup �  is the posterior density for the estimate �̂  after administering 

1�j  items. 

Because an examinee’s true ability is likely not to be well estimated at the early 

stages of a CAT (i.e., when the number of administered items is small), Chang & Ying 

(1996) suggest that global information be used.  However, once many items have been 

administered and the estimated ability �̂  converges to the true ability �0, they suggest 

that local information be used.  It should be noted that the global information item 

selection procedures are the most computationally burdensome of the methods described 

so far.  Thus, these procedures may have limited applicability to practical testing 

situations where items must be selected and administered to examinees in an expedient 

manner.  How well these methods perform as compared to the local information methods 

will be explored in the fifth section, evaluating item selection procedures. 

Operational constraints in item selection 

An operational CAT places constraints on item selection beyond psychometric 

criteria such as item information.  Although a CAT should select items that are targeted at 

an examinee’s ability, an operational test (adaptive or otherwise) must also conform to 

test blueprint specifications.  These constraints must then be handled by the item 

selection procedure.  Now the problem of item selection has become more complicated, 

as the next “optimal” item to choose for examinees is not only a function of item 

information, but also of blueprint specifications. 

Adding further complexity to item selection in an operational CAT is exposure 

control.  Unlike tests which are administered periodically (e.g., once every four months), 

a CAT may be administered on a continuous basis, weekly or even daily.  Whereas item 
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pools used for periodic tests may be partially or completely refreshed in time for the next 

administration, it is practically infeasible to refresh item pools for CATs in this manner.  

Thus, the added convenience of continuous testing afforded by CATs is also its greatest 

drawback, in that items may become compromised on time scales that are rather short. 

The operational CAT item selection procedure is constrained by at least three 

requirements:  (1) select the item which is most appropriate for an examinee’s ability; (2) 

insure that the entire set of items administered to an examinee is balanced according to 

test specifications; and (3) insure that the items administered to an examinee have not 

been exposed to other examinees too frequently.  Popular techniques for satisfying these 

three requirements typically divide the problem into two parts:  satisfy (1) and (2) 

together, then satisfy (3).  Techniques for satisfying item information selection and test 

specification balancing include Kingsbury & Zara’s (1991) constrained computerized 

adaptive test (CCAT), and Stocking & Swanson’s (1993) and Swanson & Stocking’s 

(1993) weighted deviations model (WDM).  Techniques for controlling item exposure 

include those of McBride & Martin (1983) and Sympson & Hetter (1985). 

To insure that test specifications are met in a CAT, Kingsbury & Zara’s (1991) 

CCAT employs a strategy of monitoring for each examinee the proportion of items 

selected from various content areas.  Content balancing is fixed before CAT 

administration by assigning targeted content area proportions (e.g., a science test might 

require 50% of items from the biological sciences, and 50% from the physical sciences).  

Before the next item is selected for an examinee, an accounting of the items already 

administered to that examinee is performed and the observed proportions with respect to 

content area are calculated.  If the proportion for a content area is below its targeted 
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proportion, selection of the next item is restricted to the items within that content area.  

Maximum item information is used to select the next item from the restricted set. 

Stocking & Swanson (1993) and Swanson & Stocking (1993) developed the 

weighted deviations model (WDM) to handle practical test assembly constraints 

including but not limited to content balancing.  As described by Eignor, Stocking, Way, 

& Steffen (1993), the philosophy underlying their approach is different from approaches 

such as Kingsbury & Zara’s.  Regarding WDM, they note, “Thus constraints, including 

statistical constraints, are thought of as more like ‘desired properties’ than as true 

constraints.  This approach recognizes the possibility of constructing a test that may lack 

all of the desired properties at the expected levels, but emphasizes the minimization of 

aggregate failures” (p. 5).  Further, Stocking & Lewis (1998) comment that “in the 

WDM, the item pool is ordered by employing a methodology from the decision sciences 

that models the behavior of expert test specialists” (p. 59).  Thus, the weights in the 

WDM refer to the relative importance of test form (or for a CAT, tailored test 

administration) attributes as determined by test specialists (Eignor et al., 1993).  The goal 

of the WDM is then to minimize the weighted deviations from the nominal levels. 

Controlling item exposure is more a security concern than a psychometric one.  

Nevertheless, it is important because, as Stocking & Lewis (2000) note, item exposure 

increases the risk that examinees will obtain “preknowledge” about tests and their 

constituent items through the sharing of information (p. 164).  Though advantageous 

from a security standpoint, controlling item exposure comes at the expense of efficiency, 

as it overrides an item selection procedure’s best choice for the next item to administer to 

an examinee (Thissen & Mislevy, 1990).  As Eignor et al. (1993) note, item exposure 
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control forces CAT administrations to be longer, but these “longer tests may be viewed as 

a reasonable exchange for greater item and test security” (p. 8). 

McBride & Martin (1983) proposed a randomization technique to control item 

exposure.  The logic behind their technique is that early in the CAT, examinees are not 

well differentiated and are likely to receive nearly the same set of items as selected by 

maximum information selection.  Rather than administering the single best item at these 

early stages, a group of appropriate items is created and an item from this group is 

selected at random.  For example, this group might include the best item, as measured by 

maximum item information, as well as a few of the next-best items.  The test begins with 

an item selected at random from a group of items of size five; the next item is selected 

from a group of size four, and the process continues until the fifth item, where the group 

is of size one and hence the item with maximum information is selected.  From the fifth 

item onward, the randomization technique is no longer employed (Thissen & Mislevy, 

1990).  The primary advantage of McBride & Martin’s technique is that it is rather easy 

to employ.  The disadvantage, however, is that item exposure is controlled indirectly; that 

is, the probability that any given item will be administered is not known in advance 

(Stocking & Lewis, 1995). 

To control for item exposure more directly, Sympson & Hetter’s (1985) technique 

is grounded in a probabilistic framework.  Attached to each item is the probability P(A,S), 

where S is the event that the item is selected, and A is the event that the item is 

administered.  Thus, the probability P(A,S) that an item is selected and administered is 

given by 

 � � � � � �SPSAPSAP �,  (Eq. 28) 

Alexander Weissman
Eq_Sympson_Hetter
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where P(S) is the probability that an item is selected (e.g., by maximum information item 

selection), and P(A|S) is the probability that an item is administered, given that it is 

selected. 

To utilize the Sympson & Hetter technique, a desired level of item exposure, say 

r, where � �1,0�r  is chosen for all items.  Then for all items, it is desired that � � rSAP �, .  

An item exposure control parameter k is chosen for each item such that k = P(A|S).  

Values for k are found through iterative simulations (Stocking & Lewis, 1995, p. 10).  

Once the parameters k have been identified, item exposure control proceeds as follows:  

(1) select the next most appropriate item for administration and obtain its exposure 

control parameter k; (2) generate a random deviate u from UNIF(0,1); (3) if ku � , 

administer the item, otherwise, do not administer the item, remove it from the pool of 

potential items for the examinee, and go back to step 1 (Eignor et al., 1993). 

The advantage of the Sympson & Hetter technique is that the probabilities of item 

exposure are controlled directly; however, it may not be possible to obtain stable 

exposure control parameters k for each item through the iterative simulations (Stocking & 

Lewis, 1995).  Further, these parameters are dependent on the item pool and the manner 

in which the test administration simulations are conducted, and hence new simulations 

must be conducted when changes are made to the item pool or administration procedures 

(Stocking & Lewis, 1998). 

In addition to content balancing and item exposure control, operational item 

selection procedures must also take into account the possibility that locally-dependent 

items may need to be administered.  Most commonly, these are items that are grouped 

into contextually-related item sets; for example, a passage-based item followed by a 
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number of items relating to that passage.  One possible solution to overcoming the 

dependency among these items is to group these items together into a single unit, then 

model the responses to these items as multiple levels of a polytomous IRT model.  These 

units, sometimes called testlets, would then be administered to an examinee and scored 

according to an appropriate polytomous IRT model (Wainer & Mislevy, 1990).  For 

example, responses to a testlet of four items could be collapsed into one of five score 

categories, zero through four, according to the number correct score for all items within 

the testlet.  Then a polytomous IRT model, such as Samejima’s (1969) graded response 

model or Master’s (1982) partial-credit model, may be used to model item responses.  

CAT item selection procedures for these testlets would mirror those for dichotomous 

items, since information functions may be computed for polytomous items as well as 

dichotomous ones. 

Evaluation of item selection procedures 

Item selection in an operational CAT is a multifaceted process, whereby selection 

must take into account statistical criteria (such as item information), test specifications, 

and exposure control.  Most studies on item selection procedures have focused on one 

aspect of this process, holding the others constant or disregarding them altogether.  

Studies by Chang & Ying (1996), Chen, Ankenmann, & Chang (2000), and Cheng & 

Liou (2000) explore the issue of global versus local information through simulation 

studies, but do not include content balancing or exposure control as variables in their 

study.  Kingsbury & Zara (1991) investigate a procedure for content balancing under 

maximum information item selection, but also do not employ exposure control in their 

simulations.  Operational concerns are the focus of Eignor, Stocking, Way, & Steffen’s 
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(1993) study, where content balancing and exposure controls are investigated, but the 

maximum information criterion is used for all conditions of the study. 

Chang & Ying (1996) proposed a method of global information item selection 

using the Kullback-Leibler (KL) information, and compared it with local information, or 

Fisher information (FI), item selection procedures.  They conducted two simulation 

studies, each with different item pools and different test lengths.  In the first of their 

studies, item parameters  a, b, and c for a 3P model were generated from uniform 

distributions, such that a ~ UNIF(0.5, 2.5), b ~ UNIF(-3.6, 3.6), and c ~ UNIF(0.0, 0.25).  

The size of the pool was 800 items, and a fixed-length CAT of 14 items was 

administered.  In their second study, the item parameters were obtained from a 1992 

NAEP Reading Assessment, with a pool of 254 items.  Of these items, 122 were modeled 

with a 2P model, and the remainder with a 3P model.  Again, a fixed-length CAT was 

administered, but with a length of 40 items.  Each study simulated responses for 1000 

examinees.  Both bias and mean-squared-errors (MSE) were examined for the two 

studies. 

For their first simulation study, Chang & Ying (1996) found that the KL 

information method resulted in less bias and smaller MSE than the FI method for 

examinees at the lower extremes of ability, � �5.1,2,3 ����� .  Both KL and FI performed 

similarly at ability levels 5.1��� .  For their second simulation study, they again found 

less bias at the lower extremes of ability, � �1,2 ���� , but smaller MSE only for 2��� .  

When the number of items administered was small, however, KL resulted in smaller 

MSE than FI. 
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Fan & Hsu (1996) also explored global information item selection procedures, but 

their item pool was significantly smaller than that used by Chang & Ying (1996).  

Whereas Chang & Ying (1996) used an item pool of size 800 for their first study, and 254 

for their second study, Fan & Hsu (1996) limited their item pool size to 100 items.  The 

results of Fan & Hsu’s (1996) study were not consistent with those observed by Chang & 

Ying (1996); that is, there was no difference between KL and FI item selection in terms 

of bias and MSE of ability estimates. 

Chen, Ankenmann, & Chang (2000) extended Chang & Ying’s (1996) study to 

investigate additional local and global information-based item selection procedures.  

Whereas Chang & Ying (1996) limited the local information selection method to 

maximum Fisher information, and the global information selection method to the 

maximum KL information index (as calculated by Equation 26), Chen et al. (2000) 

examined Fisher interval information (FII, see Equation 19), Fisher information with a 

posterior weight function (FIP, see Equation 22), and Kullback-Leibler information with 

a posterior weight function (KLP, see Equation 27).  Reflecting on the findings of Fan & 

Hsu’s (1996) study, Chen et al. (2000) posit that the benefits of KL information may be 

reduced in cases of smaller item pools; further, they suggest that the item characteristics 

themselves may play a role in the utility of KL over FI. 

Chen et al. (2000) conducted two simulation studies to investigate the FI, FII, FIP, 

KL, and KLP item selection procedures.  In their first study, item parameters a, b, and c 

for a 3P model were generated as a ~ N(1, 0.25), b ~ U(-3.6, 3.6), and c ~ U(0.0, 0.3); the 

size of this item pool was 400.  The item pool for their second study was identical to the 

item pool used for Chang & Ying’s (1996) second study (i.e., the 1992 NAEP Reading 
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Assessment items).  Both studies simulated responses for 1000 examinees administered a 

20-item CAT.  Their study examined bias, standard errors, and root-mean-squared errors 

(RMSE). 

Chen et al. (2000) found that of three research hypotheses, only two were 

supported by their study.  These two hypotheses were: (1) that early in a CAT 

administration, FI would perform best at ability values near � = 0; and (2) that as the 

number of items administered in the CAT increased, all item selection procedures would 

perform similarly.  Their hypothesis that FII, FIP, KL, and KLP would perform better 

than FI at the early stages of testing for ability values far from � = 0, was supported only 

at the lower extremes of ability, where � �2,3 ���� .  They write, “Differences among 

[these methods] with respect to bias, RMSE, and SE...were negligible for tests of more 

than 10 items….For tests longer than 10 items, there appeared to be no precision 

advantage of one [method] over another” (p. 253). 

Cheng & Liou (2000) also investigated KL and FI item selection procedures, and 

like Chang & Ying (1996) and Chen et al. (2000), their simulation study used items from 

a 1992 NAEP Reading Assessment.  However, rather than using all 254 items, they 

limited the size of their item pool to 204.  Their study simulated responses for 1000 

examinees administered a 30-item CAT.  Dependent variables in their study included bias 

and MSE.  Their findings paralleled those of Chang & Ying (1996) and Chen et al. 

(2000), in that the KL and FI item selection procedures performed similarly for more than 

10 items.  Cheng & Liou (2000) also include some measures of processing time; they 

note that the more computationally-intensive KL procedure was on average 60 times 

slower than the FI procedure. 
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Content balancing in the absence of exposure control was investigated by 

Kingsbury & Zara (1991), in order to examine their constrained CAT (CCAT) item 

selection procedure.  Their simulation study included:  (a) two examinee groups of size 

10,000, where one group was distributed as N(0, 1) and the other as N(1.5, 1); (b) three 

item pools of sizes 100, 300, and 500; and (c) two CAT administrations, unconstrained 

(i.e., not content-balanced) and constrained (CCAT).  Each CAT administration was 

fixed to a length of 48 items, and items were assigned to four content areas as follows:  

one-third from content area A, one-third from content area B, one-sixth from content area 

C, and one-sixth from content area D.  For a desired precision of measurement, they 

found that the CCAT required between 5% and 11% more items than an unconstrained 

CAT.  They note that the cost of content balancing comes at the expense of test length; 

i.e., a longer content-balanced CAT is required to achieve the same level of precision as 

the corresponding unconstrained CAT. 

Satisfying operational constraints was the primary focus of the study by Eignor, 

Stocking, Way, & Steffen (1993).  They examined CAT versions of five different tests:  

the SAT Verbal, SAT Mathematics, GRE Verbal, GRE Quantitative, and GRE 

Analytical.  Although they utilized simulation techniques to conduct their study, all work 

was performed in an operational context; that is, the study was part of Educational 

Testing Service’s effort to make available CAT versions of their paper-and-pencil tests.  

Their results included not only an evaluation of psychometric, content balancing, and 

item exposure criteria, but also a review by test specialists. 

Eignor et al. (1993) utilize the weighted deviations model (WDM) for content 

balancing in conjunction with FI item selection.  For exposure control, they employ a 
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count-down randomization technique starting with eight items for the SAT simulations, 

and the extended Sympson & Hetter technique for the GRE simulations.  (Note that 

Stocking (1993) developed the extended Sympson & Hetter technique to work with item 

stimulus material, such as passages, as well as the items that follow.)  Responses for 

between 100 and 200 examinees were generated per ability scale point, which varied 

between 9 for the GRE Analytical and 19 for the SAT Verbal. 

All of their simulated CATs used a fixed-length stopping rule, though the length 

of the CAT depended upon the particular test.  Further, Eignor et al. (1993) found that 

operational constraints could be satisfied when item pools were approximately 12 times 

larger than the length of the CAT.  For example, the SAT Verbal simulations were fixed 

at 27 items and the SAT Mathematics at 20 items; item pools of size 303 and 235, 

respectively, satisfied the constraints.  For a 30-item GRE Verbal, a 28-item GRE 

Quantitative, and a 35-item GRE Analytical, item pools of size 350, 330, and 449, 

respectively, satisfied the constraints. 

Eignor et al. (1993) found that all five of the CATs met or exceeded targeted 

values for test form reliability.  Further, they found that content balancing was for the 

most part satisfied, with some violations for those aspects receiving smaller weights in 

the WDM.  With respect to item selection, it is worth noting that none of the CATs used 

all items in the pool.  On average, 84% of the items in the pool were administered.  Item 

exposure rates varied depending on the control methodology.  For the SAT simulations, 

where the count-down randomization technique was used, the highest exposure rates 

were between 0.5 and 0.6.  The average exposure rate was approximately 0.11.  For the 

GRE simulations, where the extended Sympson & Hetter technique was used, the highest 
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exposure rates were between 0.2 and 0.3.  The average exposure rate was approximately 

10%. 

Ultimately, CATs should conform to what expert test specialists would require 

were they to assemble the tests themselves.  Eignor et al. (1993) generated paper-and-

pencil copies of CAT administrations generated by their simulations and submitted them 

to test specialists for review.  These specialists were not made aware of the constraints 

utilized in the simulations, nor were they told the ability levels for which the individual 

tests were targeted.  After review, they did identify some problems with the CATs, but 

these problems arose not from the item selection procedures, but rather from 

characteristics of the item pools.  For example, they identified problems with those forms 

designed for examinees at the extremes of ability.  Eignor et al. (1993) attribute this 

problem to a lack of items in the pool tailored to such examinees. 
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CHAPTER 3 

Methodology 

 

The following discussion of the methodology employed in this study is organized 

into four major sections:  (1) the efficiency of item selection in the context of 

computerized adaptive testing (CAT); (2) an alternative ability estimation procedure 

based on hypothesis-testing; (3) an overview of the experimental design; and (4) the CAT 

simulation methods used to carry out the study.  Within the second section, a brief review 

of related methods, particularly hypothesis-tests based on person-fit statistics, is included 

in addition to the mathematical development of the alternative item selection procedure.  

 

Defining the efficiency of item selection in the context of CAT 

The evaluation criterion upon which this study relies is a precisely-defined 

measure of efficiency.  An argument for this definition was provided in the introductory 

chapter; the same argument is presented here along with additional points related to the 

methodology of the study.  The precise definition of efficiency in this context begins with 

the statistical concept of relative efficiency, which is then used to define an efficiency 

measure for the items selected by a CAT. 

To begin, consider two tests, A and B, administered to an examinee possessing a 

true ability �.  The precision with which this examinee may be measured by test A is 
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given by the accumulated test information, as defined in Equation 12 and shown to be 

equivalent to the sum of the information provided by each item administered, as given by 

Equation 18.  The expression � ��)(T
AI  may then indicate the accumulated test information 

for test A at the examinee’s true ability �, and similarly � ��)(T
BI  for test B.  The relative 

efficiency of test A over test B is then 

 � � � �

� ��

�
��

)(

)(

,
T

B

T
A

I

I
BARE  (Eq. 29) 

If test A is more efficient than test B at true ability � (i.e., test A yields more precise 

measurements), then � � 1, ��BARE .  Conversely, if test B is more efficient at �, 

� � 1, ��BARE .  In the case where both tests are equally efficient at �, � ��BARE ,  is 

exactly equal to one. 

This definition of relative efficiency may be extended to the CAT context at hand, 

yielding an operational definition for the efficiency of a CAT.  Suppose now that a CAT 

of j items is administered to an examinee possessing true ability �, and that these items 

are drawn from an item bank of finite size.  Then the quantity � ��)(T
CATI  characterizes the 

accumulated test information from these j items at the examinee’s ability level.  Now for 

any given �, there exists an optimal set of items, also of size j, such that no other 

combination of j items yields a greater measure of accumulated test information.  Thus, if 

� ��)(
0
TI  represents the accumulated test information for this optimal set of items, the 

relative efficiency of the set of items selected by the CAT administration over the optimal 

set is 

Alexander Weissman
Eq_relative_eff
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Noting, however, that � ��)(
0
TI  places an upper bound on the precision with which an 

examinee with true ability � may be measured by a set of j items drawn from the item 

bank, it must be the case that � � � � 1/ )(
0

)(
���

TT
CAT II .  It is this ratio that operationally 

defines the efficiency of a CAT in the present context. 

Spanos (1999, p. 609) maintains that since relative efficiency alone is not 

necessarily useful (e.g., a poor estimator is relatively more efficient than an even poorer 

estimator), some fixed point of reference, namely the Cramer-Rao lower bound for the 

variance of an estimator, is required.  In IRT applications where ability estimates are 

obtained by maximum likelihood (ML), the asymptotic variance of the ML estimator is in 

fact equal to the Cramer-Rao lower bound, or � ��)(/1 TI , where � ��)(TI  is the 

accumulated test information at the true ability �.  However, the specific items 

contributing to � ��)(TI  for an individual examinee being administered a CAT are not 

fixed, and hence an additional lower bound—this one resulting from the choice of 

items—is needed to define efficiency.  It is the quantity � ��)(
0
TI  described above that sets 

the lower bound on the variance for an estimator of � (or, an upper bound on the 

precision of such an estimator) in the CAT environment with an item pool of finite size.  

Thus, the ratio � � � ���
)(

0
)( / TT

CAT II  is not simply a measure of relative efficiency, but of 

efficiency itself, and may be used to define the efficiency of a CAT.  The primary 

advantage of this definition is that item selection procedures may all be compared to a 

fixed point of reference, one that characterizes the most efficient estimator possible. 

Alexander Weissman
Eq_relative_eff_CAT
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Using the present definition of � ��)(
0
TI  in an evaluation of item selection 

procedures may be somewhat unrealistic, for the simple reason that a CAT must select an 

arbitrary starting point for the first item draw.  Quite often, the mean of an ability 

distribution, either assumed a priori or in fact observed from previous test 

administrations, is taken as the initial ability estimate for examinees.  If such a method is 

utilized, then any subset of items administered to an examinee must necessarily contain 

an item drawn based on this starting estimate.  Such arbitrariness could conceivably 

penalize the efficiency measure, as calculated by Equation 30, for an item selection 

procedure. 

In order to produce a more appropriate measure, the definition of � ��)(
0
TI  may be 

modified such that this first item is always included in the “optimal” subset, recognizing 

that it may or may not be among the most informative items in the pool for an examinee 

with true ability �.  For this study, the following (modified) definition of � ��)(
0
TI  is used. 

Suppose that J items are administered to an examinee, where j = 1, 2, …, J, and 

� ��jI  is the item information for item j at ability �.  Then � ��)(
0
TI  is defined as 

 � � � � � ��
�

�����

J

j
j

T III
2

1
)(

0  (Eq. 31) 

where � ��1I  is the information at � provided by the first item, and � ��
�

�

J

j
jI

2

, which is the 

sum of the information from the remaining 1�J  items, is not exceeded by any other 

combination of 1�J  items drawn from the item pool.  That is, with � ��1I  fixed at the 

start of the test, no other subset of 1�J  items yields a greater measure of accumulated 

test information at �.  This modification recognizes that one degree of freedom is lost in 

Alexander Weissman
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the item selection process because the first item is arbitrarily drawn.  Hence, efficiency in 

this study is defined as in Equation 30, but with a modified upper bound on the precision 

of measurement )(
0
TI  given by Equation 31, such that 

 � �
� � � ��

�

���
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 (Eq. 32) 

 

An alternative ability estimation procedure based on hypothesis-testing 

Item selection in CAT is influenced by two procedures:  item selection and ability 

estimation.  With respect to item selection, maximum Fisher information (FI) item 

selection is the most common; for ability estimation, ML, MAP, and EAP are most 

common.  The majority of research on improving the efficiency of item selection has 

concentrated on item selection procedures, and a number of alternative item selection 

procedures have been proposed.  Four of these procedures—Fisher interval information 

(FII), Fisher information with a posterior weight function (FIP), Kullback-Leibler (KL) 

information, and KL information weighted by a posterior density (KLP)—have been 

proposed as reviewed in Chapter 2.  However, the efficiency of item selection might also 

be improved by considering alternative ability estimation procedures.  The golden section 

search (GSS) strategy, also reviewed in Chapter 2, is one example of an alternative ability 

estimation procedure. 

Proposed here is a new alternative ability estimation procedure, fundamentally 

different from those previously reviewed.  The procedure utilizes a hypothesis-testing 

approach in conjunction with a conventional ability estimation procedure such as ML or 

MAP, whereby a hypothesis test is constructed and a decision rule is followed in order to 

Alexander Weissman
Eq_efficiency
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select the next item for administration.  The procedure is developed according to the 

following, which are then discussed in turn:  (1) statement and interpretation of the null 

and alternative hypotheses; (2) derivation of the test statistic; (3) decision rule and 

subsequent item selection.  In addition, because some aspects of this procedure are 

similar to those used in person-fit statistics, a comparison of this procedure with these 

methods is provided. 

Statement and interpretation of the null and alternative hypotheses 

The null hypothesis in this procedure is similar to those used for tests of model fit.  

In these tests, a model is proposed and the observed data is compared to what is expected 

under the model.  If the observed data differ significantly from the model expectations, 

then the null hypothesis is rejected.  In such a case, the conclusion is typically that the 

model does not fit the data.  On the other hand, if sufficient evidence does not exist for 

rejecting the null hypothesis, the model is said to fit the data5. 

Here, the null hypothesis is constructed under strict model assumptions.  These 

assumptions follow from the IRT model in the case where all items administered to an 

examinee are maximally discriminating (i.e., possess maximum information) at that 

examinee’s true ability.  Such a scenario characterizes ideal item selection in a CAT; 

namely, that items administered to an examinee should possess maximum measurement 

precision at that examinee’s true ability.  Thus, the hypothesis-testing procedure used 

here is essentially a test of whether the CAT is operating as intended.  In brief, if this null 

hypothesis is not rejected, then the decision is to use the most recent provisional ability 

estimate obtained by a conventional ability estimation procedure (e.g., ML or MAP) to 

                                                 
5It may be argued that when the null hypothesis is not rejected, this interpretation is improper.  
Nevertheless, it is often the only type of evidence available for making decisions about model-data fit. 
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select the next item.  If evidence warrants its rejection, however, an alternative selection 

method is suggested.  Thus, the alternative procedure functions concurrently with a 

conventional ability estimation procedure such as ML or MAP, and in this sense acts as 

an adjustment to the conventional ability estimate when model assumptions do not 

conform to the observed data. 

The overall rationale for this hypothesis-testing procedure is that when a CAT is 

targeting items exactly at an examinee’s true ability, the expected proportion of items 

correctly answered is approximately equal to 0.5 in the case of items modeled under the 

3P IRT model, and is exactly equal to 0.5 in the case of 1P and 2P items.  The presence 

of a pseudo-guessing parameter c in the 3P IRT model increases the expected proportion 

correct from 0.5 to a higher number, with larger values of c corresponding to higher 

expected proportions correct.  After an examinee has responded to an administered item, 

the hypothesis-testing procedure compares the observed proportion of correct responses 

with what would be expected if the CAT was selecting items perfectly targeted to an 

examinee’s ability.  If the observed proportions correct are less than expected, the 

interpretation is that the current ability estimate is too high.  Alternatively, if the observed 

proportions correct are greater than expected, the interpretation is that the current ability 

estimate is too low.  Thus, a new adjusted ability estimate may be introduced in order to 

compensate for the discrepancy.  It should be noted that the expected proportion correct 

under this ideal situation may be calculated without knowledge of examinee ability, as 

will be discussed shortly.   

The assumptions underlying the null hypothesis for this procedure are rooted in 

how IRT characterizes item information.  Under the 1, 2, and 3-parameter models, the 



66 

 

probability of correct response � ���1iUP  for a dichotomously-scored item i is modeled 

as a monotonically increasing function of �.  However, for each curve suggested by this 

function, there exists exactly one point where its first derivative is at a maximum.  It is 

also at this point where the item possesses maximum information, where information is 

given by Equation 17.  Thus, if imax,�  represents the value on the ability scale 

corresponding to this point, then the item possess maximum measurement precision for 

an examinee whose own true ability � is equal to imax,� . 

Now suppose that a set of N items are administered to an examinee with true 

ability �, and impose the restriction that for each item i, ��� imax, .  That is, all N items 

possess maximum information at the examinee’s true ability �.  (Note, however, that 

there is no restriction that all items be equally informative, so it is permissible that 

� � � ���� ji II  for ji � .)  Thus, in this situation where all items are ideally suited for this 

examinee in terms of measurement precision, 

 �������� Nmax,2max,1max, �  (Eq. 33) 

The next relationship links Equation 33 with the statement of the null hypothesis 

employed by this procedure.  Since there is a probability � �
iiUP

max,
1��  associated with 

each item i, an expected proportion correct may be constructed, under the constraints 

imposed by Equation 33.  This expected proportion correct, or p , is then defined as 

 
� �

N

UP
p

N

i
ii�

�

��

�
1

max,1
 (Eq. 34) 
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The observed proportion correct, or p̂ , is defined as 

 � �1,0,ˆ 1
��

�
�

i

N

i
i

X
N

X
p  (Eq. 35) 

where Xi = 0 indicates an incorrect response and Xi = 1 indicates a correct response. 

The null hypothesis is then that p̂  is sampled from a distribution with mean p.  

Thus, a decision not to reject the null hypothesis implies that the observed proportion 

correct does not differ from the expected proportion correct p.  Because an examinee’s 

ability is assumed to be fixed at some true value �, this decision further suggests that the 

relationship in Equation 33 be retained6.  In this case, the model would fit the data. 

However, if the null hypothesis is rejected, then an alternative hypothesis is 

required.  Rejection of the null implies that the observed proportion correct is inconsistent 

with what would be expected under Equation 33; that is, a discrepancy must therefore 

exist between the imax,�  for the i ={1, 2, …, N} items administered and that examinee’s 

true ability �.  Thus, the model does not fit the data. 

Derivation of the test statistic 

In order to conduct the necessary hypothesis tests, a test statistic and its 

distribution is required.  To begin, consider an examinee’s dichotomous response Xi to 

item i.  Then according to the IRT model, Xi ~ BIN(1, pi), such that Xi is a Bernoulli 

random variable with parameter pi, and the parameter pi = � ���1iXP  for constant �.    

Now assume that a sample of size n is taken, where the Xi are independent but not 
                                                 
6 If items are perfectly targeted at examinee ability, then Equation 34 follows by deduction.  However, the 
inductive step is somewhat more involved.  Satisfying Equation 34 is a necessary but not sufficient 
condition for concluding Equation 33.  Caution must be exercised in interpreting model-data fit under 
retention of the null hypothesis.  Nevertheless, if Equation 34 is not satisfied (i.e., when the null is 
rejected), it cannot be the case that Equation 33 is true. 
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identically distributed.  (Thus, the assumption of local independence is assumed here.)  

The proportion correct for Xi (or, the mean of the Xi) may then be defined as 
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X
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n
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�
1ˆ  (Eq. 36) 

Now the expectation � �pE ˆ , denoted by p, is 
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since for Xi ~ BIN(1, pi), � � ii pXE � .  The variance of p̂ , denoted by � �pVar ˆ , is 
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since the variance of the sum of independent random variables is equal to the sum of their 

variances, and � � iii qpXVar � , where ii pq ��1 . 

The test statistic is constructed as 

 
� �pVar

ppz
ˆ

ˆ* �

�  (Eq 39) 

where, under the null hypothesis, *z  is asymptotically normally distributed with mean 0 

and variance 1, that is, � �1,0* Nz d
��� . 

For utilizing this hypothesis-testing procedure in the CAT environment, the 

quantities p and � �pVar ˆ  from Equations 37 and 38 are calculated based on the items 

administered to the examinee, with the assumption under the null hypothesis that all 
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items possess maximum information at the examinee’s true ability, as given by 

Equation 33.  Thus, under the 3P model, the ip  for an item i used in these equations are 

given by  

 � � � �

� �� �� �iii

i
iiii

bDa

c
cXPp

����

�
�����

max,

max,

exp1

1
1  (Eq 40) 

where imax,�  is directly attainable from the item parameters for item i, and is given by 

(Hambleton and Swaminathan, 1985)  

 � �i

i

ii c
Da

b 81ln1
2
1

2
1

max, �����  (Eq 41) 

and the ai, bi, and ci are the discrimination, difficulty, and pseudo-guessing parameters, 

respectively, for item i; D is a scaling constant.  Substituting the expression for imax,�  

from Equation 41 into Equation 40 results in the following simplification for ip  

 � � � �

1

max,

811

2111

�

�
�
�

�

�

�
�
�

�

�

��

���	
		

i
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ccXPp  (Eq 42) 

Using this expression for ip , the necessary quantities � �pE ˆ  and � �pVar ˆ  may be 

calculated by means of Equations 37 and 38. 

Note that under 1P and 2P IRT models, if ci = 0, then pi = 0.5.  Under the 3P 

model, when ci > 0, pi > 0.5.  As discussed earlier, this is the expected proportion when a 

CAT is targeting items at an examinee’s true ability level. 

Distribution of the test statistic under the null hypothesis 

Under the null hypothesis, it is assumed that all items administered to an 

examinee possess maximum information at that examinee’s true ability �, as given in 
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Equation 33.  The hypothesis-testing procedure assumes that the distribution of the test 

statistic z* under the null hypothesis follows a N(0,1) distribution.  However, the 

assumption that z* ~ N(0,1) is an asymptotic result, and may not hold for relatively short 

tests (i.e., tests less than 30 items in length). 

In order to determine to what extent z* follows a N(0,1) distribution under the null 

hypothesis, a simulation was conducted.  Three levels of ability were chosen such that 

� = {−2, 0, +2}, with 1000 replications for each ability.  For all items i administered to 

examinees, ��� imax, , as in Equation 33.  The empirical sampling distribution for z* was 

examined for tests of length 5, 10, 15 and 25.  For each combination of examinee true 

ability � with test length, the mean and standard deviation of the distribution is reported 

in Table 1.  In addition, the type I error rates corresponding to the nominal �-levels 0.05, 

0.10, and 0.20 for a two-tailed test under the N(0,1) distribution are reported in Tables 2 

through 4.  In the case of the N(0,1) distribution, the critical z-value for � = 0.05 is 

zc = 1.960; for � = 0.10, zc = 1.645; and for � = 0.20, zc = 1.282.  Type I error rates were 

then computed as the frequency with which |z*| > zc for each condition. 
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Table 1.  Mean and standard deviation of z* under the null hypothesis. 
 
 Mean Standard deviation 

True ability � 5 items 10 items 15 items 25 items 5 items 10 items 15 items 25 items 

−2 0.020 0.010 0.020 0.013 0.99 1.01 0.98 1.00 

  0 0.01 0.0045 0.0015 -0.029 1.02 1.03 1.02 0.99 

+2 -0.0083 0.0045 0.0015 0.029 1.00 1.00 1.01 1.02 

 
Table 2.  Type I error rates for z*, with nominal � = 0.05 (zc = 1.960). 
 

 Test length 

True ability � 5 items 10 items 15 items 25 items 

−2 0.006 0.049 0.055 0.027 

0 0.009 0.059 0.066 0.034 

+2 0.009 0.042 0.057 0.041 

 
Table 3.  Type I error rates for z*, with nominal � = 0.10 (zc = 1.645). 
 

 Test length 

True ability � 5 items 10 items 15 items 25 items 

−2 0.158 0.101 0.103 0.095 

0 0.176 0.115 0.121 0.098 

+2 0.162 0.093 0.103 0.108 

 
Table 4.  Type I error rates for z*, with nominal � = 0.20 (zc = 1.282). 
 

 Test length 

True ability � 5 items 10 items 15 items 25 items 

−2 0.158 0.181 0.179 0.231 

0 0.176 0.206 0.207 0.214 

+2 0.162 0.197 0.199 0.213 
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From Table 1, the means and standard deviations of the empirical sampling 

distributions for z* are consistent with a distribution with a mean of 0 and a standard 

deviation of 1.  The type I error rates shown in Tables 2 through 4 are for the most part 

consistent with the nominal type I error rates for a N(0,1) distribution, with the only 

major departures occurring for tests of 5 items in length.  In the case of the nominal � = 

0.05 and a test length of 5 items, the observed type I error rates are substantially less than 

expected, whereas for the nominal � = 0.10, the type I error rates are substantially greater 

than expected.  Note that the observed type I error rates for the nominal � = 0.20 are 

identical to those observed for � = 0.10.  This equality of type I error rates for different 

values of zc is due to the discreteness of the distribution of z* for very short test lengths.  

(For a test of 5 items in length, only 6 values of z* are possible.)  Although the 

convergence of z* to N(0,1) is an asymptotic result, it appears that this normal 

approximation for z* is accurate for tests of 10 items in length or greater. 

Decision rule and subsequent item selection 

Equation 39 is used to test the null hypothesis that all items administered to an 

examinee are maximally informative at that examinee’s true ability �.  If the absolute 

value of the test statistic z* exceeds a critical value zc, then the null hypothesis is rejected.  

Otherwise, the null hypothesis is retained.  The provisional ability estimate used for 

selecting the next item depends on this decision rule. 

Null hypothesis not rejected.  In instances where the null hypothesis is not 

rejected (i.e., czz �
* ), there is not sufficient evidence to suggest that items are not 

maximally informative at an examinee’s ability �.  The recommendation therefore is that 
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the most recently-obtained provisional ability estimate (from ML or MAP, for example) 

be used to select the next item.   

Null hypothesis rejected.  Sufficient evidence warrants the rejection of the null 

hypothesis in this case (i.e., czz �
* ).  Selection of the next item based on the most 

recently-obtained provisional ability estimate is not recommended, and so an alternative 

ability estimate is suggested.  A new provisional ability estimate *
�̂ , different from that 

estimated either by ML or MAP, is thus identified.  This estimate is found using the 

expected proportion correct p, its confidence limits under the null hypothesis, and the 

average item characteristic curve for the administered items.  Item selection then 

proceeds based on this new provisional estimate *
�̂ . 

In this case where the null hypothesis is rejected, it is concluded that the sample 

proportion correct p̂  is not from a distribution with mean p.  Since the hypothesis test is 

constructed under the null hypothesis, inference does not extend to the distribution from 

which p̂  is sampled.  That is, the hypothesis test alone cannot characterize the alternative 

mean of � �pE ˆ .  However, a conservative estimate of the location of this alternative 

distribution is possible.  At the very least, the alternative distribution becomes 

distinguishable from the null distribution at the decision threshold; that is, at either one of 

the confidence limits set for � �pE .  Thus, a decision to reject the null hypothesis when 

� �pEp �ˆ  is equivalent to stating that p̂  lies outside the confidence interval for � �pE , 

and specifically, beyond its lower confidence limit of � � � �pVarzpE c� .  Likewise, 

rejection of the null when � �pEp �ˆ  demands that p̂  must lie beyond the upper 

confidence limit � � � �pVarzpE c� . 
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It is then reasonable to suppose in this situation that, for � �pEp �ˆ , the location of 

the alternative distribution � �pE ˆ  is less than or equal to � � � �pVarzpE c� , and for 

� �pEp �ˆ , the location of the distribution of � �pE ˆ  is greater than or equal to 

� � � �pVarzpE c� .  Then an approximation to � �pE ˆ  may be denoted by *p̂ , such that 

 � � � � � �

� � � � � �pEppVarzpEp
pEppVarzpEp

c

c

���

���

ˆ,ˆ
ˆ,ˆ

*

*

 (Eq. 43) 

where each of the quantities � �pE , � �pVar , and zc are as defined under the hypothesis-

testing procedure. 

By itself, the estimate *p̂  is not particularly useful for identifying a new 

provisional ability estimate, since it is a proportion, not a value on the ability scale.  

However, the average item characteristic curve (ICC) provides a means for relating 

proportions to ability values.  Through the average ICC, the *p̂  obtained from the 

hypothesis-testing procedure may be converted to a new provisional ability estimate *
�̂ .  

The use of the average ICC in such a manner is justified under the IRT model, since the 

probabilities associated with a correct response for a given item are dependent only on 

examinee ability �. 

The average ICC for a group of items is a monotonically increasing function of �.  

Thus, any proportion � ���1XP  corresponds to one and only one �.  However, to insure 

an inverse transformation of proportions to ability values, it is also necessary to insure 

that every element in the range of the proportions can be mapped to elements in the 

domain of the ability values.  For the 3P IRT model, it is not true in general that for any 

� �1,0�p , there exists a � ������ ,  such that � ���� 1XPp .  For example, if a 

Alexander Weissman
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guessing parameter c > 0 is present, then any p < c will not be mapped into the domain of 

�.  Thus, a uniquely specified inverse transformation of proportions p to ability values � 

does not exist under all circumstances.  However, in those cases where the inverse 

transformation fails, remedial measures may be taken.  The specific procedures for 

transforming *p̂  to *
�̂  are considered next. 

The average of the ICCs from all administered items, or the average ICC, is 

equivalent to the test characteristic curve (TCC) divided by the number of items 

administered, since the TCC is the sum of the ICCs for each administered item.  Because 

an analytical solution is not available to transform *p̂  to *
�̂  through the average ICC, a 

numerical search procedure is required.  The procedure uses the method of halving, 

where a discrete interval � �ba,  is halved at each iteration, producing a midpoint 

� � 2/bac �� .  The average ICC function � ���1XP , defined as 

 � �
� �

N

XP
XP

N

i
i�

�

��

���
1

1
1  (Eq. 44) 

for items 1, 2, …, N is then evaluated at � �bca ,,�� .  If *p̂  is within the interval � �ca, , 

that is, when � �cXPp ���� 1ˆ * , then the interval boundary points are updated to be 

� �ca,  for the next iteration.  Otherwise, *p̂  is within the interval � �bc,  and the interval 

boundary points are updated as � �bc, .  This method of halving continues until the 

maximum number of iterations has been met.  For this study, the lower bound on ability 

was set at 4��� , the upper bound at 4��� , and the maximum number of iterations for 

the method of halving was set to 15.   
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One advantage of this method of halving is that a solution is always guaranteed, 

even under anomalous circumstances.  For example, if the obtained *p̂  is less than the 

average ICC function for the lower bound, that is � �41ˆ *
����� XPp , the procedure 

will return a limiting solution of 4��� .  These limiting solutions are sufficient for the 

CAT algorithms, since finite bounds are placed on the ability continuum in any event.  

Once the new provisional ability estimate *
�̂  is obtained, an item selection procedure 

uses this new provisional ability estimate to select the next item for administration. 

Identifying optimal zc values 

In order to use the decision rule discussed in the previous section, the alternative 

ability estimation procedure must employ a critical z-value for hypothesis-testing.  In 

many applications, the critical z-value is set beforehand to correspond to a nominal �-

level, such as zc = 1.96 for � = 0.05, in order to control the Type I error rate.  However, in 

the context of the alternative ability estimation procedure, a decision to set � to a small 

value (such as 5%) translates into infrequent invocation of the procedure, and hence the 

hypothesis test may be too conservative.  What is required is a method for determining an 

optimal value of zc that will allow the alternative procedure to function more frequently 

while maximizing correct decisions and minimizing incorrect decisions.  That is, when 

the procedure is invoked, it should meet or exceed the outcomes (e.g., test efficiency) 

obtained by using the conventional ability estimation procedure, and should not perform 

less successfully than the conventional procedure. 

This value zc was determined empirically as described in Appendix B, with a 

summary of the empirical procedure discussed here.  Two optimal zc values were 

identified; one for ML estimation concurrent with the alternative ability estimation 
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procedure (hereunto denoted as ML/Alt), and the other for MAP estimation concurrent 

with the alternative ability estimation procedure (hereunto denoted as MAP/Alt). 

Optimal zc values were found by conducting simulations under the Alt/ML and 

Alt/MAP procedures and examining two measures:  (1) the accuracy of the *
�̂  alternative 

ability estimates with respect to examinee true ability; and (2) the relative efficiency of 

tests administered using the alternative procedures (i.e., Alt/ML or Alt/MAP) as 

compared to tests administered using the corresponding conventional procedures (i.e., 

ML or MAP).  A range of possible zc values was considered; this range extended from 

zc = 0.6 to zc = 1.4 in increments of 0.1.  Thus, a total of nine possible zc values were 

tested.  Maximum FI item selection was used for all simulations.  The item pool used for 

these simulations was the same as that used for the full study. 

For a given test value of zc and ability estimation procedure, a simulation was 

conducted with 500 replications per true ability level � = {-2, -1, 0, 1, 2}, such that the 

total number of replications per simulation was 2500.  Each simulation used the item 

parameters listed in Appendix A, and the maximum test length for each simulation was 

25 items.  The first set of simulations examined the accuracy of the *
�̂  alternative ability 

estimates with respect to examinee true ability.  Accuracy in this sense refers to whether 

the absolute difference from true ability for the alternative procedure, or ���*ˆ , is less 

than the absolute difference for the conventional procedure, or ���̂ , where �̂  is either a 

conventional ML or MAP ability estimate.  Note that these accuracy measures may only 

be obtained for those situations where the alternative ability estimation procedure is 

invoked. 
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In Appendix B, the probability that the alternative estimation procedure yields a 

more accurate ability estimate than the conventional estimate, given that the procedure is 

invoked, is denoted by P(acc|invoked).  (Note that this measure is collected over all true 

ability levels �, and so is not conditional on ability.)  For a given test value of zc and 

ability estimation procedure (Alt/ML or Alt/MAP), this accuracy measure P(acc|invoked) 

is provided for each item administration number i = {1, 2, …, 25}.  On the basis of these 

accuracy measures, it was concluded that for the Alt/ML procedure, zc should be no less 

than 0.9; for the Alt/MAP procedure, zc should be no less than 1.1.  (See Appendix B for 

more detail.)  Because larger values of zc necessarily restrict the number of times the 

alternative procedure is invoked, smaller zc values that lead to reasonable accuracy 

measures are preferred. 

Further evidence for selecting an optimal zc value was obtained from the second 

outcome measure, the relative efficiency of tests administered using the alternative 

procedures (i.e., Alt/ML or Alt/MAP) as compared to tests administered using the 

corresponding conventional procedures (i.e., ML or MAP).  If the alternative ability 

estimation procedure is more efficient than the conventional estimation procedure, 

relative efficiency measures should be greater than 1; conversely, if the alternative 

procedure is less efficient, the measures will be less than 1.  As with the accuracy 

measures, potential zc values ranged from 0.6 to 1.4 in steps of 0.1.  Simulations were 

conducted for 2500 examinees (500 per true ability level) and for tests of length 5, 10, 15, 

and 25 items.  Relative efficiency at true ability � was computed as the ratio of test 

information at i = {5, 10, 15, 25} items under the alternative procedure, or � � � ��T
ALTI , to the 

test information at i items under the conventional procedure, or � � � ��T
CONVI .  Thus, 
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simulations under ML/Alt and ML were used to identify the optimal zc for the Alt/ML 

procedure; likewise, simulations under MAP/Alt and MAP were used to identify the 

optimal zc for the Alt/MAP procedure.  According to the relative efficiency measures, it 

was concluded that the optimal zc value for Alt/ML was 0.9; for the Alt/MAP procedure, 

the optimal zc value was 1.3.  (See Appendix B for more detail.) 

Analysis of the accuracy measures for the two procedures suggests than the 

optimal zc value for Alt/ML is no less than 0.9, and no less than 1.1 for Alt/MAP, with 

smaller values of zc preferred as long as accuracy is maintained.  Analysis of the relative 

efficiency measures converges with the analysis of the accuracy measures, with a 

recommendation of zc = 0.9 for the Alt/ML procedure and zc = 1.3 for the Alt/MAP 

procedure.  Thus, for this study, zc = 0.9 will be used for the hypothesis tests in the 

Alt/ML procedure, and zc = 1.3 for the hypothesis tests in the Alt/MAP procedure. 

Related methods 

The hypothesis-testing approach has been adopted by researchers examining 

related problems in measurement and testing, especially those exploring person-fit 

statistics.  In particular, the test statistic utilized in the proposed alternative item selection 

procedure bears some resemblance to those developed for person-fit statistics, such as 

Trabin & Weiss’ (1983) person response function (PRF) chi-square statistic, Tatsuoka’s 

(1984) standardized extended caution index (ECI4z), and Drasgow, Levine, & Williams’ 

(1985) standardized likelihood-based statistic lz. 

Although a brief review of these studies is to follow, it is important at this stage to 

reiterate the theoretical assumptions underlying the hypothesis-testing procedure used 

here.  These assumptions clearly distinguish the interpretation of the hypothesis tests in 
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the present study from those in the related literature.  First, and most importantly, all 

hypothesis tests in the related studies are dependent on ability estimates7, whereas the 

hypothesis tests employed here require no ability estimates in order to function.  This 

lack of dependence is a direct consequence of the formulation of the null hypothesis in 

this study.  The null hypothesis is stated under the assumption of an ideally-functioning 

CAT, the behavior of which is wholly predicted by the IRT model in a special case where 

measures of ability need not be known.  That is, if a CAT is administering items targeted 

at an examinee’s ability, then it must be the case that each item obtains maximum 

information at that examinee’s ability.  The expected proportion correct for each of these 

items, given the assumption of perfect targeting, is thus obtainable from the item 

parameters alone.  The hypothesis-testing procedure used here then compares the 

observed proportion correct to the expected proportion correct, and a decision rule is 

followed.  At no point is an estimate of examinee ability employed in the hypothesis-

testing procedure. 

The hypothesis-testing procedures considered next, all drawn from the related 

literature, utilize estimates of ability.  The similarities of the test statistics employed in 

these studies to the test statistic used here are worthwhile to examine from a 

mathematical standpoint; however, it must be stressed that the assumptions underlying 

each of these procedures are not identical.  Statistics developed for person-fit, as outlined 

by Nering & Meijer (1998) and Nering (1997), are considered next. 

Person-fit statistics.  The motivation for person-fit statistics is “to identify 

response patterns that are incongruent with the underlying test model” (Nering, 1997).  

                                                 
7 Typically, ability estimates are used.  However, in simulation studies the true parameters � may be 
examined.  Nevertheless, some measure of ability is required for the computation of these statistics. 
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To this end, a number of person-fit statistics have been developed.  Of the three 

considered here, the earliest proposed was Trabin & Weiss’ (1983) person response 

function chi-square statistic, followed by Tatsuoka’s (1984) extended caution index 

(ECI4z), and finally Drasgow et al.’s (1985) lz statistic. 

Trabin & Weiss (1983) propose a chi-square statistic to test the fit of what they 

refer to as the person response function (PRF) to the data.  Their chi-square test is 

formulated in a similar manner as those used to assess model-data fit for logistic 

regression applications:  (1) items are ordered according to their difficulty parameters; (2) 

G strata of items are formed, where each of the Gg  , 2, ,1 ��  strata contain K items, 

with K constant across strata; (3) chi-square terms are computed for the difference 

between the observed number correct in each stratum �
�

K

k
kX

1

 and the expected number 

correct � ��
�

�

K

k
kP

1

ˆ , where �̂  is an ability estimate; and (4) the sum of these chi-square 

terms is taken over all G strata.  Under the null hypothesis, where it is assumed that the 

PRF is consistent with the underlying IRT model, the final statistic is distributed as 2�  

with G-2 degrees of freedom in the case of dichotomous item responses.  The Trabin & 

Weiss 2�  statistic is then defined as 
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 (Eq. 45) 

which, when simplified, yields 
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This procedure assumes that for any stratum g, the expected proportions correct � ��̂kP  

should be similar across the K items within that stratum.  With this assumption, it can be 

shown that the 2�  statistic is equivalent to a sum of squared random normal variables 2
gz , 

such that �
�

��

G

g
gz

1

22 , with zg given by 
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 (Eq.47) 

If � � pPk ��̂  for all k, then Equation 47 reduces to the familiar expression 
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pp
ppzg
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 (Eq.48) 

where 
k

X
p k

k�
�ˆ .  This equation bears resemblance to the test statistic z* employed in 

the alternative item selection procedure (see Equation 39).  However, the z* statistic does 

not assume that the expected proportions � ��̂kP  be nearly equivalent over all items k. 

To show that �
�

��

G

g
gz

1

22 , begin with the gth term in Equation 46, and simplify 

notation by letting the observed number of correct responses �
k

kX  be denoted by gO  
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and the expected number of correct responses � �� �
k

kP ˆ  be denoted by gE .  Then the gth 

term in Equation 46 becomes 
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which may be expressed as  
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This expression simplifies to  
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Now, if the same substitution of gO  and gE  is applied to Equation 47, the following is 

obtained 
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After squaring Equation 50,  
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Both Equations 49 and 51 are thus shown equivalent, therefore � ����
g g

gg zX 222 . 

 Although a mathematical relationship between the Trabin & Weiss 2�  statistic 

and the z* statistic used in the alternative item selection procedure has been shown, there 
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are clear differences.  First, computation of the 2�  test statistic requires a partitioning of 

administered items into relatively homogeneous subsets, while the z-test in Equation 39 

does not.  However, even if partitioning were performed, Equation 39 accounts for 

variation in the expected proportions correct differently than the partitioned zg statistic of 

Equation 47.  In the case of Equation 47, the standard error of the expected proportions is 

computed as a function of the mean proportion, such that the standard error is taken as 

� �
k

pp �1  for k items.  For Equation 39, the standard error is � �
2

1

k

pp kk� � , where kp  is the 

expected proportion correct for item k.   

The next two person-fit statistics considered are Tatsuoka’s (1984) extended 

caution index (ECI4z) and Drasgow et al.’s (1985) lz index.  Both indices rely on the 

normal distribution for hypothesis testing; in this way, they are similar to the test statistic 

used in the present study.  Tatsuoka’s ECI4z index is quite similar to the z* statistic of 

Equation 39, and would in fact be identical (within a change of sign) if the weights 

� ���� kkkk ppW 1  in the ECI4z index were not present.  The ECI4z index is defined as 
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 (Eq. 52) 

where � ��� ˆ
kk Pp  is the expected proportion correct for item k, Xk is the observed 

response for item k, and Wk is the weight for item k as defined previously.  Note that if 

the weights were not present, the index would equal the negative of z*, since 
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Once the ECI4z index for a person’s response pattern is obtained, it may be compared to 

the standard normal distribution.  Those indices lying in the rejection region of the N(0,1) 

distribution suggest that the IRT model is not consistent with the person’s response 

pattern. 

Like Tatsuoka’s ECI4z, Drasgow et al.’s (1985) lz index is also compared to the 

standard normal distribution; however, the construction of the index is based on observed 

and expected likelihood functions rather than on observed and expected proportions 

correct.  In this way, lz is formulated quite differently than Trabin & Weiss’ 2� , 

Tatsuoka’s ECI4z, and the z-statistic employed in the present study.  Drasgow et al. 

define the lz statistic as  
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where the observed likelihood function 0l  is given by 
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for observed dichotomous response � �1,0�iu .  The expected value � �0lE  is given by 
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and the variance � �0lVar  by  
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Experimental design 

The four factors in the experimental design were:  (1) item selection procedure 

(maximum FI item selection or maximum FII item selection); (2) ability estimation 

procedure (ML, MAP, GSS, ML/Alt, or MAP/Alt); (3) true ability level at discrete points 

along the ability continuum ( � �2,1,0,1,2 ������ ); and (4) test length (5, 10, 15, or 25 

items).  The experimental design was a fully-crossed 4552 ���  design, with two levels 

for item selection procedure, five levels for ability estimation procedure, five levels for 

examinee true ability, and four levels for test length.  (Note that by this design all tests in 

the study are of fixed length.)  For each of the experimental conditions, 1000 replications 

were generated.  That is, simulated response patterns for 1000 subjects were generated 

for each cell in the design. 

Efficiency, as defined by Equation 32, was the primary dependent measure.  Since 

this measure is rather highly skewed to the left, the median efficiency was reported as a 

measure of central tendency.  The interquartile range (that is, the range in the efficiency 

measure between the 25th and 75th percentile points) was reported as a measure of 

variability.  In addition, efficiency measures at the 25th and 75th percentile points were 

reported in order to make more detailed comparisons of efficiency across the 

experimental conditions possible.  An example of the distribution of the efficiency 

measures for a CAT administered to 500 examinees with � = 0 using maximum FI item 

Alexander Weissman
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selection and ML ability estimation is shown in Figure 2.  The distribution of efficiency 

is provided for tests of length 5, 10, 15, and 25 items. 
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Figure 2.  Distribution of efficiency measures for tests of length 5, 10, 15, and 25 items; 
N = 500 examinees with � = 0, maximum FI item selection, ML ability estimation. 
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The efficiency measures were calculated according to the accumulated 

information terms in Equation 32, where  

 � �
� � � ��

�
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The numerator of this expression is the accumulated information at examinee true � from 

a CAT administration with item selection by FI or FII and ability estimation by ML, 

MAP, GSS, ML/Alt, or MAP/Alt.  The denominator of this expression is accumulated 

test information from the optimal subset of items, as defined by Equation 31.  To obtain 

the quantity )(
0
TI , one CAT administration was conducted for each of the test length 

manipulations in the experimental design, where items were selected according to 

examinee true �, as opposed to the ability estimates obtained from ML, MAP, GSS, 

ML/Alt, or MAP/Alt.  One administration is sufficient to obtain )(
0
TI  since both true 

ability � and its corresponding )(
0
TI  are constants. 

Computation of the median efficiency, as well as the efficiency at the 25th and 75th 

percentile points, follows from Equation 32 and uses the corresponding )(T
CATI  measures at 

each percentile point.  Thus, the efficiency measure at the pth percentile point is defined 

as 

 � �� �
� �

)(
0

)(

T

T
CATp

p

I

IP
CATEfficiencyP ��  (Eq. 58) 

where � �pP  indicates the value of the measure at the pth percentile.  In this manner, the 

interquartile range (IQR) may be defined as  
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Although the efficiency measures are of primary interest in this study, as a ratio of 

information measures they cannot, by themselves, indicate the magnitude of accumulated 

test information.  Thus, alongside each set of summary statistics for the efficiency 

measure (i.e., median, IQR, and 25th and 75th percentile points), the quantity )(
0
TI  is 

provided.  Hence, any efficiency measure may be converted to an information measure 

through )(
0
TI . 

In addition to the efficiency measures, the mean and standard deviation of the 

distribution of provisional ability estimates �̂  for the examinees within each cell in the 

design will be computed.  Note that for ability estimation by ML/Alt or MAP/Alt, two 

ability estimates are possible:  one from the conventional procedure (ML or MAP), the 

other from the alternative procedure.  The particular estimate (i.e., conventional or 

alternative) that is used to select the next item is recorded as the provisional ability 

estimate �̂  for an examinee when ML/Alt or MAP/Alt is employed as the ability 

estimation procedure. 

The layout of the experimental design is illustrated in Table 5. 
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Table 5.  Layout of experimental design. 

True ability � Item selection Ability 
estimation 

Test length 
(in items) −2 −1 0 +1 +2 

ML 5, 10, 15, 25 

ML/Alt 5, 10, 15, 25 

MAP 5, 10, 15, 25 

MAP/Alt 5, 10, 15, 25 

Maximum FI 

GSS 5, 10, 15, 25 

ML 5, 10, 15, 25 

ML/Alt 5, 10, 15, 25 

MAP 5, 10, 15, 25 

MAP/Alt 5, 10, 15, 25 

Maximum FII 

GSS 5, 10, 15, 25 

 

Dependent measures provided: 
�� Efficiency at 25th, 50th (median), 75th percentiles, 

IQR 
�� Mean and S.D. of provisional ability estimates 

 
To perform the CAT simulations required for the study, an item bank of 367 pre-

calibrated and dichotomously-scored 3P items from a recently-administered large-scale 

CAT assessment of mathematics ability was used.  In the logistic metric where the 

scaling parameter D = 1.7, the mean and standard deviation of the discrimination 

parameters (i.e., a parameters) from the 367 items are 0.950 and 0.341, respectively.  For 

the difficulty parameters (i.e., b parameters), the mean and standard deviation are 0.158 

and 1.113, respectively.  For the pseudo-guessing parameters (i.e., c parameters), the 

mean and standard deviation are 0.144 and 0.105, respectively.  In its operational form, 

the CAT administered using this item bank is fixed at a length of 28 items; however, as it 

was hypothesized that the greatest variation in CAT efficiency would occur much earlier 

(e.g., at or before the 10th administered item), the CAT simulations were fixed such that 

no test exceeded a length of 25 items.  The item parameters from this pool of 367 items 

may be found in Appendix A.   
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CAT simulation method 

Central to this study is a method for simulating a CAT administration.  Simulation 

is necessary to conduct the study since the efficiency measure as defined in Equation 32 

requires an examinee’s true ability level � to be known in advance.  Further, controlled 

comparisons between the efficiency of maximum FI item selection and the proposed 

alternative item selection procedure can only be made using a simulation design. 

Simulated CAT administrations were generated using the program SimCAT, a 

multi-purpose CAT simulation program written in the SAS language (SAS Institute, 

2000).  This program was designed to handle all manipulations in the experimental 

design (i.e., those corresponding to the item selection procedure, ability estimation 

procedure, test length, and true ability at discrete points), as well as to provide the 

accumulated test information measures used to calculate efficiency. 

As simulation techniques may vary from program to program, a brief review of 

the general operating characteristics of SimCAT is worthwhile.  First, pseudo-random 

numbers used by the program are generated from a starting seed value, which is pre-

loaded into the program from a user-specified file before any response vectors are 

generated.  That is, the sequence of pseudo-random numbers used to generate item 

responses is reproducible, as the seed value is fixed as opposed to being dynamic (as 

would be the case if the internal clock value was used to generate the random number 

seed).  Second, SimCAT generates item responses for all items in the item pool prior to 

CAT administration, even if those items are not selected by the CAT algorithm for 

administration to the examinee.  All examinee responses are generated according to the 
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3P IRT model, with the following rule applied for determining whether a 0 (incorrect 

response) or 1 (correct response) should be assigned.  Given an examinee with true 

ability � and an item i with parameter vector � �iiii cba ,,�� , the probability of correct 

response is given by � �iii UP ��� ,1 ; if a random UNIF(0,1) deviate ir  is obtained where 

� �iiii UPr ���� ,1 , then the observed response 1�iX , otherwise 0�iX .   

Ability estimation in SimCAT for both MAP and ML estimation is by Newton-

Raphson, with Fisher scoring used for the second derivative of the log-likelihood 

function.  In cases where the second derivative is not negative definite, a grid search for 

the maximum of the likelihood function is performed to obtain the ability estimate �̂ .  

For MAP ability estimation, the informative prior is assigned to be N(0,1).  The 

asymptotic variance of the ML estimates is computed according to Equation 13; for MAP 

estimates, Equation 14 is used.  All CAT simulations begin with an initial estimate of 

examinee ability 0ˆ �� , and so for any given item selection procedure, all examinees 

receive the same first item.  Thus, the modification to the efficiency measure as shown in 

Equation 31 is appropriate. 

For maximum FI item selection, SimCAT searches the item pool for the next 

available item whose information is maximum at the provisional ability estimate �̂ .  

SimCAT evaluates the information function for all potential items i in the pool at �̂ , as 

opposed to using an information lookup table.  Thus, SimCAT evaluates � ��̂iI  for all i 

and selects the item whose � ��̂iI  is maximum.  Once an item has been administered, it 

may no longer be considered for subsequent administration.  For maximum FII item 

selection, a 95% modified confidence interval about �̂  is generated (as suggested by 



94 

 

Chen, Ankenmann & Chang, 2000; p. 248), such that the lower bound �l and upper 

bound �u are given by  

 
1

96.1ˆ,
1

96.1ˆ
�

����

�

����

nn
ul  (Eq. 60) 

where n is the number of items administered.  The FII for an item i is defined as  

 � � � ��
�

�

����

u

l

dIFII ii  (Eq. 61) 

SimCAT uses the exact solution for the integral given by Equation 61.  Because the 

solution is rather lengthy, it is provided in Appendix D. 

The ability scale used in the simulations imposes a negative bound at −4 and a 

positive bound at +4.  These bounds are utilized both by the information table and the 

ability estimation routines.  In cases where ML estimates are undefined (i.e., a response 

pattern of all 0’s or all 1’s), the lower bound (for a vector of all incorrect responses) or 

upper bound (for a vector of all correct responses) on the ability scale is taken as the 

estimate. 
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CHAPTER 4 

Results 

 

This chapter presents the results of the study discussed in the methodology 

section.  Recall that the four factors in the experimental design were:  (1) item selection 

procedure (maximum FI item selection or maximum FII item selection); (2) ability 

estimation procedure (ML, ML/Alt, MAP, MAP/Alt, or GSS); (3) true ability level at 

discrete points along the ability continuum ( � �2,1,0,1,2 ������ ); and (4) test length (5, 

10, 15, or 25 items).  For each of the experimental conditions, 1000 replications were 

generated using a simulation methodology.  

The primary dependent measure in the study was efficiency, as defined by 

Equation 32.  To facilitate the reporting of the results, the proportions calculated by 

Equation 32 were converted to percentages; these percentages are given in the tables and 

figures that follow.  Results are summarized in terms of median efficiency, the 

interquartile range of efficiency, and the 25th and 75th percentile points of efficiency for 

each of the experimental conditions.  Efficiency measures may be converted to 

information measures using Equation 32 and the accumulated test information measures 

� ��)(
0
TI  provided for an optimal subset of items given true ability and test length.  In 

addition, the means and standard deviations of the provisional ability estimates are 

provided. 
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In order to facilitate the comparisons across the experimental conditions as 

indicated by the research questions, the results are presented both in tabular and graphical 

format and organized in the following manner.  First, results from item selection under 

maximum Fisher information (FI) are tabled separately from those obtained under 

maximum Fisher interval information (FII).  Within a level of item selection procedure, 

three tables are provided for each combination of ability estimation procedure � true 

ability level � test length:  (1) medians and interquartile ranges (IQRs) of the efficiency 

measure; (2) 25th and 75th percentile points of the efficiency measure; and (3) means and 

standard deviations of the provisional ability estimates.  A supplementary table provides 

the accumulated test information measures � ��)(
0
TI  for true ability level � test length. 

Graphical presentation of the results is also first categorized according to item 

selection procedure (i.e., maximum FI or maximum FII).  However, results are further 

subdivided according to test length (i.e., 5, 10, 15, or 25 items).  Thus, each figure 

presents dependent measures for each combination of ability estimation procedure � true 

ability level for the specified levels of item selection procedure and test length.  The 

dependent measures displayed graphically are median efficiency and efficiency IQR. 

 

Analysis of efficiency measures 

Maximum FI item selection 

The efficiency measures from maximum FI item selection are summarized in 

Tables 6 and 7.  Both tables summarize the efficiency measures for the experimental 

conditions of ability estimation procedure � test length � true ability level.  Table 6 

provides the medians and interquartile ranges (IQRs) of the efficiency measures, and 
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Table 7 provides the 25th and 75th percentile points of the efficiency measures.  As 

discussed in the methodology section, the efficiency measure is skewed to the left; thus, 

medians are reported as a measure of central tendency and IQRs as a measure of 

variability.  All efficiency measures are by definition bounded below by 0% and above 

by 100%.  Table 8 provides the accumulated test information measures � ��)(
0
TI  for an 

optimal subset of items; this supplementary information may be used for converting the 

efficiency measures to accumulated test information measures.   

 

Table 6.  Medians and IQRs of the efficiency measure under maximum FI item selection. 
 

Median efficiency 
 

Efficiency interquartile range (IQR) 
 Ability 

estimation 
Test 

length �=-2 �=-1 �=0 �=1 �=2 �=-2 �=-1 �=0 �=1 �=2 
  � � � � � � � � � �

ML 5 53.0 73.2 54.2 44.8 61.6 44.3 12.1 29.3 45.4 17.1 
 10 81.8 83.9 71.9 70.1 80.7 18.8 18.9 29.0 35.1 13.3 
 15 93.0 87.1 80.1 80.3 90.9 9.1 15.9 21.8 22.0 7.1 
 25 96.7 92.7 89.5 89.3 95.8 5.5 9.6 12.2 11.6 3.2 
            

ML/Alt 5 100.0 94.3 63.3 83.0 93.9 18.5 7.8 26.7 40.0 16.4 
 10 99.5 91.8 81.1 86.2 100.0 11.7 16.5 27.0 30.6 13.8 
 15 99.9 92.8 87.4 89.2 99.5 4.0 14.3 21.4 20.6 5.0 
 25 99.0 96.1 93.7 94.5 99.6 2.2 8.4 12.6 11.2 2.2 
            

MAP 5 31.0 91.4 88.5 95.9 23.6 49.2 19.6 15.6 23.6 0.0 
 10 73.2 94.2 91.7 92.5 64.3 29.1 20.2 14.9 13.6 13.6 
 15 87.1 92.9 93.2 94.6 85.4 18.4 16.0 12.4 11.0 9.1 
 25 90.8 96.1 97.1 96.7 93.9 8.1 9.1 5.9 7.4 3.1 
            

MAP/Alt 5 79.7 90.2 88.5 90.6 54.6 22.5 14.9 21.3 22.2 0.0 
 10 81.8 92.3 91.7 90.3 74.5 21.8 19.2 14.5 17.1 19.6 
 15 91.4 92.8 93.0 92.8 88.3 19.1 14.7 12.2 13.9 10.2 
 25 94.3 96.2 96.5 95.5 94.8 8.7 7.8 6.7 8.3 3.2 
            

GSS 5 96.1 86.5 73.6 81.1 81.1 17.0 20.9 19.8 31.7 2.9 
 10 90.9 88.5 78.1 83.6 87.6 15.7 11.8 25.9 31.1 12.3 
 15 96.2 89.3 84.4 87.8 95.7 7.2 12.2 20.2 18.4 6.3 
 25 97.4 94.8 91.2 94.1 98.3 5.6 9.7 12.1 10.1 2.9 
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Table 7.  Efficiency measures at the 25th and 75th percentile points under maximum FI 
item selection. 
 

Ability level 
� = -2 

 
� = -1 

 
� = 0 

 
� = 1 

 
� = 2 

 Ability 
estimation 

Test 
length P25 P75 P25 P75 P25 P75 P25 P75 P25 P75 

            
ML 5 36.8 81.0 69.7 81.8 35.4 64.8 33.4 78.8 47.7 64.8 

 10 72.5 91.3 70.7 89.5 50.2 79.1 49.5 84.6 73.4 86.6 
 15 87.8 96.9 77.6 93.4 64.8 86.6 67.9 89.9 87.0 94.0 
 25 93.4 98.9 86.6 96.3 81.4 93.6 81.9 93.5 93.7 97.0 
            

ML/Alt 5 81.5 100.0 88.3 96.1 44.9 71.6 46.8 86.8 80.3 96.8 
 10 88.3 100.0 81.1 97.6 58.3 85.3 63.7 94.3 86.2 100.0 
 15 95.9 99.9 84.1 98.4 71.0 92.5 75.2 95.8 94.9 99.9 
 25 96.7 99.0 90.2 98.7 84.3 96.9 87.2 98.5 97.8 100.0 
            

MAP 5 8.1 57.3 77.5 97.1 77.2 92.9 76.4 100.0 23.6 23.6 
 10 52.7 81.8 77.5 97.7 81.4 96.2 83.3 96.9 59.2 72.8 
 15 73.0 91.4 82.6 98.7 85.4 97.8 86.9 98.0 78.2 87.3 
 25 86.3 94.4 89.8 98.9 92.9 98.8 91.5 98.8 91.3 94.4 
            

MAP/Alt 5 57.3 79.7 77.5 92.4 71.6 92.9 68.4 90.6 54.6 54.6 
 10 68.8 90.6 77.5 96.7 79.2 93.7 77.4 94.5 63.2 82.8 
 15 76.4 95.5 83.4 98.1 85.4 97.6 83.5 97.4 81.7 91.8 
 25 88.7 97.4 91.1 98.9 92.1 98.8 90.5 98.8 92.2 95.4 
            

GSS 5 79.7 96.7 67.0 87.9 63.3 83.1 51.3 83.0 78.3 81.1 
 10 83.9 99.6 82.3 94.0 62.4 88.3 61.5 92.5 82.4 94.7 
 15 91.2 98.4 83.8 96.0 71.1 91.4 75.7 94.1 91.9 98.2 
 25 93.4 98.9 88.2 97.9 84.0 96.1 87.1 97.2 96.1 99.1 

 
 
Table 8.  Accumulated test information measures � ��)(

0
TI  for an optimal subset of items 

under maximum FI item selection. 
 

� ��)(
0
TI  

 Test 
length �=-2 �=-1 �=0 �=1 �=2 

 � � � � �

5 2.351 2.817 5.282 6.461 6.379 
10 4.697 5.478 9.571 12.859 12.237 
15 6.457 7.862 13.126 18.558 16.495 
25 9.351 11.85 18.581 28.149 23.562 
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Comparison of the efficiency measures is facilitated by Figures 3 through 10.  For 

each level of test length (5, 10, 15, or 25 items), two figures are provided:  the first 

reports the median efficiency, and the second the efficiency interquartile range.  True 

ability level is categorized by the cluster of five bars within an ability estimation 

procedure; the bars correspond to � = {−2, −1, 0, 1, 2} from left to right. 

Test length of 5 items.  Median efficiency measures and interquartile ranges 

(IQRs) of the efficiency measures for tests of 5 items in length are displayed in Figures 3 

and 4.  With respect to median efficiency for the conventional ability estimation 

procedures (ML and MAP), maximum FI item selection performed differently across the 

range of ability levels depending on whether ML or MAP estimation was used.  MAP 

was clearly superior to ML for � = {−1, 0, 1}; however, ML was more efficient than 

MAP at the extreme ability levels � = {−2, 2}.  MAP achieved a median efficiency 

exceeding 88% for � = {−1, 0, 1}, but performed poorly at the extremes, with median 

efficiencies of 31% and 24% at � = {−2, 2}, respectively.  Although ML did not suffer 

the dramatic drop in efficiency at the extremes, it was less efficient than MAP at the 

middle of the ability continuum, having achieved a maximum median efficiency of 73% 

at � = −1 and minimum median efficiency of 45% at � = 1.  Median efficiencies for ML 

at � = {−2, 2} were 53% and 62%, respectively, and were higher than those observed for 

MAP. 
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Figure 3.  Median efficiency measures under maximum FI item selection for a test of 
5 items. 
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Figure 4.  IQRs of the efficiency measure under maximum FI item selection for a test of 
5 items.  (Note: At � = 2, the IQRs for MAP and MAP/Alt are equal to zero.) 
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At this test length, the alternative ability estimation procedures performed better 

overall than the conventional ability estimation procedures.  Median efficiencies for ML 

concurrent with the alternative ability estimation procedure (ML/Alt) were greater than 

the corresponding measures observed for conventional ML, and strongly so for � = {−2, 

−1, 1, 2}.  For these ability levels, ML/Alt achieved a maximum median efficiency of 

100% at � = −2 and a minimum median efficiency of 63% at � = 0.  For MAP concurrent 

with the alternative ability estimation procedure (MAP/Alt), the median efficiency 

measures were comparable to those observed for conventional MAP at � = {−1, 0, 1}, but 

median efficiency at the extremes was higher, at 80% and 55% for � = {−2, 2}, 

respectively.  GSS performed similarly to ML/Alt, with slightly lower median efficiency 

measures than ML/Alt at � = {−2, −1, 1, 2}, but with a higher median efficiency measure 

of 74% at � = 0. 

Variability in the efficiency measures for the conventional ability estimation 

procedures, as indicated by IQR, was less for MAP than ML except at � = {−2, −1}.  At 

� > −1, the IQRs for MAP were at least 10% less than the respective IQRs for ML, with 

the IQR for MAP at � = 2 dropping to zero.  For ML and � > −1, efficiency was least 

variable at � = 2 and most variable at � = 1; the respective IQRs at these points were 17% 

and 45%.  At � = −1, the IQR for MAP was higher than for ML, at 20% versus 12%.  At 

the lowest extreme of ability, � = −2, the IQR of efficiency for both ML and MAP was 

approximately 44% and 49%, respectively.  If the 25th and 75th percentile points are 

considered at this ability level, then ML efficiency ranged from 37% to 81%, while MAP 

efficiency ranged from 8% to 57%.  At the other extreme of ability, � = 2, ML also 

outperformed MAP, even though the IQR for MAP was 0%.  The range in ML efficiency 
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at � = 2 was 48% to 65%, while it was constant at 24% for MAP.  For the middle range 

of ability,  −2 < � < 2, MAP clearly outperformed ML. 

It was observed that the alternative ability estimation procedures achieved higher 

median efficiencies than the conventional ability estimation procedures.  In general, the 

efficiency measures from the alternative procedures were also no more variable, and in a 

number of cases less variable, than the conventional procedures.  Reduction in variability 

was rather dramatic for ML/Alt and MAP/Alt at � = −2; for ML/Alt, the IQR was 19% in 

contrast to 44% for ML.  Likewise, for MAP/Alt the IQR was 23%, in contrast to 49% 

for MAP.  At � = 2, the IQR for MAP/Alt was equal to zero, a result also observed for 

conventional MAP.  Variability in GSS was similar to that observed for MAP/Alt at 

� = {−2, 0, 2}, but with somewhat higher IQRs of 21% and 32% at � = {−1, 1}, 

respectively.   

Test length of 10 items.  Median efficiency measures and IQRs of the efficiency 

measures for tests of 10 items in length are displayed in Figures 5 and 6.  As observed for 

tests of 5 items in length, the conventional ability estimation procedures (ML and MAP) 

performed differently across the range of ability levels in terms of median efficiency.  

Again, MAP was superior to ML for � = {−1, 0, 1} and ML was more efficient than 

MAP at the extreme ability levels � = {−2, 2}.  MAP achieved a median efficiency at or 

above 92% for � = {−1, 0, 1}, but continued to lag in performance at the extremes, with 

median efficiencies of 73% and 64% at � = {−2, 2}, respectively.   
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Figure 5.  Median efficiency measures under maximum FI item selection for a test of 
10 items. 
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Figure 6.  IQRs of the efficiency measure under maximum FI item selection for a test of 
10 items. 
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Nevertheless, the gap in median performance for MAP between the middle ability 

levels and those at the extremes narrowed from approximately 60% for 5-item tests to 

approximately 25% for 10-item tests.  ML remained less efficient than MAP at the 

middle of the ability continuum, having achieved a maximum median efficiency of 84% 

at � = −1 and minimum median efficiency of 70% at � = 1.  The median efficiency 

measures for ML at � = {−2, 2} were again higher than those for MAP, at approximately 

81% for these two extreme ability levels. 

Like the 5-item tests, the alternative ability estimation procedures performed 

better overall than the conventional ability estimation procedures for 10-item tests.  

Median efficiencies for ML/Alt were greater than the corresponding measures observed 

for conventional ML, with gains of approximately 10% for middle ability levels and 20% 

for the extreme ability levels.  ML/Alt achieved maximum median efficiencies of 100% 

at � = {−2, 2}, and a minimum median efficiency of 81% at � = 0.  For MAP/Alt, the 

median efficiency measures were comparable to those observed for conventional MAP at 

� = {−1, 0, 1}, but median efficiency at the extremes was approximately 10% higher, at 

82% and 75% for � = {−2, 2}, respectively.  GSS performed similarly to ML/Alt at 

� = {−1, 0, 1}, but with approximately 10% lower median efficiency measures than 

ML/Alt at � = {−2, 2}.  Median efficiency measures for GSS at � = {−2, 2} were 91% 

and 88%, respectively. 

Unlike the 5-item tests, variability in the efficiency measures for the conventional 

ability estimation procedures for tests 10 items in length was substantially less for MAP 

than ML only at � = 0 and � = 1.  At ability levels � = {0, 1}, the IQRs for MAP were 

15% and 14%, respectively, whereas for ML they were 29% and 35%, respectively.  For 
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each ability level � = {−1, 2}, the IQRs for the ML and MAP procedures were nearly 

identical.  For � = −2, variability in the efficiency measure was less for ML than for 

MAP, with the respective IQRs being 19% and 29%.  If the 25th and 75th percentile points 

are considered at this ability level, then ML efficiency ranged from 73% to 92%, while 

MAP efficiency ranged from 53% to 82%.  At the other extreme of ability, � = 2, ML 

also outperformed MAP.  The range in ML efficiency at � = 2 was 73% to 87%, while it 

was 59% to 73% for MAP.  For the middle range of ability,  −2 < � < 2, MAP clearly 

outperformed ML. 

Variability measures for the alternative procedures were somewhat different in the 

case of 10-item tests as compared to 5-item tests.  Whereas IQRs were much lower at 

� = −2 for the alternative procedures than for the conventional procedures on 5-item tests, 

the reduction in variability was only about 7% for 10-item tests.  At � = −2, the IQR for 

ML/Alt was 12%, in contrast to 19% for ML.  For MAP/Alt, the IQR was 22%, whereas 

for MAP it was 29%.  For ability levels � > −2, IQRs for ML/Alt were slightly smaller 

than those for ML; for MAP/Alt, this slight reduction in variability over the conventional 

procedure was only true for � = {−1, 0}.  For � = {1, 2}, the IQRs for MAP/Alt were 

actually 4% and 6% higher, respectively.  The pattern of IQRs for GSS closely mirrored 

that of ML/Alt, with nearly identical IQRs for � > −1, a slightly higher IQR at � = −2, 

and a slightly lower IQR at � = −1. 

Test length of 15 items.  Median efficiency measures and IQRs of the efficiency 

measures for tests of 15 items in length are displayed in Figures 7 and 8.  By this test 

length, all five ability estimation procedures met or exceeded a median efficiency of 80% 

across all levels of ability.  Further, within each of the conventional ML and MAP 
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procedures, the gaps between maximum and minimum median efficiency measures have 

narrowed to approximately 10%.  For ML, a minimum median efficiency of 80% was 

obtained at � = {0, 1}, and a maximum median efficiency of 93% was obtained at � = −2.  

For MAP, a minimum median efficiency of 85% was obtained at � = 2, and a maximum 

median efficiency of 95% was obtained at � = 1. 

The previous lag in performance observed for MAP at the extremes of ability was 

nearly absent at 15 items, with only a 5% difference in median efficiency at � = {−2, 2} 

between ML and MAP.  However, MAP remained superior to ML for � = {−1, 0, 1}, 

with a 5% difference in median efficiency between the two procedures at � = −1, and 

approximately 14% difference at � = {0, 1}. 

Median efficiency measures from the ML/Alt and MAP/Alt procedures remained 

higher for the most part than those observed from the respective conventional procedures.  

ML/Alt achieved greater median efficiency across all ability levels, having maintained a 

median efficiency of 100% for � = {−2, 2} and median efficiency measures that exceeded 

87% elsewhere.  Median efficiencies for ML/Alt at � = {−2, −1, 0} were approximately 

6% higher than the respective measures for ML; at � > 0, the respective measures were 

approximately 9% higher.  MAP/Alt benefited also at these extreme ability levels, though 

only by about 4% over MAP.  Median efficiencies for MAP/Alt were comparable to 

those observed for MAP for � = {−1, 0}, and were slightly less for � = 1.  Median 

efficiency measures from GSS were similar to ML/Alt, but were approximately 3% less 

overall. 
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Figure 7.  Median efficiency measures under maximum FI item selection for a test of 
15 items. 
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Figure 8.  IQRs of the efficiency measure under maximum FI item selection for a test of 
15 items. 
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As observed for the 10-item tests, variability in the efficiency measures for the 

conventional ability estimation procedures for tests 15 items in length was again less for 

MAP than ML only at � = 0 and � = 1.  At these ability levels � = {0, 1}, the IQRs for 

MAP were 12% and 11%, respectively, whereas for ML they were 22% at both ability 

levels.  For ability levels � = {−1, 2}, the IQRs for the ML and MAP procedures were 

nearly identical.  For � = −2, variability in the efficiency measure was less for ML than 

for MAP, with the respective IQRs being 9% and 18%.  If the 25th and 75th percentile 

points are considered at this ability level, then ML efficiency ranged from 88% to 97%, 

while MAP efficiency ranged from 73% to 91%.  At the other extreme of ability, � = 2, 

ML also outperformed MAP.  The range in ML efficiency at � = 2 was 87% to 94%, 

while it was 78% to 87% for MAP.  For the middle ability levels � = {0, 1}, MAP clearly 

outperformed ML, while at � = −1, the range in ML efficiency was comparable to the 

range in MAP efficiency. 

Variability measures for the ML/Alt and MAP/Alt procedures were comparable to 

their respective conventional procedures for tests of 15 items in length.  While the 

difference in the variability of efficiency measures between the alternative and 

conventional procedures for 10-item tests was about 7%, for the 15-item tests the overall 

difference was negligible.  The largest observed difference was 5% at � = −2 for the 

ML/Alt procedure, where the IQR was 4% as opposed to 9% for ML.  Remaining 

differences between the alternative and conventional IQRs did not exceed 2%.  The 

pattern of IQRs for GSS again closely mirrored that of ML/Alt, with nearly identical 

IQRs for � > −1, a slightly higher IQR at � = −2, and a slightly lower IQR at � = −1. 
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Test length of 25 items.  Median efficiency measures and IQRs of the efficiency 

measures for tests of 25 items in length are displayed in Figures 9 and 10.  By this test 

length, all five ability estimation procedures met or exceeded a median efficiency of 89% 

across all levels of ability.  Further, results at this test length paralleled those observed for 

the 15-item tests, although median efficiencies were higher overall.  Within each of the 

conventional ML and MAP procedures, the gaps between maximum and minimum 

median efficiency measures were approximately 7%.  For ML, a minimum median 

efficiency of 89% was obtained at � = {0, 1}, and a maximum median efficiency of 97% 

was obtained at � = −2.  For MAP, a minimum median efficiency of 91% was obtained at 

� = 2, and a maximum median efficiency of 97% was obtained at � = {0, 1}. 

Although the pattern of greater performance of MAP at middle ability levels and 

ML at extreme ability levels in terms of median efficiency measures remained for 25-

item tests, the differences in performance were small.  The median efficiency for ML at 

� = −2 was only 6% higher than the corresponding measure for MAP; likewise, ML 

efficiency was only 2% higher than MAP at � = 2.  For middle ability levels, the gap 

between MAP and ML performance narrowed considerably, with MAP having 

outperformed ML by approximately 7% at � = {0, 1}, and 4% at � = −2. 
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Figure 9.  Median efficiency measures under maximum FI item selection for a test of 
25 items. 
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Figure 10.  IQRs of the efficiency measure under maximum FI item selection for a test of 
25 items. 
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As observed previously, median efficiency measures from the ML/Alt and 

MAP/Alt procedures remained higher for the most part than those observed from the 

respective conventional procedures.  However, like the 15-item tests the gains in median 

efficiency at 25 items were much smaller as compared to those observed for 5- and 10-

item tests.  ML/Alt again achieved greater median efficiency across all ability levels, with 

measures of 99% and 100% for � = {−2, 2}, and measures exceeding 94% elsewhere.  

MAP/Alt benefited only by about 4% over MAP at � = −2, and elsewhere the measures 

were comparable, even at � = 2.  Median efficiency measures from GSS were similar to 

ML/Alt, but were approximately 2% less at � = {−2, −1, 0} and nearly identical at � > 0. 

Like the 10- and 15-item tests, variability in the efficiency measures for the 

conventional ability estimation procedures for tests 25 items in length was again less for 

MAP than ML only at � = 0 and � = 1.  At these ability levels � = {0, 1}, the IQRs for 

MAP were 6% and 7%, respectively, whereas for ML they were 12% at both ability 

levels.  For ability levels � = {−1, 2}, the IQRs for the ML and MAP procedures were 

nearly identical.  For � = −2, variability in the efficiency measure was slightly less for 

ML than for MAP, with the respective IQRs being 6% and 8%.  If the 25th and 75th 

percentile points are considered, ML outperformed MAP only at � = −2, where the range 

in the ML efficiency measures was 93% to 99%, whereas it was 86% to 94% for MAP.  

For middle ability levels, MAP outperformed ML only at � = {0, 1}.  The range for MAP 

at � = 0 was 93% to 99%, and for ML the range was 81% to 94%; at � = 1, the range for 

MAP was 92% to 98%, and for ML it was 82% to 94%. 

Variability measures for the ML/Alt and MAP/Alt procedures were comparable to 

their respective conventional procedures for tests of 25 items in length, a result also seen 
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for the 15-item tests.  The largest observed difference was 3% at � = −2 for the ML/Alt 

procedure, where the IQR was 2% as opposed to 5% for ML.  Remaining differences 

between the alternative and conventional IQRs were negligible.  The pattern of IQRs for 

GSS again closely mirrored that of ML/Alt, with nearly identical IQRs for � > −1, and 

slightly higher IQRs at � = {−2, −1}. 

Maximum FII item selection 

The efficiency measures from maximum FII item selection are summarized in 

Tables 9 and 10.  Table 9 provides the medians and IQRs of the efficiency measures, and 

Table 10 provides the 25th and 75th percentile points of the efficiency measures.  Table 11 

provides the accumulated test information measures � ��)(
0
TI  for an optimal subset of 

items; this supplementary information may be used for converting the efficiency 

measures to accumulated test information measures. 

Table 12 shows the difference in the median efficiency measures and the 

efficiency IQRs between maximum FI and maximum FII item selection.  That is, 

Table 12 gives the arithmetic difference of Table 6 (maximum FI selection) from Table 9 

(maximum FII selection).  Those differences greater than 5% or less than −5% are 

considered relevant and are highlighted in the table.  Notice that for tests of 15 and 25 

items in length, item selection by maximum FII yielded similar (and in many cases nearly 

identical) median efficiency measures and efficiency IQRs as item selection by maximum 

FI.  Because the efficiency measures under maximum FII and maximum FI item selection 

were so similar for these test lengths, discussion of the results will be limited to the 

shorter test lengths of 5 and 10 items.   
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Table 9.  Medians and IQRs of the efficiency measure under maximum FII item 
selection. 
 

Median efficiency 
 

Efficiency interquartile range (IQR) 
 Ability 

estimation 
Test 

length �=-2 �=-1 �=0 �=1 �=2 �=-2 �=-1 �=0 �=1 �=2 
  � � � � � � � � � �

ML 5 82.8 74.5 54.2 45.7 65.4 49.9 10.8 29.3 46.3 3.4 
 10 89.7 85.7 72.1 72.4 83.3 17.9 14.9 28.0 26.7 13.9 
 15 96.2 88.2 80.9 80.4 92.3 8.8 14.9 19.5 19.8 5.8 
 25 98.0 93.9 89.2 90.4 96.5 5.5 9.2 11.0 10.4 2.9 
            

ML/Alt 5 100.0 89.9 71.6 82.7 84.8 20.2 13.2 17.1 21.5 15.2 
 10 99.3 92.3 81.6 87.3 96.9 12.3 16.0 24.0 24.3 16.3 
 15 99.9 92.3 87.2 90.6 98.7 5.0 14.0 20.3 14.9 6.9 
 25 99.0 96.2 93.1 95.1 98.6 5.2 8.8 10.7 9.6 2.6 
            

MAP 5 42.8 93.0 90.8 92.4 32.1 49.2 19.9 15.6 17.9 0.0 
 10 79.1 91.1 92.0 91.2 70.2 29.3 19.6 12.8 11.2 9.9 
 15 89.8 92.1 93.5 94.7 85.9 18.9 15.3 11.1 9.9 7.0 
 25 91.2 95.8 96.7 97.0 93.8 9.1 8.5 5.9 6.5 3.2 
            

MAP/Alt 5 79.7 89.5 90.8 92.4 57.7 22.5 12.9 21.3 22.6 0.0 
 10 81.9 90.6 91.7 89.7 71.3 27.7 18.9 14.8 11.5 18.5 
 15 91.4 92.2 93.2 93.1 87.7 22.1 14.4 11.7 10.8 9.7 
 25 94.3 95.9 96.3 96.3 94.3 12.1 8.1 6.4 7.3 4.3 
            

GSS 5 96.1 88.0 73.2 82.7 71.6 17.0 21.2 19.8 21.5 26.8 
 10 94.3 86.3 78.1 87.7 89.9 15.7 14.5 26.9 26.1 15.2 
 15 96.2 89.8 85.4 88.9 96.3 5.3 11.9 22.3 16.5 6.4 
 25 97.4 94.5 91.4 94.6 98.6 5.5 8.8 11.8 9.7 2.5 
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Table 10.  Efficiency measures at the 25th and 75th percentile points under maximum FII 
item selection. 
 

Ability level 
� = -2 

 
� = -1 

 
� = 0 

 
� = 1 

�

� = 2 
 Ability 

estimation 
Test 

length P25 P75 P25 P75 P25 P75 P25 P75 P25 P75 
            

ML 5 36.8 86.6 72.5 83.3 35.4 64.8 34.1 80.4 65.0 68.4 
 10 76.1 94.1 74.9 89.7 50.6 78.5 56.0 82.7 73.8 87.7 
 15 89.0 97.8 78.5 93.4 67.7 87.2 69.7 89.4 88.8 94.6 
 25 93.4 98.9 87.3 96.4 82.4 93.5 83.2 93.6 94.5 97.4 
            

ML/Alt 5 79.7 100.0 85.6 98.8 56.1 73.2 63.2 84.7 84.8 100.0 
 10 87.3 99.6 81.0 97.0 62.4 86.4 68.4 92.7 83.7 100.0 
 15 94.9 99.9 83.8 97.8 72.8 93.0 80.7 95.6 93.6 100.5 
 25 93.8 99.0 89.9 98.6 85.7 96.4 89.2 98.8 97.2 99.8 
            

MAP 5 8.1 57.3 78.9 98.8 77.2 92.9 77.9 95.9 32.1 32.1 
 10 52.4 81.7 77.5 97.1 80.9 93.7 84.3 95.5 63.2 73.1 
 15 72.6 91.4 82.4 97.8 87.2 98.2 87.6 97.5 82.2 89.2 
 25 85.8 94.9 89.7 98.3 92.8 98.7 92.4 99.0 91.4 94.6 
            

MAP/Alt 5 57.3 79.7 78.9 91.8 71.6 92.9 69.8 92.4 57.7 57.7 
 10 62.9 90.6 77.2 96.1 78.9 93.7 83.0 94.5 64.3 82.8 
 15 73.3 95.5 83.4 97.8 86.0 97.7 86.6 97.4 82.2 91.9 
 25 85.3 97.4 90.2 98.3 92.2 98.5 91.6 98.9 91.4 95.7 
            

GSS 5 79.7 96.7 68.2 89.5 63.3 83.1 63.2 84.7 71.6 98.4 
 10 83.9 99.6 79.6 94.0 61.4 88.3 67.1 93.2 81.0 96.2 
 15 92.7 98.0 83.9 95.8 70.0 92.3 77.4 93.8 92.3 98.7 
 25 93.5 98.9 88.9 97.7 84.0 95.8 88.1 97.8 96.3 98.8 

 
Table 11.  Accumulated test information measures � ��)(

0
TI  for an optimal subset of items 

under maximum FII item selection. 
 

� ��)(
0
TI  

 Test 
length �=-2 �=-1 �=0 �=1 �=2 

 � � � � �

5 2.351 2.768 5.282 6.333 6.043 
10 4.697 5.478 9.571 12.836 12.237 
15 6.457 7.862 13.039 18.558 16.398 
25 9.351 11.843 18.569 28.12 23.527 
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Table 12.  Differences in medians and IQRs of the efficiency measure between maximum 
FII and maximum FI item selection. 
 

Difference in median efficiency, 
Max FII − Max FI 

Difference in efficiency IQR,  
Max FII − Max FI Ability 

estimation 
Test 

length �=-2� �=-1� �=0� �=1� �=2� �=-2� �=-1� �=0� �=1� �=2�
    � � � � � � � � � �

ML 5 29.8 1.3 0 0.9 3.8 5.6 -1.3 0 0.9 -13.7 
  10 7.9 1.8 0.2 2.3 2.6 -0.9 -4 -1 -8.4 0.6 
  15 3.2 1.1 0.8 0.1 1.4 -0.3 -1 -2.3 -2.2 -1.3 
  25 1.3 1.2 -0.3 1.1 0.7 0 -0.4 -1.2 -1.2 -0.3 
              

ML/Alt 5 0 -4.4 8.3 -0.3 -9.1 1.7 5.4 -9.6 -18.5 -1.2 
  10 -0.2 0.5 0.5 1.1 -3.1 0.6 -0.5 -3 -6.3 2.5 
  15 0 -0.5 -0.2 1.4 -0.8 1 -0.3 -1.1 -5.7 1.9 
  25 0 0.1 -0.6 0.6 -1 3 0.4 -1.9 -1.6 0.4 
              

MAP 5 11.8 1.6 2.3 -3.5 8.5 0 0.3 0 -5.7 0 
  10 5.9 -3.1 0.3 -1.3 5.9 0.2 -0.6 -2.1 -2.4 -3.7 
  15 2.7 -0.8 0.3 0.1 0.5 0.5 -0.7 -1.3 -1.1 -2.1 
  25 0.4 -0.3 -0.4 0.3 -0.1 1 -0.6 0 -0.9 0.1 
              

MAP/Alt 5 0 -0.7 2.3 1.8 3.1 0 -2 0 0.4 0 
  10 0.1 -1.7 0 -0.6 -3.2 5.9 -0.3 0.3 -5.6 -1.1 
  15 0 -0.6 0.2 0.3 -0.6 3 -0.3 -0.5 -3.1 -0.5 
  25 0 -0.3 -0.2 0.8 -0.5 3.4 0.3 -0.3 -1 1.1 
              

GSS 5 0 1.5 -0.4 1.6 -9.5 0 0.3 0 -10.2 23.9 
  10 3.4 -2.2 0 4.1 2.3 0 2.7 1 -5 2.9 
  15 0 0.5 1 1.1 0.6 -1.9 -0.3 2.1 -1.9 0.1 
  25 0 -0.3 0.2 0.5 0.3 -0.1 -0.9 -0.3 -0.4 -0.4 
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For each test length of 5 and 10 items, the following discussion begins with a 

comparison of the ability estimation procedures within maximum FII item selection, then 

makes comparisons between maximum FI and maximum FII item selection. 

Test length of 5 items.  Median efficiency measures and IQRs of the efficiency 

measures for tests of 5 items in length under maximum FII item selection are displayed in 

Figures 11 and 12.  MAP was superior to ML for � = {−1, 0, 1}; however, ML was more 

efficient than MAP at the extreme ability levels � = {−2, 2}.  MAP achieved a median 

efficiency exceeding 90% for � = {−1, 0, 1}, but performed poorly at the extremes, with 

median efficiencies of 43% and 32% at � = {−2, 2}, respectively.  ML was less efficient 

than MAP at the middle of the ability continuum, having achieved a maximum median 

efficiency of 75% at � = −1 and minimum median efficiency of 46% at � = 1.  Median 

efficiencies for ML at � = {−2, 2} were 82% and 65%, respectively, and were higher than 

those observed for MAP. 

The alternative ability estimation procedures performed better overall than the 

conventional ability estimation procedures for 5-item tests under maximum FII item 

selection.  Median efficiencies for ML/Alt were greater than the corresponding measures 

observed for conventional ML across all ability levels.  ML/Alt achieved a maximum 

median efficiency of 100% at � = −2 and a minimum median efficiency of 72% at � = 0.  

For MAP/Alt, the median efficiency measures were comparable to those observed for 

conventional MAP at � = {−1, 0, 1}, but median efficiency at the extremes was higher, at 

80% and 58% for � = {−2, 2}, respectively.  GSS performed similarly to ML/Alt for 

� < 2; however, at � = 2 the median efficiency of GSS was lower at 72%, as opposed to 

85% for ML/Alt. 
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Figure 11.  Median efficiency measures under maximum FII item selection for a test of 
5 items. 
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Figure 12.  IQRs of the efficiency measure under maximum FII item selection for a test 
of 5 items.  (Note:  At � = 2, the IQRs for MAP and MAP/Alt are equal to zero.) 
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For the conventional ability estimation procedures, the IQRs were smaller overall 

for MAP than ML, except at � = {−2, −1}.  For MAP and � > −1, efficiency was least 

variable at � = 2 and most variable at � = 1; the respective IQRs were 0% and 15%.  For 

ML and � > −1, efficiency was also least variable at � = 2 and most variable at � = 1; the 

respective IQRs were 3% and 46%.  At � = −1, the IQR for MAP was higher than the 

IQR for ML, at 20% versus 11%.  At the lowest extreme of ability, � = −2, the IQRs of 

efficiency for ML and MAP were 50% and 49%, respectively.  If the 25th and 75th 

percentile points are considered at this ability level, then ML efficiency ranged from 37% 

to 87%, while MAP efficiency ranged from 8% to 57%.  At the other extreme of ability, 

� = 2, ML also outperformed MAP, even though the IQR for MAP was 0%.  The range in 

ML efficiency at � = 2 was 65% to 68%, while it was constant at 32% for MAP.  For the 

middle range of ability,  −2 < � < 2, MAP outperformed ML. 

Variability in the efficiency measures from the alternative procedures was either 

comparable to or less than that observed for the conventional procedures.  Reduction in 

variability was rather dramatic for ML/Alt and MAP/Alt at � = −2; for ML/Alt, the IQR 

was 20% in contrast to 50% for ML.  Likewise, for MAP/Alt the IQR was 23%, in 

contrast to 49% for MAP.  At � = 2, the IQR for MAP/Alt was equal to zero, a result also 

observed for conventional MAP.  Variability in GSS was similar to that observed for 

MAP/Alt at ability levels � = {−2, 0, 1}.  However, at � = −1 the IQR was higher at 22% 

as opposed to 13% for MAP.  GSS was much more variable at � = 2, with an IQR of 

27%. 

For certain combinations of ability estimation procedure with true ability level, 

the efficiency measures under maximum FII were different than the corresponding 
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measures under maximum FI selection.  Examining first the conventional procedures, 

both ML and MAP benefited from maximum FII over maximum FI at the extreme ability 

levels � = {−2, 2}.  Under maximum FI, the median efficiency measures at � = −2 for 

ML and MAP were 53% and 31%, respectively.  Under maximum FII, the corresponding 

measures were 83% and 43%, respectively.  Although the median efficiency measures 

were higher under FII selection, the measures at the 25th and 75th percentile points were 

approximately equal.  For ML estimation under FII at � = −2, the measures at these 

percentile points were 37% and 87%, respectively; under FI, the measures were 37% and 

81%, respectively.  For MAP estimation under both FII and FI at � = −2, the range in 

efficiency was from 8% to 57%. 

At the other extreme � = 2, under maximum FI the median efficiency measure for 

MAP was 23%, whereas under maximum FII it was 32%.  For ML, the median efficiency 

measure was nearly equivalent under FI and FII, at 62% and 65%, respectively.  

Efficiency at the 25th and 75th percentile points for ML estimation under FII were higher 

at 65% and 68%, as opposed to 48% to 65% under FI.  For MAP estimation under both 

FII and FI, the IQR was equal to zero. 

The alternative estimation procedures did not uniformly benefit from maximum 

FII selection, however.  While the median efficiency of ML/Alt was 9% higher (72% vs. 

63%) at � = 0 under FII than under FI, it was 9% lower (85% vs. 94%) at � = 2.  GSS 

also suffered at � = 2 under FII, with a median efficiency 9% lower (72% vs. 81%) than 

that under FI.  Efficiency measures from the MAP/Alt procedure remained essentially 

unchanged under FII or FI selection. 
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The variability in efficiency for ML/Alt was reduced under FII at � = {0, 1}.  

Efficiency measures at the 25th and 75th percentile points for ML/Alt under FII at � = 0 

were 56% and 73%, respectively; under FI, they were 45% and 72%, respectively.  At 

� = 1, the corresponding efficiency measures for ML/Alt under FII were 63% and 85%, 

respectively; under FI, they were 47% and 87%, respectively.  Variability was also 

reduced for GSS at � = 1 under FII, with the efficiency measures at the 25th and 75th 

percentile points being 63% and 85%, respectively; under FI, they were 51% and 83%, 

respectively.  However, GSS not only suffered a reduction in median efficiency at � = 2 

under FII, but also an increase in variability.  Under maximum FI selection at this ability 

level, the measures were 78% and 81% at the two percentile points; under maximum FII 

selection, they were 71% and 98%.  Oddly, the efficiency measure for GSS at � = 2 under 

FII was right-skewed.  (The 25th and 50th percentile points were equal in this case.) 

Test length of 10 items.  Median efficiency measures and IQRs of the efficiency 

measures for tests of 10 items in length under maximum FII item selection are displayed 

in Figures 13 and 14.  As observed for tests of 5 items in length, the conventional ability 

estimation procedures (ML and MAP) performed differently across the range of ability 

levels in terms of median efficiency.  Again, MAP was superior to ML for � = {−1, 0, 1} 

and ML was more efficient than MAP at the extreme ability levels � = {−2, 2}.  MAP 

achieved a median efficiency at or above 91% for � = {−1, 0, 1}, but continued to lag in 

performance at the extremes, with median efficiencies of 79% and 70% at � = {−2, 2}, 

respectively.   

The gap in median performance for MAP between the middle ability levels and 

those at the extremes narrowed from approximately 60% for 5-item tests to 
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approximately 22% for 10-item tests.  ML remained less efficient than MAP at the 

middle of the ability continuum, having achieved a maximum median efficiency of 86% 

at � = −1 and minimum median efficiency of 72% at � = 0.  The median efficiency 

measures for ML at � = {−2, 2} were again higher than those for MAP, at 90% and 83%, 

respectively.   
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Figure 13.  Median efficiency measures under maximum FII item selection for a test of 
10 items. 
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Figure 14.  IQRs of the efficiency measure under maximum FII item selection for a test 
of 10 items. 
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Like the 5-item tests, the alternative ability estimation procedures performed 

better overall than the conventional ability estimation procedures for 10-item tests.  

Median efficiencies for ML/Alt were greater than the corresponding measures observed 

for conventional ML, with gains of approximately 10% across all ability levels.  ML/Alt 

achieved a maximum median efficiency of 99% at � = −2, and a minimum median 

efficiency of 82% at � = 0.  For MAP/Alt, the median efficiency measures were 

comparable to those observed for conventional MAP across all ability levels.  GSS 

performed similarly to ML/Alt at � = {−2, 0, 1}, but with approximately 6% lower 

median efficiency measures than ML/Alt at � = {−1, 2}. 

Unlike the 5-item tests, variability in the efficiency measures for the conventional 

ability estimation procedures for tests 10 items in length was substantially less for MAP 

than ML only at � = 0 and � = 1.  At ability levels � = {0, 1}, the IQRs for MAP were 

13% and 11%, respectively, whereas for ML they were 28% and 27%, respectively.  At 

ability level � = −1, MAP was more variable than ML, with IQRs of 20% and 15%, 

respectively.  At the extreme ability levels � = {−2, 2}, MAP was more variable than ML 

at � = −2, and less variable than ML at � = 2.  IQRs at � = −2 for MAP and ML were 

29% and 18%, respectively; at � = 2, they were 10% and 14%, respectively. 

If the 25th and 75th percentile points are considered at � = −2, then ML efficiency 

ranged from 76% to 94%, while MAP efficiency ranged from 52% to 82%.  At the other 

extreme of ability, � = 2, ML also outperformed MAP.  The range in ML efficiency at 

� = 2 was 74% to 88%, while it was 63% to 73% for MAP.  For the middle range of 

ability, −2 < � < 2, MAP outperformed ML. 
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Variability measures for the alternative procedures were somewhat different in the 

case of 10-item tests as compared to 5-item tests.  Whereas IQRs were much lower at 

� = −2 for the alternative procedures than for the conventional procedures on 5-item tests, 

the reduction in variability was only about 6% for 10-item tests and only for ML/Alt.  At 

� = −2, the IQR for ML/Alt was 12%, in contrast to 18% for ML.  For ability levels 

� > 0, IQRs for ML/Alt were slightly smaller than those for ML.  For MAP/Alt, 

variability was essentially unchanged at � = {−1, 0, 1}; at � = 2, the IQR for MAP/Alt 

was actually 9% higher.  The pattern of IQRs for GSS closely mirrored that of ML/Alt, 

with nearly identical IQRs for � > −1, a slightly higher IQR at � = −2, and a slightly 

lower IQR at � = −1. 

As observed for the 5-item tests, for certain combinations of ability estimation 

procedure with true ability level, the efficiency measures under maximum FII were 

different than the corresponding measures under maximum FI selection for tests of 10 

items in length.  For the conventional procedures, ML benefited from maximum FII over 

maximum FI item selection at � = {−2, 1} and MAP benefited at both extreme ability 

levels � = {−2, 2}.  Under maximum FI, the median efficiency measures at � = −2 for 

ML and MAP were 82% and 73%, respectively.  Under maximum FII, the corresponding 

measures were 90% and 79%, respectively.  Although the median efficiency measures 

were higher under FII selection, the measures at the 25th and 75th percentile points were 

approximately equal.  For ML estimation under FII at � = −2, the measures at these 

percentile points were 76% and 94%, respectively; under FI, the measures were 73% and 

91%, respectively.  For MAP estimation under both FII and FI at � = −2, the range in 

efficiency was from 52% to 82%. 
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At the other extreme � = 2, under maximum FI the median efficiency measure for 

MAP was 64%, whereas under maximum FII it was 70%.  For MAP under maximum FI 

at � = 2, the efficiency measures at the 25th and 75th percentile points were 59% and 73%, 

respectively; under FII, they were 63% and 73%, respectively.  While the median 

efficiency of ML at � = 1 was similar under FI and FII, the variability was less under FII, 

with an IQR of 35% under FI and 27% under FII. 

All three alternative ability estimation procedures appeared to benefit from 

maximum FII item selection in terms of reduced variability at ability level � = 1, 

although median efficiency measures remained essentially unchanged.  The efficiency 

measures at the 25th to the 75th percentile points for ML/Alt at � = 1 under maximum FI 

were 64% and 94%, respectively; under maximum FII they were 68% to 93%, 

respectively.  Likewise, for MAP/Alt under maximum FI, the corresponding measures 

were 77% and 95%, respectively; under maximum FII, they were 83% to 95%, 

respectively.  For GSS under maximum FI, the corresponding measures were 62% and 

93%, respectively; under maximum FII, they were 67% and 93%, respectively.  

However, at ability level � = −2, variability in the efficiency measures for MAP/Alt 

actually increased under maximum FII item selection.  In this case, efficiency measures 

at the 25th and 75th percentile points under maximum FI were 68% and 91%, respectively, 

while under maximum FII they were 63% and 91%, respectively. 

Test lengths of 15 and 25 items.  As discussed earlier, the efficiency measures at 

these tests lengths under maximum FI and maximum FII item selection were very similar.  

Thus, the discussion of results under maximum FI selection suffices for maximum FII 

selection for 15- and 25-item tests.  However, figures for the median efficiency and 
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efficiency IQRs are provided for these test lengths.  Figures 15 and 16 display these 

measures for 15-item tests; Figures 17 and 18 display these measures for 25-item tests. 
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Figure 15.  Median efficiency measures under maximum FII item selection for a test of 
15 items. 
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Figure 16.  IQRs of the efficiency measure under maximum FII item selection for a test 
of 15 items. 
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Figure 17.  Median efficiency measures under maximum FII item selection for a test of 
25 items. 
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Figure 18.  IQRs of the efficiency measure under maximum FII item selection for a test 
of 25 items. 
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Provisional ability estimates 
 

Summary information for provisional ability estimates at each level of ability 

estimation procedure � test length � true ability level is provided in Tables 13 and 14 for 

item selection under maximum FI, and in Tables 15 and 16 for item selection under 

maximum FII.  Means and medians of the provisional ability estimates are provided in 

Tables 13 and 15; mean-squared errors and standard deviations are provided in Tables 14 

and 16. 

 
Table 13.  Means and medians of provisional ability estimates under maximum FI item 
selection. 
 

  Mean �̂  Median �̂  
Ability 

estimation 
Test 

length �=-2 �=-1 �=0 �=1 �=2 �=-2 �=-1 �=0 �=1 �=2 
  � � � � � � � � � �

ML 5 -2.060 -1.025 0.142 1.130 2.098 -2.047 -1.214 0.115 1.054 2.014 
 10 -2.012 -0.988 0.058 1.059 2.040 -2.002 -1.003 0.077 1.048 1.985 
 15 -2.002 -0.989 0.032 1.034 2.022 -2.002 -0.994 0.030 1.024 2.006 
 25 -2.010 -1.003 0.010 1.015 2.004 -2.009 -1.005 0.011 1.012 1.997 
            

ML/Alt 5 -1.607 -0.927 0.105 1.008 1.900 -1.744 -1.044 0.050 1.063 2.085 
 10 -1.683 -0.901 0.133 1.009 1.902 -1.794 -0.972 0.079 1.007 2.004 
 15 -1.636 -0.881 0.144 1.014 1.917 -1.814 -0.975 0.083 1.023 1.978 
 25 -1.588 -0.869 0.148 1.015 1.855 -1.728 -0.957 0.100 1.003 1.900 
            

MAP 5 -1.202 -0.745 0.036 0.882 1.509 -1.161 -0.634 0.029 0.875 1.580 
 10 -1.543 -0.837 0.027 0.936 1.821 -1.587 -0.876 0.036 0.935 1.769 
 15 -1.682 -0.883 0.015 0.955 1.889 -1.694 -0.885 0.008 0.964 1.881 
 25 -1.791 -0.928 0.006 0.967 1.922 -1.803 -0.917 -0.004 0.970 1.913 
            

MAP/Alt 5 -1.548 -0.846 0.028 0.911 1.665 -1.738 -0.705 0.029 0.849 1.429 
 10 -1.638 -0.857 0.026 0.944 1.807 -1.781 -0.851 0.043 0.935 1.753 
 15 -1.633 -0.876 0.021 0.959 1.889 -1.809 -0.886 0.016 0.964 1.912 
 25 -1.694 -0.917 0.014 0.972 1.884 -1.778 -0.923 0.009 0.975 1.927 
            

GSS 5 -2.015 -1.033 0.058 1.015 2.086 -2.472 -1.167 0.000 0.807 2.249 
 10 -1.961 -1.026 0.010 1.008 2.000 -1.889 -1.167 0.000 1.029 1.889 
 15 -1.969 -1.010 0.018 1.004 2.024 -1.889 -1.167 0.000 1.167 1.889 
 25 -1.988 -1.002 0.003 1.001 2.006 -1.889 -1.167 0.000 1.029 1.889 
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Table 14.  Mean-squared errors and standard deviations of provisional ability estimates 
under maximum FI item selection. 
 

  MSE � �2ˆ �� �  S.D. �̂  
Ability 

estimation 
Test 

length �=-2 �=-1 �=0 �=1 �=2 �=-2 �=-1 �=0 �=1 �=2 
  � � � � � � � � � �

ML 5 1.010 0.713 0.615 0.419 0.398 1.003 0.844 0.771 0.634 0.623 
 10 0.456 0.293 0.206 0.146 0.177 0.675 0.541 0.450 0.378 0.419 
 15 0.258 0.172 0.119 0.080 0.090 0.508 0.415 0.343 0.281 0.300 
 25 0.139 0.095 0.067 0.046 0.048 0.373 0.309 0.258 0.214 0.218 
             

ML/Alt 5 0.436 0.441 0.404 0.285 0.137 0.531 0.660 0.627 0.534 0.356 
 10 0.310 0.317 0.212 0.125 0.080 0.458 0.554 0.441 0.353 0.265 
 15 0.292 0.275 0.164 0.074 0.054 0.400 0.511 0.378 0.271 0.217 
 25 0.302 0.241 0.130 0.042 0.041 0.364 0.473 0.329 0.205 0.140 
             

MAP 5 0.847 0.251 0.172 0.156 0.281 0.458 0.431 0.413 0.377 0.200 
 10 0.395 0.170 0.108 0.087 0.112 0.431 0.379 0.328 0.288 0.282 
 15 0.249 0.122 0.079 0.064 0.075 0.384 0.329 0.281 0.248 0.251 
 25 0.133 0.077 0.053 0.041 0.046 0.299 0.268 0.230 0.200 0.201 
             

MAP/Alt 5 0.572 0.358 0.189 0.184 0.250 0.606 0.578 0.434 0.420 0.371 
 10 0.350 0.193 0.112 0.092 0.105 0.468 0.415 0.334 0.298 0.260 
 15 0.262 0.137 0.083 0.065 0.062 0.357 0.349 0.288 0.251 0.222 
 25 0.166 0.095 0.056 0.042 0.035 0.269 0.297 0.237 0.203 0.146 
             

GSS 5 0.762 0.517 0.446 0.285 0.306 0.873 0.718 0.665 0.534 0.546 
 10 0.348 0.252 0.206 0.133 0.144 0.589 0.501 0.454 0.364 0.379 
 15 0.242 0.182 0.134 0.086 0.097 0.491 0.426 0.365 0.293 0.311 
 25 0.165 0.112 0.083 0.052 0.055 0.406 0.335 0.288 0.229 0.235 

 



129 

 

Table 15.  Means and medians of provisional ability estimates under maximum FII item 
selection. 
 

  Mean �̂  Median �̂  
Ability 

estimation 
Test 

length �=-2 �=-1 �=0 �=1 �=2 �=-2 �=-1 �=0 �=1 �=2 
  

� � � � � � � � � �

ML 5 -2.017 -0.987 0.151 1.117 2.095 -1.912 -1.214 0.115 1.054 2.014 
 10 -2.006 -0.980 0.050 1.049 2.037 -2.002 -0.984 0.046 1.036 1.961 
 15 -2.000 -0.992 0.031 1.032 2.023 -1.994 -0.993 0.027 1.029 1.997 
 25 -2.009 -1.006 0.013 1.012 2.004 -2.006 -1.005 0.015 1.012 1.997 
            

ML/Alt 5 -1.600 -0.921 0.091 1.004 1.897 -1.729 -1.044 0.105 0.908 1.932 
 10 -1.653 -0.899 0.115 1.01 1.905 -1.771 -0.975 0.083 0.993 1.957 
 15 -1.625 -0.878 0.128 1.015 1.918 -1.760 -0.963 0.091 1.016 1.967 
 25 -1.572 -0.862 0.148 1.011 1.837 -1.728 -0.954 0.110 1.005 1.862 
            

MAP 5 -1.202 -0.743 0.035 0.872 1.553 -1.167 -0.832 0.035 0.875 1.655 
 10 -1.550 -0.838 0.025 0.939 1.826 -1.572 -0.857 0.021 0.928 1.827 
 15 -1.683 -0.885 0.016 0.950 1.888 -1.691 -0.899 0.013 0.956 1.883 
 25 -1.789 -0.928 0.009 0.965 1.924 -1.797 -0.920 0.003 0.965 1.915 
            

MAP/Alt 5 -1.523 -0.838 0.033 0.915 1.666 -1.738 -0.705 0.035 0.849 1.429 
 10 -1.619 -0.855 0.022 0.941 1.805 -1.883 -0.824 0.022 0.935 1.791 
 15 -1.616 -0.876 0.023 0.954 1.884 -1.809 -0.894 0.019 0.956 1.918 
 25 -1.678 -0.917 0.018 0.969 1.871 -1.778 -0.929 0.014 0.970 1.927 
            

GSS 5 -2.018 -1.039 0.060 1.026 2.079 -2.472 -1.167 0.000 0.807 1.889 
 10 -1.943 -1.028 0.024 1.008 2.004 -1.889 -1.167 0.000 1.167 1.889 
 15 -1.972 -1.015 0.017 1.007 2.021 -1.889 -1.167 0.000 1.029 1.889 
 25 -1.986 -1.005 0.010 1.007 2.002 -1.889 -1.167 0.000 1.029 1.889 
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Table 16.  Mean-squared errors and standard deviations of provisional ability estimates 
under maximum FII item selection. 
 

  MSE � �2ˆ �� �  S.D. �̂  
Ability 

estimation 
Test 

length �=-2 �=-1 �=0 �=1 �=2 �=-2 �=-1 �=0 �=1 �=2 
  � � � � � � � � � �

ML 5 0.924 0.645 0.591 0.398 0.390 0.961 0.803 0.754 0.620 0.617 
 10 0.437 0.257 0.204 0.135 0.151 0.661 0.507 0.449 0.364 0.387 
 15 0.252 0.162 0.120 0.079 0.087 0.502 0.402 0.345 0.280 0.294 
 25 0.133 0.097 0.066 0.046 0.046 0.365 0.311 0.257 0.213 0.215 
             

ML/Alt 5 0.437 0.426 0.372 0.255 0.131 0.526 0.648 0.603 0.505 0.347 
 10 0.320 0.299 0.196 0.112 0.070 0.447 0.537 0.427 0.334 0.246 
 15 0.300 0.274 0.143 0.070 0.047 0.399 0.509 0.356 0.265 0.201 
 25 0.318 0.251 0.121 0.042 0.040 0.367 0.482 0.314 0.204 0.118 
             

MAP 5 0.854 0.248 0.161 0.147 0.253 0.466 0.427 0.400 0.361 0.231 
 10 0.393 0.164 0.108 0.083 0.112 0.437 0.371 0.328 0.282 0.285 
 15 0.246 0.121 0.079 0.061 0.073 0.381 0.329 0.280 0.242 0.245 
 25 0.133 0.076 0.054 0.040 0.047 0.298 0.266 0.232 0.198 0.204 
             

MAP/Alt 5 0.626 0.351 0.183 0.179 0.248 0.631 0.570 0.427 0.414 0.369 
 10 0.384 0.187 0.113 0.089 0.105 0.489 0.407 0.336 0.292 0.259 
 15 0.287 0.134 0.080 0.062 0.058 0.374 0.344 0.282 0.244 0.212 
 25 0.183 0.096 0.056 0.041 0.035 0.282 0.298 0.236 0.200 0.136 
             

GSS 5 0.745 0.506 0.442 0.292 0.249 0.863 0.710 0.662 0.540 0.493 
 10 0.344 0.245 0.194 0.138 0.135 0.584 0.494 0.440 0.371 0.367 
 15 0.237 0.174 0.140 0.086 0.091 0.486 0.417 0.374 0.293 0.301 
 25 0.167 0.111 0.082 0.052 0.052 0.409 0.333 0.286 0.228 0.229 

 
For a given level of ability estimation procedure � test length, mean provisional 

ability estimates under maximum FI and maximum FII item selection are comparable; the 

same holds true for the standard deviations of the provisional ability estimates.  With 

respect to the mean provisional ability estimates, those from the ML and GSS ability 

estimation procedures appear to be the least biased for all test lengths.  Estimates 

showing the largest amount of bias are MAP, followed by MAP/Alt and ML/Alt.  The 

inward bias of the MAP estimates may be attributed to the N(0,1) prior.  Because the 

distributions of provisional ability estimates from the ML/Alt and MAP/Alt estimation 
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procedures are right-skewed, the means of these distributions should be interpreted with 

caution as measures of central tendency.  Median measures for these distributions are 

provided to illustrate this effect; note that the bias is typically less pronounced for the 

medians of the distributions from ML/Alt and MAP/Alt.  

The standard deviation of the provisional ability estimates is generally smallest 

for MAP estimates, as the presence of an informative prior increases the precision of 

these estimates.  For tests 5 items in length, the ML provisional estimates are the most 

variable among all the ability estimation procedures, although the GSS procedure is only 

slightly less variable.  ML/Alt estimates are considerably less variable than ML estimates 

at the extreme ability levels � = {�2, 2}.  MAP/Alt estimates are generally more variable 

than the respective MAP estimates for test lengths of 5 and 10 items.  Again, it should be 

noted that the distributions of ability estimates from the ML/Alt and MAP/Alt procedures 

are right-skewed, and so the standard deviation of these estimates may not accurately 

characterize the variability in estimates. 

In addition to the standard deviation of the provisional ability estimates, the 

mean-squared errors of the provisional ability estimates are also provided.  As observed 

for the standard deviation of these estimates, for a given level of ability estimation 

procedure � test length, the mean squared errors under maximum FI and maximum FII 

item selection are comparable.  For the shorter test lengths (5 or 10 items), the mean-

squared errors are smallest for MAP and MAP/Alt.   
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CHAPTER 5 

Summary and Conclusions 

 

Summary 

Efficiency is often cited as an advantage of computerized adaptive tests (CATs) 

over traditional paper-and-pencil tests.  The goal of a CAT is to administer items targeted 

to examinee ability, where higher-ability examinees generally receive more difficult 

items and lower-ability examinees generally receive less difficult items.  Nevertheless, 

item selection in a CAT at the early stages of test administration has been criticized as 

being inefficient, as provisional ability estimates are typically imprecise, inaccurate, or 

both.  The argument contends that because item selection is dependent on ability 

estimation, item selection based on these early provisional ability estimates is likely to be 

mismatched with respect to an examinee’s true ability. 

The efficiency of CAT item selection is dependent on item selection procedures 

as well as ability estimation procedures.  Most commonly, maximum Fisher information 

(FI) item selection is employed in conjunction with either maximum likelihood (ML) or 

modal a posteriori (MAP) ability estimation.  Because maximum FI item selection (under 

either ML or MAP) has been criticized as being inefficient, the first purpose of this study 

was to quantify the efficiency (or, inefficiency) of this most common item selection 

procedure.  The second purpose of this study was to propose an alternative ability 

estimation procedure that addresses potential inefficiencies in CAT item selection, where 
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this alternative procedure operates concurrently with either ML or MAP estimation and 

functions as an adjustment to either of these procedures.  The third purpose of this study 

was to evaluate the efficiency of CAT item selection given five ability estimation 

procedures (i.e., ML, ML/Alt, MAP, MAP/Alt, and GSS, where ML/Alt uses the 

alternative procedure concurrently with ML estimation, MAP/Alt uses the alternative 

procedure concurrently with MAP estimation, and GSS is a golden section search 

strategy), with two item selection procedures (i.e., maximum FI and maximum Fisher 

interval information, or FII). 

Further, this study utilized a precise definition for an efficiency measure.  The 

primary advantage of this definition was that the efficiency of item selection from 

different procedures (e.g., alternative item selection procedures or alternative ability 

estimation procedures) could be compared to a fixed point of reference, one which 

characterizes the most efficient estimator possible. 

Two primary research questions were thus investigated in this study: 

1.  How might the efficiency of maximum FI item selection under conventional 

ability estimation procedures be characterized, especially at the early stages of a CAT 

administration?  More specific questions include:  (a) After a fixed number of items have 

been administered, to what extent does efficiency of maximum FI item selection under 

ML or MAP ability estimation vary for different points along the ability continuum?  (b)  

What is the effect of ability estimation procedure on the efficiency of maximum FI item 

selection? 

2.  Is it possible to improve upon the efficiency of maximum FI item selection 

under conventional ability estimation procedures by utilizing alternative item selection 

procedures, alternative ability estimation procedures, or a combination of both?  More 
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specific questions include:  (a) After a fixed number of items have been administered, to 

what extent do the efficiency measures for the alternative item selection and ability 

estimation procedures vary for different points along the ability continuum?  Specifically, 

how do the alternatives to FI item selection with ML or MAP ability estimation compare 

to one another?  (b)  How do these efficiency measures compare with those obtained for 

maximum FI item selection with ML or MAP ability estimation?  That is, to what extent 

are the alternative item selection and ability estimation procedures more (or less) efficient 

than maximum FI item selection in conjunction with conventional ability estimation 

procedures? 

The two primary research questions were addressed using a simulation 

methodology.  The CAT simulations employed here draw on an item bank of 367 pre-

calibrated and dichotomously-scored 3P items from a recently-administered large-scale 

CAT assessment of mathematics ability.  In its operational form, the CAT administered 

using this item bank is fixed at a length of 28 items; however, as it was hypothesized that 

the greatest variation in CAT efficiency would occur much earlier (e.g., at or before the 

10th administered item), the CAT simulations were fixed such that no test exceeded a 

length of 25 items. 

The four factors in the experimental design were:  (1) item selection procedure 

(maximum FI or maximum FII item selection); (2) ability estimation procedure (ML, 

ML/Alt, MAP, MAP/Alt, and GSS); (3) true ability level at discrete points along the 

ability continuum (at -2, -1, 0, +1, or +2 logits); and (4) test length (5, 10, 15, or 25 

items).  For each of the experimental conditions, 1000 replications were generated.  

Efficiency was the primary dependent measure.  Since this measure is highly skewed to 
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the left, the median efficiency was reported as a measure of central tendency, and the 

interquartile range was reported as a measure of variability. 

With respect to the first research question, sizeable differences in efficiency were 

found between ML and MAP ability estimation under maximum FI item selection for 

shorter tests (5 or 10 items) across true ability levels.  At the middle of the ability 

distribution, MAP was more efficient; at the extremes of the ability distribution; ML was 

more efficient.  For longer tests (15 or 25 items), these differences remained but became 

far less profound. 

With respect to the second research question, increased test efficiency was 

obtained using alternative ability estimation procedures (ML/Alt, MAP/Alt, and GSS) in 

conjunction with maximum FI item selection.  The gains in efficiency were most 

pronounced for shorter tests, but were noticeable even for longer tests.  Conventional 

ability estimation procedures (ML and MAP) benefited from the alternative item 

selection procedure (maximum FII selection) at the extremes of the ability distribution for 

shorter tests, but efficiency measures as compared to maximum FI selection were 

essentially unchanged for longer tests.  Mixed results occurred when maximum FII 

selection was combined with the alternative ability estimation procedures.  However, as 

observed for the conventional ability estimation procedures under maximum FII 

selection, there was no change in efficiency for longer test lengths. 

 

Findings and Conclusions 

The efficiency measure � � � ���
)(

0
)( / TT

CAT II  used in this study plays an important role 

in the interpretation of the results.  Comparisons across procedures certainly could have 
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been made if relative efficiency measures � � � ���
)()( / T

B
T

A II  for two procedures A and B 

were used instead.  However, by utilizing � ��)(
0
TI , the upper bound on the precision with 

which an examinee with true ability � may be measured, both relative and absolute 

comparisons become possible.  Thus, not only can two procedures be characterized in 

terms of how much more efficient one is than the other, but also in terms of how efficient 

each one is with respect to the maximum efficiency attainable. 

The first purpose of this study was to quantify the efficiency of the most common 

item selection procedure, maximum FI item selection, in conjunction with ML and MAP 

ability estimation procedures.  From a relative efficiency standpoint, it was found that 

MAP was more efficient than ML at the middle ability levels � = {−1, 0, 1}, and less 

efficient than ML at the extreme ability levels � = {−2, 2} for all tests lengths (5, 10, 15, 

and 25 items), although these differences became smaller as test length increased.  

However, the quantification of efficiency indicates how well, in terms of optimal 

performance, the procedures are operating.  While ML was indeed more efficient than 

MAP at the extreme ability levels, median efficiencies at these ability levels did not 

exceed 62% for 5 items, and did not exceed 82% for 10 items.  In contrast, at the middle 

ability levels where MAP was more efficient, MAP efficiencies exceeded 88% for 5 

items, and 91% for 10 items.  Thus, one finding here is that little room for improvement 

exists for maximum FI item selection with MAP ability estimation at middle ability 

levels, as it attained nearly 90% or greater efficiency even for the shortest test length.  

Where room for improvement does exist is for ML ability estimation, across all levels of 

ability, and for MAP at the extremes.  For both of these cases, the largest gaps in 

performance occurred for the shorter test lengths. 
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Maximum FII item selection was proposed to address the imprecision in ability 

estimation at the early stages of a CAT.  Some of the results from maximum FII item 

selection in conjunction with ML and MAP estimation from this study are consistent with 

prior research; e.g., Chen, Ankenmann, & Chang (2000).  Although Chen et al.’s (2000) 

dependent measures were different from those utilized here (bias, standard error, and 

RMSE of ability estimates versus efficiency measures) and ability estimation procedure 

was different (EAP versus ML and MAP), they also found that maximum FII item 

selection performed better than maximum FI item selection at the lower extreme of 

ability (� = −2) for tests 10 items in length or shorter.  However, in the present study it 

was found that in addition to increased efficiency at the lower extreme of ability, FII item 

selection benefited MAP estimation (but not ML) at the higher extreme of ability (� = 2), 

for the 5- and 10-item tests. 

As mentioned, the room for improvement in efficiency exists for ML ability 

estimation, across all levels of ability, and for MAP at the extremes.  In addition, the 

largest gaps in performance occurred for the shorter test lengths.  Maximum FII item 

selection filled in some of these gaps, raising median efficiency measures in the case of 

MAP by about 10% for 5-item tests, and 6% for 10-item tests.  The greatest increase in 

median efficiency under maximum FII selection was observed for ML at the lowest 

ability level, with an increase of 30% over maximum FI selection at 5 items. 

In general, the alternative procedures ML/Alt and MAP/Alt helped fill the gaps in 

the efficiency of the conventional ML and MAP procedures under maximum FI item 

selection, without negatively impacting them in cases where performance was already 

high.  The alternative ability estimation procedures yielded higher median efficiency 

measures while simultaneously maintaining or decreasing variability in those measures.  
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The improvement in efficiency was greater than that observed for ML and MAP under 

maximum FII selection, and occurred across more ability levels.  For instance, ML 

estimation only benefited from maximum FII selection at � = −2, whereas efficiency 

measures for ML/Alt were higher for all ability levels.  Further, while maximum FII 

selection did augment the median efficiency of 5- and 10-item tests at � = −2  for ML 

estimation under maximum FI selection by 30% and 8%, respectively, ML/Alt saw a 

corresponding increase of 47% and 20%, respectively, under maximum FI selection. 

Both ML/Alt and MAP/Alt were new methods proposed in this study.  However, 

the third ability estimation procedure, GSS, had been previously investigated by 

Xiao (1999).  Xiao (1999) states that the ability estimate from the GSS procedure is 

equivalent to the ML estimate; however, a comparison of the results from the ML and 

GSS procedures in this study suggests that they are not.  Were the estimates the same, the 

expectation would be that the efficiency measures from ML and GSS would also be the 

same, or at least very similar.  However, the median efficiency measures from GSS are 

always higher than those from ML, and the differences are most pronounced for shorter 

test lengths.  Interestingly, results from the GSS procedure closely parallel those not from 

ML, but from ML/Alt.  This correspondence may result from the fact that GSS, like 

ML/Alt, utilizes hypothesis-testing and an interval search strategy. 

When maximum FII item selection was combined with the alternative ability 

estimation procedures, the results were mixed for 5- and 10-item tests, and were 

essentially unchanged for longer test lengths.  Two median efficiency measures were 

lower under maximum FII item selection for 5-item tests; they occurred for ML/Alt and 

GSS at � = 2.  One measure was higher, also for ML/Alt but at � = 0.  No clear pattern 
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for the change in variability measures was observed.  In the nine cases where differences 

in variability were detected, three were increases. 

Overall, it appears that ability estimation procedure impacts the efficiency of item 

selection to a larger extent than item selection procedure.  The effect of alternative ability 

estimation procedures (ML/Alt, MAP/Alt, and GSS) on test efficiency was greater than 

the effect of the alternative item selection procedure (FII).  Thus, incorporating ability 

estimation error into item selection procedures (as is the case with alternative item 

selection procedures such as FII) may be less effective at increasing test efficiency than 

utilizing alternative ability estimation procedures. 

 

Implications for Further Study 

There are two major areas where the present study could be extended:  (1) 

investigations relating to the robustness of item selection under more realistic testing 

conditions; and (2) the formulation of the alternative ability estimation procedure.  With 

respect to the first area, it should be noted that the present study investigated CAT item 

selection in a highly idealized case, where all item responses were simulated according to 

a unidimensional IRT model.  However, actual test data is almost always 

multidimensional, containing more noise than is generated by unidimensional 3P 

simulations.  An important extension to the study would be to simulate examinee 

response data under a more realistic model, such as a multidimensional IRT model, but 

administer a unidimensional CAT.  Thus, while the items within the CAT pool would be 

unidimensional, examinee responses would contain extraneous sources of variance.  The 

performance of the ability estimation and item selection procedures under these more 

realistic conditions could then be examined, and the more robust procedures identified. 
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In addition, the efficiency of item selection could be investigated in the more 

realistic situation where item exposure control is utilized.  Item exposure control 

necessarily reduces test efficiency, because the “best” item selected by the CAT 

algorithm cannot always be administered.  The efficiency measure can indicate to what 

extent efficiency is lowered from its optimal values (i.e., efficiency when no item 

exposure control is operating). 

The second area for further research concerns the formulation of the alternative 

ability estimation procedure.  The procedure itself contains two components:  a 

hypothesis test and a search procedure.  Currently, the hypothesis test compares expected 

and observed proportions correct, and the decision rule is based on a critical z-value zc.  

The optimal zc values were found empirically in this study; future research could 

investigate whether these zc values remain constant or vary under different conditions, 

such as for different item pool sizes and different characteristics of the items in the pool.  

This research might also yield clues for an analytic solution to finding optimal zc values.  

In addition, while the current hypothesis test compares expected and observed 

proportions correct, expected and observed likelihood functions could be compared 

instead, in a similar manner as Drasgow, Levine, & Williams’ (1985) standardized 

likelihood-based statistic lz.   

The second component to the alternative estimation procedure is the search for a 

new ability estimate.  The current procedure utilizes the average ICC for the set of items 

already administered to find this new ability estimate, but other possibilities exist.  For 

example, the average ICC is essentially a test score where item probabilities are all 

weighted equally.  Another scoring convention, where the weights are not all constant, 

might be applied.  Such a technique was utilized in the GSS procedure, where optimal 
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scoring weights were applied to examinees’ response vectors.  Further, if a test statistic 

similar to lz is used for hypothesis-testing, then it may become possible to use likelihood 

functions to search for the new ability estimate, as opposed to average ICCs or related 

score functions. 
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Item parameters from CAT pool 
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Table 17.  Item parameters from CAT pool
 

Item 
number a b c 

1 1.688 0.783 0.261 
2 0.953 -0.016 0.125 
3 0.675 -1.117 0.000 
4 0.924 -0.440 0.128 
5 0.872 -0.452 0.151 
6 0.798 0.257 0.083 
7 0.727 -1.415 0.000 
8 0.926 -1.860 0.132 
9 0.843 1.098 0.166 
10 1.528 1.322 0.231 
11 0.811 -1.047 0.174 
12 0.749 0.383 0.065 
13 0.907 1.424 0.076 
14 0.855 -1.700 0.000 
15 0.770 0.647 0.129 
16 1.009 -0.106 0.342 
17 0.611 -2.844 0.110 
18 0.984 0.505 0.105 
19 0.586 0.057 0.000 
20 0.880 0.433 0.060 
21 0.632 -0.891 0.000 
22 1.144 -0.719 0.254 
23 1.001 1.572 0.086 
24 0.605 -2.273 0.123 
25 1.246 0.850 0.244 
26 0.944 1.938 0.127 
27 1.449 1.144 0.167 
28 1.106 0.199 0.227 
29 0.810 -1.683 0.000 
30 0.891 0.001 0.054 
31 0.921 0.448 0.082 
32 0.723 -1.903 0.101 
33 0.646 0.571 0.073 
34 1.290 -0.344 0.077 
35 1.937 1.988 0.150 
36 1.121 -0.446 0.196 
37 0.588 -1.275 0.096 
38 0.506 0.028 0.000 
39 1.175 2.049 0.131 
40 0.706 -1.027 0.070 
41 1.156 1.178 0.339 
42 1.599 1.243 0.235 
43 0.700 -0.504 0.000 
44 1.530 0.300 0.103 
45 0.907 -0.205 0.052 
46 1.124 1.922 0.148 
47 1.341 0.342 0.110 
48 1.595 1.039 0.142 

 

 
Item 

number a b c 
49 0.834 -0.349 0.069 
50 1.041 -0.124 0.209 
51 1.302 -0.211 0.074 
52 1.088 -0.048 0.328 
53 1.194 0.829 0.018 
54 0.673 -1.049 0.089 
55 1.926 1.156 0.203 
56 1.541 0.800 0.116 
57 0.658 -2.103 0.036 
58 1.947 0.497 0.239 
59 1.812 1.469 0.122 
60 0.864 1.183 0.112 
61 1.935 0.872 0.247 
62 0.702 -0.365 0.000 
63 1.352 1.862 0.195 
64 0.923 -2.054 0.134 
65 0.831 -0.388 0.016 
66 1.353 -0.329 0.241 
67 1.508 2.202 0.059 
68 0.667 -0.878 0.000 
69 1.760 1.956 0.192 
70 0.642 0.168 0.034 
71 0.854 -0.520 0.000 
72 1.926 1.341 0.282 
73 1.265 1.200 0.159 
74 1.206 1.012 0.098 
75 1.274 -0.804 0.193 
76 1.425 0.902 0.123 
77 1.695 1.710 0.209 
78 1.129 0.426 0.159 
79 1.444 2.105 0.147 
80 0.950 0.563 0.000 
81 1.486 0.503 0.279 
82 1.361 0.888 0.133 
83 1.197 0.943 0.119 
84 1.361 1.331 0.080 
85 1.407 1.282 0.101 
86 0.914 -0.113 0.128 
87 0.979 0.353 0.079 
88 1.003 -0.014 0.113 
89 1.037 -0.644 0.187 
90 0.969 -1.445 0.000 
91 0.663 -1.288 0.095 
92 0.889 0.344 0.103 
93 0.730 0.158 0.000 
94 1.930 0.926 0.316 
95 1.233 0.355 0.104 
96 0.961 0.311 0.102 
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Table 17 (cont’d). 
 

Item 
number a b c 

97 1.648 0.963 0.223 
98 1.282 0.905 0.106 
99 1.775 0.617 0.108 
100 1.387 -0.093 0.216 
101 1.026 -0.259 0.225 
102 0.886 -0.987 0.000 
103 0.931 -0.721 0.067 
104 0.645 -0.423 0.124 
105 1.624 1.606 0.164 
106 0.478 -2.054 0.095 
107 0.977 0.026 0.156 
108 0.465 -0.210 0.142 
109 0.756 -0.912 0.181 
110 0.476 -0.255 0.050 
111 0.498 -0.980 0.072 
112 1.124 0.540 0.108 
113 1.229 1.607 0.047 
114 1.509 1.692 0.075 
115 1.050 0.209 0.141 
116 0.951 2.054 0.098 
117 1.090 1.850 0.229 
118 0.697 -1.836 0.101 
119 0.771 2.743 0.058 
120 0.677 -1.219 0.000 
121 0.700 0.104 0.000 
122 0.600 -0.483 0.000 
123 0.838 -0.212 0.123 
124 0.868 0.286 0.026 
125 0.654 -0.817 0.000 
126 0.530 -1.529 0.123 
127 0.842 0.282 0.102 
128 0.909 -1.375 0.023 
129 0.718 0.316 0.094 
130 0.798 0.756 0.150 
131 0.662 -1.200 0.031 
132 0.951 -1.767 0.023 
133 0.963 0.995 0.029 
134 0.989 0.745 0.264 
135 0.631 -0.013 0.077 
136 0.591 -2.069 0.133 
137 1.888 1.280 0.183 
138 1.159 0.392 0.288 
139 0.730 -0.753 0.056 
140 1.105 0.004 0.115 
141 0.740 -1.217 0.000 
142 0.812 0.353 0.333 
143 1.376 0.043 0.197 
144 0.675 0.012 0.074 

 

 
 

Item 
number a b c 

145 1.063 -0.160 0.404 
146 1.011 1.676 0.269 
147 0.569 -0.774 0.004 
148 0.900 -0.628 0.335 
149 1.529 1.211 0.175 
150 0.654 -1.206 0.142 
151 1.006 -0.404 0.197 
152 0.787 -0.961 0.120 
153 0.700 -0.684 0.069 
154 0.874 -1.549 0.000 
155 0.624 -0.538 0.249 
156 1.139 -0.734 0.202 
157 1.004 -1.031 0.305 
158 1.008 1.376 0.172 
159 1.004 -1.668 0.000 
160 1.356 0.582 0.337 
161 0.988 -1.208 0.347 
162 1.110 1.122 0.118 
163 0.669 -2.519 0.133 
164 0.860 0.314 0.156 
165 0.936 0.672 0.037 
166 0.793 -0.817 0.198 
167 1.213 -0.762 0.226 
168 1.127 0.430 0.359 
169 1.029 0.650 0.123 
170 1.253 1.817 0.091 
171 1.009 -0.193 0.253 
172 1.410 0.579 0.318 
173 0.806 -1.838 0.000 
174 0.943 0.146 0.259 
175 0.917 0.241 0.077 
176 1.184 1.341 0.192 
177 1.775 2.018 0.218 
178 0.906 -0.639 0.000 
179 0.937 0.053 0.216 
180 0.784 -1.696 0.133 
181 1.260 1.923 0.362 
182 0.588 -0.783 0.088 
183 1.168 0.927 0.171 
184 1.114 0.564 0.234 
185 0.652 0.150 0.041 
186 0.767 -0.493 0.267 
187 0.836 -0.305 0.042 
188 0.912 -0.873 0.391 
189 1.044 0.858 0.036 
190 1.327 0.550 0.327 
191 0.848 -0.213 0.083 
192 1.083 1.052 0.288 
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Table 17 (cont’d). 
 

Item 
number a b c 

193 1.584 0.731 0.172 
194 0.633 -0.967 0.000 
195 1.353 0.787 0.306 
196 1.335 1.383 0.132 
197 1.097 -0.410 0.436 
198 1.440 0.580 0.330 
199 1.390 0.228 0.473 
200 0.504 -0.530 0.000 
201 0.634 -1.293 0.120 
202 0.709 -0.140 0.032 
203 0.891 -1.080 0.336 
204 0.991 0.850 0.034 
205 0.578 -0.785 0.010 
206 1.377 0.099 0.204 
207 0.887 -1.221 0.231 
208 1.092 1.422 0.063 
209 1.396 -0.075 0.157 
210 1.091 0.372 0.315 
211 1.120 0.286 0.292 
212 0.883 -0.451 0.294 
213 0.563 -0.823 0.133 
214 0.939 0.042 0.294 
215 1.060 1.131 0.029 
216 1.102 0.754 0.283 
217 0.715 -0.078 0.000 
218 0.572 -1.186 0.000 
219 0.692 -0.957 0.000 
220 0.868 -0.176 0.104 
221 0.710 -1.470 0.001 
222 0.843 0.054 0.045 
223 1.143 0.375 0.174 
224 1.035 0.676 0.096 
225 1.279 1.308 0.216 
226 1.309 1.272 0.144 
227 1.244 1.594 0.128 
228 0.917 0.851 0.119 
229 0.942 0.006 0.130 
230 0.652 -0.665 0.000 
231 0.937 0.437 0.142 
232 1.036 0.084 0.214 
233 0.718 -0.668 0.000 
234 1.085 0.812 0.062 
235 0.873 0.016 0.110 
236 0.986 -0.157 0.226 
237 1.264 0.651 0.155 
238 1.114 0.925 0.188 
239 0.671 -0.209 0.039 
240 1.345 1.581 0.212 

 

 
 

Item 
number a b c 

241 0.752 -0.547 0.000 
242 1.127 1.604 0.109 
243 1.392 -0.041 0.334 
244 1.891 0.783 0.386 
245 1.197 0.939 0.143 
246 0.797 0.279 0.115 
247 1.170 0.764 0.141 
248 1.846 0.159 0.415 
249 1.018 0.315 0.172 
250 1.325 0.687 0.214 
251 1.343 1.406 0.331 
252 0.920 1.988 0.181 
253 0.845 0.518 0.048 
254 1.186 -0.023 0.280 
255 0.775 0.626 0.127 
256 1.095 1.638 0.278 
257 1.181 0.792 0.222 
258 1.342 -0.140 0.361 
259 1.780 1.418 0.296 
260 0.880 0.546 0.242 
261 0.441 0.384 0.000 
262 0.707 1.340 0.212 
263 0.636 -0.227 0.383 
264 0.727 1.520 0.063 
265 0.627 1.126 0.037 
266 0.448 -0.181 0.000 
267 0.701 1.182 0.170 
268 1.007 1.666 0.130 
269 0.537 -1.889 0.119 
270 0.541 -2.393 0.119 
271 1.322 -0.046 0.025 
272 0.661 -1.747 0.142 
273 0.693 -2.455 0.110 
274 0.941 0.902 0.163 
275 0.621 0.406 0.221 
276 1.133 0.593 0.074 
277 0.861 -0.932 0.050 
278 0.536 -0.998 0.000 
279 0.695 1.404 0.227 
280 0.451 -1.597 0.136 
281 0.487 -1.868 0.136 
282 0.582 1.023 0.202 
283 0.941 1.329 0.262 
284 0.627 -1.215 0.120 
285 0.479 -0.396 0.120 
286 0.496 0.010 0.000 
287 1.079 1.034 0.116 
288 0.670 -0.509 0.205 
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Table 17 (cont’d). 
 

Item 
number a b c 

289 0.573 -1.098 0.133 
290 0.875 0.955 0.184 
291 0.440 2.007 0.006 
292 0.717 -1.470 0.115 
293 1.309 1.097 0.106 
294 0.449 -0.541 0.139 
295 0.409 -1.488 0.139 
296 0.710 0.259 0.282 
297 0.593 -0.813 0.139 
298 0.414 -2.427 0.139 
299 1.035 1.018 0.181 
300 0.591 1.090 0.109 
301 0.545 1.571 0.138 
302 0.962 1.308 0.030 
303 0.737 -1.995 0.101 
304 0.706 0.049 0.101 
305 1.121 1.172 0.301 
306 1.053 1.446 0.291 
307 0.835 1.221 0.029 
308 0.590 -0.164 0.000 
309 1.322 1.567 0.212 
310 1.181 1.432 0.058 
311 1.127 1.453 0.233 
312 1.345 1.150 0.142 
313 0.603 0.821 0.263 
314 0.711 -0.200 0.308 
315 0.547 0.695 0.029 
316 0.987 1.359 0.429 
317 0.545 1.163 0.142 
318 1.058 1.425 0.153 
319 0.735 -2.083 0.133 
320 0.740 0.640 0.000 
321 0.628 -0.594 0.133 
322 0.445 -3.375 0.137 
323 0.569 -1.032 0.137 
324 0.525 0.058 0.137 
325 0.767 0.010 0.147 
326 0.624 0.237 0.039 
327 0.728 1.178 0.084 
328 0.804 -0.528 0.143 
329 0.616 -0.298 0.000 
330 0.634 -0.496 0.000 
331 0.757 1.163 0.184 
332 1.096 0.844 0.153 
333 0.552 0.439 0.148 
334 1.454 0.682 0.123 
335 0.598 1.470 0.023 
336 0.816 1.940 0.257 

 

 
 

Item 
number a b c 

337 0.575 0.099 0.083 
338 0.709 0.446 0.245 
339 0.872 2.333 0.017 
340 0.734 2.459 0.090 
341 0.595 1.869 0.206 
342 0.531 1.567 0.302 
343 0.652 -0.274 0.000 
344 0.588 -0.224 0.000 
345 0.672 0.915 0.178 
346 0.423 -2.794 0.134 
347 0.601 -2.548 0.134 
348 0.537 0.682 0.000 
349 0.569 0.358 0.279 
350 1.306 1.439 0.409 
351 0.565 -0.107 0.099 
352 0.556 0.359 0.175 
353 0.410 -0.168 0.000 
354 0.510 -2.375 0.123 
355 0.742 0.733 0.182 
356 0.651 -1.610 0.000 
357 0.529 0.633 0.250 
358 0.617 -0.658 0.500 
359 1.050 1.099 0.388 
360 1.158 1.763 0.197 
361 0.772 0.425 0.125 
362 0.536 0.486 0.245 
363 1.195 1.607 0.221 
364 0.895 0.406 0.158 
365 1.125 0.817 0.104 
366 0.986 0.789 0.254 
367 1.180 1.018 0.117 
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The alternative ability estimation procedure utilizes hypothesis-testing, and by 

necessity requires a critical z-value in order to determine whether the null hypothesis 

should be retained or rejected.  Although the choice of zc is arbitrary, it stands to reason 

that some zc values will lead to more correct decisions—that is, to use the alternative 

ability estimate when it is more accurate than the conventional ability estimate—than 

other values of zc.  Further, because ability estimates under ML are characteristically 

different than those obtained under MAP, it is also possible that the better-functioning zc 

values found for the alternative ability estimation procedure concurrent with ML (or, 

Alt/ML) may be different than those for the alternative ability estimation procedure 

concurrent with MAP (Alt/MAP).  It is then desirable to find the best-functioning, or 

“optimal” zc values for the Alt/ML and Alt/MAP procedures.  The following provides the 

empirical basis for which the optimal zc values were obtained in this study. 

This appendix is divided into two sections, with each section further divided into 

two subsections.  The first section discusses how the optimal zc value was obtained for 

ability estimation by Alt/ML; the second section discusses how the optimal zc value was 

obtained for Alt/MAP.  Within each of these sections, two outcome measures are 

examined:  the first is an accuracy measure, and the second is a relative efficiency 

measure.  The two measures are used to provide convergent evidence for the selection of 

optimal zc values.  A discussion of the two measures follows. 

Accuracy measures 

Both of the alternative ability estimation procedures are invoked when a decision 

to reject the null hypothesis is obtained.  Thus, the frequency with which the alternative 

procedures are invoked may be calculated; in addition, the conditional probability that the 

alternative procedure is more accurate than the conventional procedure, given that the 
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alternative procedure is invoked, may be calculated.  To determine whether the 

alternative procedure is more accurate than the conventional procedure, the absolute 

difference ���
*ˆ  for the alternative ability estimate is compared to the absolute 

difference ���̂  for the conventional (ML or MAP) ability estimate �̂ , where � 

indicates true ability level.  If ���
*ˆ  < ���̂ , then the alternative procedure is said to be 

more accurate than the conventional procedure.  If nacc represents the number of times the 

alternative procedure is more accurate, and ninv represents the number of times the 

alternative procedure is invoked, then the conditional probability P(accurate|invoked), or 

P(acc|invoked) is equal to nacc/ninv.  If ntot examinees are considered, then the probability 

that the alternative procedure is invoked for these examinees is P(invoked), and is equal 

to ninv/ntot. 

Simulations were conducted where 500 examinee responses were simulated per 

ability level � = {-2, -1, 0, 1, 2} for tests of 25 items in length.  A simulation was defined 

by specific choice of ability estimation procedure (Alt/ML or Alt/MAP) and specific 

choice of zc value.  The zc values tested ranged from 0.6 to 1.4 in increments of 0.1; thus, 

nine zc values were considered per ability estimation procedure.  Maximum FI item 

selection was used for all simulations.  The conditional probability P(acc|invoked) was 

calculated for each test length i, where i = {1, 2, …, 25}.  Because it was desired to 

calculate the accuracy of the alternative procedure for all ability levels simultaneously, 

P(acc|invoked) was not further conditioned on examinee true ability. 

Relative efficiency measures 

Further evidence for selecting an optimal zc value was obtained from the second 

outcome measure, the relative efficiency of tests administered using the alternative 
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procedures (i.e., Alt/ML or Alt/MAP) as compared to tests administered using the 

corresponding conventional procedures (i.e., ML or MAP).  If the alternative ability 

estimation procedure is more efficient than the conventional estimation procedure, 

relative efficiency measures should be greater than 1; conversely, if the alternative 

procedure is less efficient, the measures will be less than 1.  Proper selection of zc should 

minimize relative efficiency measures that are less than 1 and maximize those measures 

that are greater than 1.  If it is found that this minimization-maximization is impossible, 

then the use of the alternative ability estimation procedure is not warranted, as it will 

cause more “harm” than item selection based on conventional ability estimates, and 

further will not increase efficiency. 

As with the accuracy measures, potential zc values ranged from 0.6 to 1.4 in steps 

of 0.1.  Simulations were conducted for 2500 examinees (500 per true ability level) and 

for tests of length 5, 10, 15, and 25 items.  Maximum FI item selection was used for all 

simulations.  Relative efficiency at true ability � was computed as the ratio of test 

information at i = {5, 10, 15, 25} items under the alternative procedure, or � � � ��T
ALTI , to the 

test information at i items under the conventional procedure, or � � � ��T
CONVI .  Thus, 

simulations under ML/Alt and ML were used to identify the optimal zc for the Alt/ML 

procedure; likewise, simulations under MAP/Alt and MAP were used to identify the 

optimal zc for the Alt/MAP procedure. 

Optimal zc for the Alt/ML procedure 

As discussed, two outcomes measures were analyzed in order to determine the 

optimal zc value under Alt/ML ability estimation.  The first of these is the accuracy 
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measure P(acc|invoked); the second is the relative efficiency measure.  The analysis of 

the accuracy measures is considered first. 

Figures 19 and 20 illustrate the accuracy measures for the range of zc values 

tested; i.e., 0.6 to 1.4 in increments of 0.1.  The accuracy measures are plotted against 

item administration number.  For the group of zc values shown in Figure 19, the accuracy 

measures are not constant; rather, they decrease with increasing item administration 

number.  Such a trend is undesirable and therefore these zc values (0.6, 0.7, and 0.8) are 

labeled as “unstable.” 
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Figure 19.  Accuracy measures for Alt/ML ability estimation; unstable set of zc values. 
 

The sequence of accuracy measures observed for the zc values in Figure 20 are 

different from those observed for the unstable zc values in Figure 19.  Most notably, the 

accuracy measures in Figure 20 stabilize with increasing item administration number.  

That is, the accuracy measures for this set of zc values do not decline with increasing test 

length as they do in Figure 19 (although a slight drop in accuracy is observed for zc = 0.9 

for tests longer than 21 items). Thus, these zc values are labeled as “stable.” 
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Figure 20.  Accuracy measures for Alt/ML ability estimation; stable set of zc values. 
 

From Figure 20, it appears that higher zc values are associated with greater 

accuracy measures in the long run.  Unfortunately, higher zc values necessarily limit the 

number of times the alternative procedure may be invoked.  The probability that the 

alternative procedure is invoked decreases with increasing zc, as shown in Figures 21and 

22.  Whereas the procedure is invoked more frequently for smaller values of zc, the 

accuracy measures suffer.  Thus, these zc values 0.6, 0.7, and 0.8 are too liberal.  On the 

other hand, for 9.0�cz , the accuracy measures stabilize, although higher zc values are 

associated with more conservative tests.  Ideally, the optimal zc value should lead to 

stable accuracy measures and lead to as many invocations as possible.  Based on this 

criterion, the optimal zc value for Alt/ML should be no less than (and preferable equal to) 

0.9. 
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Figure 21.  Probability of alternative procedure invocation concurrent with ML 
estimation; unstable set of zc values. 
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Figure 22.  Probability of alternative procedure invocation concurrent with ML 
estimation; stable set of zc values. 
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Additional evidence for the optimal selection of zc for the Alt/ML procedure 

comes from an examination of relative efficiency measures.  Relative efficiency measures 

are plotted in Figures 23 and 24, where the five major groups are defined by ability level 

� = {-2, -1, 0, 1, 2, and within each group the relative efficiency measures are provided 

for tests of length i = 5, 10, 15, and 25 items.  Figure 23 illustrates the relative efficiency 

measures when the unstable set of zc values were chosen.  Although the relative 

efficiency of Alt/ML over the conventional ML is always 1�  for � = {-1, 0, 1}, it is quite 

unsatisfactory at the extremes of ability; i.e., � = {-2, 2}.  In these cases, the alternative 

ability estimation procedures lead to less efficient test administrations, and are clearly at a 

disadvantage with respect to the conventional ability estimation procedures.   
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Figure 23.  Rela
values. 
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It is only for zc equal to 0.9 or 1.0 that an increase in efficiency is observed for Alt/ML.  

The increase in efficiency is especially pronounced for zc = 0.9. 

Based on the analysis of the accuracy measures P(acc|invoked), it was concluded 

that the optimal zc value for Alt/ML should be no less than 0.9, and preferably equal to it.  

Analysis of the relative efficiency measures also rules out zc values less than 0.9; further, 

it supports the selection of zc = 0.9 as the optimal zc value for the Alt/ML ability 

estimation procedure. 
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Figure 24.  Rela
values. 
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Optimal zc for the Alt/MAP procedure 
 

The analysis of the two outcomes measures, accuracy and relative efficiency, for 

identifying the optimal zc value for the Alt/MAP procedure parallels the analysis 

conducted for the Alt/ML procedure.  Again, the analysis of the accuracy measures is 

considered first. 

Figures 25 and 26 illustrate the accuracy measures observed for the Alt/MAP 

simulations where test zc values 0.6 through 1.4 in increments of 0.1 were chosen.  As 

shown in Figure 25, zc values 0.1�  led to unstable accuracy measures, although the 

pattern of instability differs from that observed in the Alt/ML case (as shown in 

Figure 19).  For zc values equal to 0.8, 0.9, and 1.0, Figure 25 shows a somewhat erratic 

pattern in the accuracy measures as test length increases.  For the smallest zc values, the 

pattern appears stable but it is quite low in magnitude, with P(acc|invoked) equal to about 

0.2.  The zc values shown in Figure 25 are thus not likely to be optimal for Alt/MAP. 
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Figure 25.  Accuracy measures for Alt/MAP ability estimation; unstable set of zc values. 
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In contrast, the zc values shown in Figure 26 are stable for increasing test lengths, 

and the accuracy measures are higher.  An anomaly appears for zc = 1.4 and a test length 

equal to 4 items, where the accuracy measure suddenly drops to zero, only to return to 

approximately 0.5 for the 5th item.  Of the four zc values shown in Figure 26, zc = 1.3 

leads to the most desirable sequence of accuracy measures, in that the sequence possesses 

no anomalies and never decreases with increasing item administration number.  Based on 

this analysis, the optimal choice of zc for the Alt/MAP procedure should not be less than 

1.1 (and preferably equal to it). 
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Figure 26.  Accuracy measures for Alt/MAP ability estimation; stable set of zc values. 
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As noted in the identification of the optimal zc for Alt/ML, increasing zc values 

lead to decreasing frequencies for invocation of the alternative ability estimation 

procedure.  The probability that the procedure is invoked for the unstable set of zc values 

is illustrated in Figure 27; the corresponding plots for the stable set of zc values are shown 

in Figure 28. 
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Figure 27.  Probability of alternative procedure invocation concurrent with MAP 
estimation; unstable set of zc values. 
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Figure 28.  Probability of alternative procedure invocation concurrent with MAP 
estimation; stable set of zc values. 
 

The relative efficiency measures for Alt/MAP over conventional MAP estimation 

are provided in Figures 29 through 32.  Figure 29 shows the relative efficiency measures 

for the unstable set of zc values; Figure 30 is a rescaling of Figure 29 to show relative 

efficiency measures close to 1.  For the very smallest values of zc (0.6 and 0.7), the 

relative efficiency is always less than 1 for ability levels at -2 and 2.  For the remainder of 

zc values in this set, the relative efficiency measures drop substantially below 1.  Thus, 

none of these unstable zc values should be considered as optimal. 
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Figure 29.  Relative efficiency measures for Alt/MAP ability estimation; unstable set of 
zc values. 
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Figure 30.  Rela
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c values. 
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The stable set of zc values, as illustrated in Figures 31 and 32, clearly show 

improved relative efficiency measures as compared to the unstable set of zc values.  

Examining Figure 31 suggests that either zc = 1.2 or zc = 1.3 could be selected as an 

optimal zc value; examining Figure 32 shows that inefficiencies introduced by Alt/MAP 

(with respect to conventional MAP) are minimized for zc = 1.3; these inefficiencies occur 

when � = {-1, 0, 1}.  Further, although zc = 1.2 leads to greater relative efficiency for � = 

2, it is less efficient than zc = 1.3 for � = -2.  Thus, zc = 1.3 is recommended based on the 

relative efficiency measures. 

In sum, for Alt/MAP, the accuracy measures suggested that zc should be no less 

than 1.1; in addition, the best sequence of the accuracy measure versus item 

administration number was obtained for zc = 1.3  An analysis of the relative efficiency 

measures also suggested that zc = 1.3 be selected as an optimal choice of zc. 
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Figure 31.  Rela
values.   
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Figure 32.  Rela
set of zc values.
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APPENDIX C 

SimCAT:  A program for a CAT simulation environment 
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p
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c
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c
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i
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/
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s
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i
m
a
t
e
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u
r
e
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t
r
o
l
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a
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e
t
e
r
s
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/
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o
r
 
a
 
C
A
T
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/
 

  
/
*
 
M
e
t
h
o
d
:
 
 
c
o
n
d
i
t
i
o
n
a
l
 
o
r
 
u
n
c
o
n
d
i
t
i
o
n
a
l
 
o
n
 
a
b
i
l
i
t
y
 

 
 
 
 
1
 
=
 
c
o
n
d
i
t
i
o
n
a
l
,
 
0
 
=
 
u
n
c
o
n
d
i
t
i
o
n
a
l
 
*
/
 

 
%
l
e
t
 
c
o
n
d
 
=
 
1
;
 

  
 

/
*
 
 
I
f
 
c
o
n
d
i
t
i
o
n
a
l
 
S
y
m
p
s
o
n
-
H
e
t
t
e
r
,
 
t
h
e
n
 
s
p
e
c
i
f
y
 
n
u
m
b
e
r
 
o
f
 

 
 

 
a
b
i
l
i
t
y
 
g
r
o
u
p
s
.
 
 
T
h
i
s
 
s
e
t
t
i
n
g
 
h
a
s
 
n
o
 
e
f
f
e
c
t
 
i
f
 

 
 

 
u
n
c
o
n
d
i
t
i
o
n
a
l
 
S
-
H
 
i
s
 
u
s
e
d
.
 
 
*
/
 

 
 

 
%
l
e
t
 
b
i
n
s
 
=
 
2
;
 

  
/
*
 
 
T
a
r
g
e
t
 
e
x
p
o
s
u
r
e
 
p
r
o
b
a
b
i
l
i
t
y
 
f
o
r
 
S
y
m
p
s
o
n
-
H
e
t
t
e
r
 
t
e
c
h
n
i
q
u
e
 
*
/
 

 
%
l
e
t
 
t
a
r
g
e
t
=
0
.
4
0
;
 

  
/
*
 
 
T
o
l
e
r
a
n
c
e
 
f
o
r
 
m
a
x
i
m
u
m
 
e
x
p
o
s
u
r
e
 
r
a
t
e
 
(
e
.
g
.
,
 
0
.
0
5
 
=
 
5
%
)
 
*
/
 

 
%
l
e
t
 
t
o
l
e
r
a
n
c
e
 
=
 
0
.
1
0
;
 

  
/
*
 
 
M
a
x
i
m
u
m
 
n
u
m
b
e
r
 
o
f
 
i
t
e
r
a
t
i
o
n
s
 
*
/
 

 
%
l
e
t
 
m
a
x
i
t
e
r
 
=
 
1
;
 

  
/
*
 
 
N
u
m
b
e
r
 
o
f
 
e
x
a
m
i
n
e
e
s
 
*
/
 

 
%
l
e
t
 
n
s
u
b
j
=
1
0
0
;
 

 
 

 
/
*
 
 
E
s
t
i
m
a
t
i
o
n
 
m
e
t
h
o
d
 
1
=
M
L
,
 
2
=
M
A
P
,
 
3
=
E
A
P
 
*
/
 

 
%
l
e
t
 
e
s
t
=
1
;
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/
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I
t
e
m
 
s
e
l
e
c
t
i
o
n
 
m
e
t
h
o
d
 
1
 
=
 
F
I
,
 
2
 
=
 
F
I
P
 
*
/
 

 
%
l
e
t
 
i
t
e
m
s
e
l
=
1
;
 

  
/
*
 
 
E
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
a
l
w
a
y
s
 
s
e
t
 
t
o
 
1
 
(
O
N
)
 
*
/
 

 
%
l
e
t
 
e
x
p
c
o
n
 
=
 
1
;
 

  
/
*
 
 
T
y
p
e
 
o
f
 
C
A
T
:
 
 
1
 
=
 
f
i
x
e
d
-
l
e
n
g
t
h
,
 
2
 
=
 
v
a
r
i
a
b
l
e
-
l
e
n
g
t
h
 
*
/
 

 
%
l
e
t
 
c
a
t
t
y
p
e
=
1
;
 

  
 

/
*
 
 
A
l
l
 
o
f
 
t
h
e
 
f
o
l
l
o
w
i
n
g
 
m
a
y
 
b
e
 
d
e
c
l
a
r
e
d
,
 
b
u
t
 
o
n
l
y
 
s
o
m
e
 
w
i
l
l
 
b
e
 
a
c
t
i
v
e
 

 
 
 
 
 
 
 
 
 
d
e
p
e
n
d
i
n
g
 
o
n
 
v
a
l
u
e
 
o
f
 
&
c
a
t
t
y
p
e
 
*
/
 

  
 

/
*
 
 
F
o
r
 
f
i
x
e
d
-
l
e
n
g
t
h
 
C
A
T
 

 
 

 
L
e
n
g
t
h
 
o
f
 
C
A
T
 
a
d
m
i
n
i
s
t
r
a
t
i
o
n
,
 
i
n
 
n
u
m
b
e
r
 
o
f
 
i
t
e
m
s
 
*
/
 

 
 

 
%
l
e
t
 
c
a
t
l
e
n
g
t
h
=
2
0
;
 

  
 

/
*
 
 
F
o
r
 
v
a
r
i
a
b
l
e
-
l
e
n
g
t
h
 
C
A
T
 

 
 

 
P
r
e
c
i
s
i
o
n
 
o
f
 
m
e
a
s
u
r
e
m
e
n
t
 
(
s
t
a
n
d
a
r
d
 
e
r
r
o
r
)
 
*
/
 

 
 

 
%
l
e
t
 
c
a
t
p
r
e
c
=
0
.
4
;
 

  
 

/
*
 
 
L
i
m
i
t
 
f
o
r
 
v
a
r
i
a
b
l
e
-
l
e
n
g
t
h
 
C
A
T
,
 
i
n
 
n
u
m
b
e
r
 
o
f
 
i
t
e
m
s
 
*
/
 

 
 

 
%
l
e
t
 
c
a
t
l
i
m
i
t
=
3
0
;
 

  
/
*
 
 
C
a
l
l
 
E
X
P
C
A
T
 
(
E
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
C
A
T
)
 
e
x
e
c
u
t
i
v
e
 
m
a
c
r
o
 
*
/
 

 
%
ex

pc
at

;
 

 %m
en

d 
m
o
d
e
4
;
 

 %m
ac

ro
 
ex

ec
ut

e;
 

  
/
*
 
 
D
e
c
l
a
r
e
 
g
l
o
b
a
l
 
v
a
r
i
a
b
l
e
s
 
*
/
 

 
%
g
l
o
b
a
l
 
n
p
o
o
l
 
n
i
t
e
m
s
 
e
s
t
;
 

  
/
*
 
 
D
i
r
e
c
t
 
p
r
o
g
r
a
m
 
f
u
n
c
t
i
o
n
a
l
i
t
y
 
*
/
 

  
%
i
f
 
&
m
o
d
e
=
1 

%
t
h
e
n
 
%
d
o
;
 

 
 

%
mo

de
1;

 
 

 
%
e
n
d
;
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%
i
f
 
&
m
o
d
e
=
2 

%
t
h
e
n
 
%
d
o
;
 

 
 

%
mo

de
2;

 
 

 
%
e
n
d
;
 

  
%
i
f
 
&
m
o
d
e
=
3 

%
t
h
e
n
 
%
d
o
;
 

 
 

%
mo

de
3;

 
 

 
%
e
n
d
;
 

  
%
i
f
 
&
m
o
d
e
=
4 

%
t
h
e
n
 
%
d
o
;
 

 
 

%
mo

de
4;

 
 

 
%
e
n
d
;
 

 %m
en
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e
x
e
c
u
t
e
;
 

 %
ex
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ut

e;
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/
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*
/
 

/
*
 
 
W
r
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n
 
b
y
 
A
l
e
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a
n
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e
r
 
W
e
i
s
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p
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2
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S
t
a
r
t
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a
t
e
:
 
 
S
e
p
t
e
m
b
e
r
 
1
5
,
 
2
0
0
1
 
*
/
 

/
*
 
 
M
o
d
i
f
i
e
d
:
 
 
A
p
r
i
l
 
1
2
,
 
2
0
0
2
 
*
/
 

 /
*
 
 
M
A
C
R
O
 
L
I
S
T
 
*
/
 

 /
*
 
 
C
A
T
:
 
 
 
 
 
 
 
H
i
g
h
e
s
t
-
l
e
v
e
l
 
m
o
d
u
l
e
 
f
o
r
 
e
x
e
c
u
t
i
n
g
 
a
 
C
A
T
 
a
d
m
i
n
i
s
t
r
a
t
i
o
n
 
*
/
 

/
*
 
 
E
A
P
E
S
T
:
 
 
 
 
E
s
t
i
m
a
t
e
 
a
b
i
l
i
t
y
 
f
o
r
 
e
x
a
m
i
n
e
e
s
 
u
s
i
n
g
 
E
A
P
 
*
/
 

/
*
 
 
G
E
N
D
A
T
A
:
 
 
 
G
e
n
e
r
a
t
e
s
 
i
t
e
m
 
r
e
s
p
o
n
s
e
s
 
*
/
 

/
*
 
 
I
N
F
O
F
N
:
 
 
 
 
C
o
m
p
u
t
e
s
 
i
n
f
o
r
m
a
t
i
o
n
 
f
u
n
c
t
i
o
n
 
f
o
r
 
i
t
e
m
s
 
a
t
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
*
/
 

/
*
 
 
I
N
F
O
M
A
X
:
 
 
 
C
o
m
p
u
t
e
s
 
t
h
e
t
a
_
m
a
x
 
a
n
d
 
i
n
f
o
_
m
a
x
 
f
o
r
 
i
t
e
m
s
 
*
/
 

/
*
 
 
I
T
E
M
P
A
R
:
 
 
 
L
o
a
d
s
 
i
t
e
m
 
m
o
d
e
l
 
t
y
p
e
,
 
i
t
e
m
 
p
a
r
a
m
e
t
e
r
s
,
 
a
n
d
 
n
u
m
b
e
r
 
o
f
 
c
a
t
e
g
o
r
i
e
s
 
f
o
r
 
i
t
e
m
 
*
/
 

/
*
 
 
L
I
K
E
H
O
O
D
:
 
 
C
o
m
p
u
t
e
s
 
l
i
k
e
l
i
h
o
o
d
 
f
u
n
c
t
i
o
n
 
g
i
v
e
n
 
e
x
a
m
i
n
e
e
 
r
e
s
p
o
n
s
e
 
p
a
t
t
e
r
n
 
*
/
 

/
*
 
 
M
E
R
G
E
G
E
N
:
 
 
M
e
r
g
e
s
 
t
h
e
 
i
t
e
m
 
m
o
d
e
l
 
t
y
p
e
,
 
p
a
r
a
m
e
t
e
r
s
,
 
a
n
d
 
n
u
m
b
e
r
 
o
f
 
c
a
t
e
g
o
r
i
e
s
 
w
i
t
h
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a
b
i
l
i
t
y
 
m
a
t
r
i
x
 
g
e
n
e
r
a
t
e
d
 
i
n
 
T
H
E
T
A
G
E
N
 
*
/
 

/
*
 
 
M
E
R
G
E
A
B
L
:
 
 
M
e
r
g
e
 
d
a
t
a
s
e
t
s
 
f
o
r
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
i
o
n
 
*
/
 

/
*
 
 
Q
U
A
D
:
 
 
 
 
 
 
C
o
n
f
i
g
u
r
e
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
a
n
d
 
w
e
i
g
h
t
s
 
*
/
 

/
*
 
 
S
E
E
D
S
:
 
 
 
 
 
L
o
a
d
s
 
r
a
n
d
o
m
 
n
u
m
b
e
r
 
s
e
e
d
s
 
f
r
o
m
 
f
i
l
e
 
*
/
 

/
*
 
 
T
H
E
T
A
G
E
N
:
 
 
G
e
n
e
r
a
t
e
s
 
m
u
l
t
i
v
a
r
i
a
t
e
 
l
a
t
e
n
t
 
a
b
i
l
i
t
y
 
s
p
a
c
e
,
 
w
h
e
r
e
 
d
i
s
t
r
i
b
u
t
i
o
n
s
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
m
a
y
 
n
o
r
m
a
l
 
o
r
 
n
o
n
-
n
o
r
m
a
l
 
*
/
 

  /
*
 
 
D
I
:
 
 
C
a
l
c
u
l
a
t
e
s
 
r
e
s
p
o
n
s
e
 
p
r
o
b
a
b
i
l
i
t
i
e
s
 
u
n
d
e
r
 
1
-
D
 
3
P
L
 
m
o
d
e
l
 
*
/
 

/
*
 
 
G
P
C
:
 
 
C
a
l
c
u
l
a
t
e
s
 
r
e
s
p
o
n
s
e
 
p
r
o
b
a
b
i
l
i
t
i
e
s
 
u
n
d
e
r
 
1
-
D
 
g
e
n
e
r
a
l
i
z
e
d
 
p
a
r
t
i
a
l
-
c
r
e
d
i
t
 
m
o
d
e
l
 
*
/
 

/
*
 
 
G
R
:
 
 
C
a
l
c
u
l
a
t
e
s
 
r
e
s
p
o
n
s
e
 
p
r
o
b
a
b
i
l
i
t
i
e
s
 
u
n
d
e
r
 
1
-
D
 
g
r
a
d
e
d
 
r
e
s
p
o
n
s
e
 
m
o
d
e
l
 
*
/
 

/
*
 
 
M
D
:
 
 
C
a
l
c
u
l
a
t
e
s
 
r
e
s
p
o
n
s
e
 
p
r
o
b
a
b
i
l
i
t
i
e
s
 
u
n
d
e
r
 
m
u
l
t
i
d
i
m
e
n
s
i
o
n
a
l
 
3
P
L
 
m
o
d
e
l
 
*
/
 

/
*
 
 
P
C
:
 
 
C
a
l
c
u
l
a
t
e
s
 
r
e
s
p
o
n
s
e
 
p
r
o
b
a
b
i
l
i
t
i
e
s
 
u
n
d
e
r
 
1
-
D
 
p
a
r
t
i
a
l
-
c
r
e
d
i
t
 
m
o
d
e
l
 
*
/
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S
U
B
R
O
U
T
I
N
E
 
S
E
E
D
 
 
*
/
 

/
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I
N
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
<
F
I
L
E
:
 
 
&
s
e
e
d
f
i
l
e
>
 

 
 
 
 
O
U
T
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
S
E
E
D
S
;
 

 
 
 
 
O
U
T
P
U
T
 
M
A
C
R
O
 
V
A
R
I
A
B
L
E
S
:
 
 
&
S
E
E
D
M
V
N
,
 
&
S
E
E
D
R
E
S
P
 

  
 
 
 
&
S
E
E
D
M
V
N
 
i
s
 
t
h
e
 
r
a
n
d
o
m
 
n
u
m
b
e
r
 
s
e
e
d
 
f
o
r
 
c
r
e
a
t
i
n
g
 
t
h
e
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r
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t
e
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o
r
m
a
l
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e
v
i
a
t
e
s
 
i
n
 
s
u
b
r
o
u
t
i
n
e
 

 
 
 
 
 
 
 
 
 
 
 
 
 
M
V
N
T
H
E
T
A
S
 

  
&
S
E
E
D
R
E
S
P
 
i
s
 
t
h
e
 
r
a
n
d
o
m
 
n
u
m
b
e
r
 
s
e
e
d
 
f
o
r
 
c
r
e
a
t
i
n
g
 
t
h
e
 

 
 
 
 
 
 
 
 
 
 
 
 
 
i
t
e
m
 
r
e
s
p
o
n
s
e
s
 
i
n
 
s
u
b
r
o
u
t
i
n
e
 
G
E
N
E
R
A
T
E
 

*
/
 

 /
*
 
 
L
o
a
d
 
t
h
e
 
r
a
n
d
o
m
 
n
u
m
b
e
r
 
s
e
e
d
 
f
r
o
m
 
f
i
l
e
,
 
p
l
a
c
e
 
i
t
 
i
n
 
 

m
a
c
r
o
 
v
a
r
i
a
b
l
e
 
&
n
e
w
s
e
e
d
 
u
s
i
n
g
 
C
A
L
L
 
S
Y
M
P
U
T
 
*
/
 

 d
a
t
a
 
s
e
e
d
s
;
 

 
i
n
f
i
l
e
 
w
r
k
d
i
r
(
&
s
e
e
d
f
i
l
e
)
;
 

 
i
n
p
u
t
 
v
a
l
u
e
1
 
v
a
l
u
e
2
;
 

 
c
a
l
l
 
s
y
m
p
u
t
(
'
s
e
e
d
m
v
n
'
,
v
a
l
u
e
1
)
;
 

 
c
a
l
l
 
s
y
m
p
u
t
(
'
s
e
e
d
r
e
s
p
'
,
v
a
l
u
e
2
)
;
 

r
u
n
;
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en

d 
s
e
e
d
s
;
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ro
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et
ag

en
;
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U
B
R
O
U
T
I
N
E
 
M
V
N
T
H
E
T
A
S
 

  
 
I
N
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
N
O
N
E
 

 
 
O
U
T
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
T
H
E
T
A
S
 

  
 

 
 
S
i
m
u
l
a
t
e
s
 
m
u
l
t
i
v
a
r
i
a
t
e
 
n
o
r
m
a
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o
b
s
e
r
v
a
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o
n
s
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u
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s
i
m
u
l
a
t
e
d
 
f
r
o
m
 
a
 
m
u
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t
i
v
a
r
i
a
t
e
 
n
o
r
m
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
w
i
t
h
 
m
e
a
n
 
m
u
 
a
n
d
 
c
o
v
a
r
i
a
n
c
e
 
m
a
t
r
i
x
 
S
i
g
m
a
.
 
*
/
 

p
r
o
c
 
i
m
l
;
 

 
 
n
=
&
n
s
u
b
j
;
 

 
 
s
e
e
d
=
&
s
e
e
d
m
v
n
;
 

 
 
m
u
=
r
e
p
e
a
t
(
0,

&
n
d
i
m
s
,
1)

;
 
 
/
*
 
c
r
e
a
t
e
 
c
o
l
u
m
n
 
v
e
c
t
o
r
 
o
f
 
z
e
r
o
s
,
 
w
i
t
h
 
#
 
r
o
w
s
 
=
 
&
n
d
i
m
s
 
*
/
 

 
 
S
i
g
m
a
=
&
s
i
g
m
a
t
r
i
x
;
 

 
 
 
 
 
 
 
 
 
 
 

 
 
p
=
n
r
o
w
(
S
i
g
m
a
)
;
 

 
 
z
=
n
o
r
m
a
l
(
r
e
p
e
a
t
(
s
e
e
d
,
n
,
p
)
)
;
 
 
 

/
*
c
r
e
a
t
e
s
 
a
 
n
x
p
 
m
a
t
r
i
x
 
z
 
o
f
 
r
a
n
d
o
m
 
n
o
r
m
a
l
 
d
e
v
i
a
t
e
s
 
*
/
 

 
 
a
=
(
r
o
o
t
(
S
i
g
m
a
)
)
;
 

 
 

/
*
 
c
o
m
p
u
t
e
 
s
q
u
a
r
e
 
r
o
o
t
 
o
f
 
S
i
g
m
a
 
m
a
t
r
i
x
 
s
u
c
h
 
t
h
a
t
 
a
a
`
 
=
 
S
i
g
m
a
 
*
/
 

 
 
b
=
r
e
p
e
a
t
(
m
u
`
,
n
,
1)

;
 

 
 

/
*
 
c
r
e
a
t
e
 
a
 
n
x
p
 
m
a
t
r
i
x
 
b
 
o
f
 
m
e
a
n
s
 
*
/
 

 
 
y
=
(
z
*
a
)
+
b
;
 

 
 

 
/
*
 
c
r
e
a
t
e
 
a
 
n
x
p
 
m
a
t
r
i
x
 
y
 
o
f
 
m
u
l
t
i
v
a
r
i
a
t
e
 
n
o
r
m
a
l
 
d
a
t
a
 
*
/
 

 
 
c
r
e
a
t
e
 
t
h
e
t
a
s
 
f
r
o
m
 
y
;
 
 

/
*
 
c
r
e
a
t
e
 
a
 
S
A
S
 
d
a
t
a
s
e
t
 
w
i
t
h
 
t
h
e
 
d
a
t
a
 
*
/
 

 
 
a
p
p
e
n
d
 
f
r
o
m
 
y
;
 

 
 
c
l
o
s
e
 
t
h
e
t
a
s
;
 

q
u
i
t
;
 

 /
*
 
 
R
e
n
a
m
e
 
t
h
e
 
g
e
n
e
r
i
c
 
I
M
L
 
"
c
o
l
"
 
v
a
r
i
a
b
l
e
 
n
a
m
e
s
 
t
o
 
"
t
h
e
t
a
"
 
*
/
 

d
a
t
a
 
t
h
e
t
a
s
;
 

 
s
e
t
 
t
h
e
t
a
s
;
 

 
r
e
n
a
m
e
 
c
o
l
1
-
c
o
l
&
n
d
i
m
s
=
t
h
e
t
a
1
-
t
h
e
t
a
&
n
d
i
m
s
;
 

r
u
n
;
 

 *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

 /
*
 
 
S
U
B
R
O
U
T
I
N
E
 
T
R
A
N
S
F
O
R
M
 

 
 
 
 
 

 
 
 
 
I
N
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
T
H
E
T
A
S
 

 
 
 
 
O
U
T
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
T
H
E
T
A
S
 
*
/
 

 /
*
 
 
T
h
i
s
 
s
u
b
r
o
u
t
i
n
e
 
t
r
a
n
s
f
o
r
m
s
 
t
h
e
 
M
V
N
 
t
h
e
t
a
s
 
t
o
 
n
o
n
-
n
o
r
m
a
l
 

(
m
a
r
g
i
n
a
l
)
 
d
i
s
t
r
i
b
u
t
i
o
n
s
,
 
b
a
s
e
d
 
o
n
 
F
l
e
i
s
h
m
a
n
'
s
 
(
1
9
7
8
)
 
p
o
w
e
r
 
t
r
a
n
s
-
 

f
o
r
m
a
t
i
o
n
.
 

 Y
 
=
 
a
 
+
 
b
X
 
+
 
c
X
*
*
2
 
+
 
d
X
*
*
3
 

 F
o
r
 
m
e
a
n
-
c
e
n
t
e
r
e
d
 
d
a
t
a
,
 
c
o
n
s
t
r
a
i
n
 
a
 
&
 
c
 
s
u
c
h
 
t
h
a
t
 
a
 
=
 
-
c
.
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V
a
l
u
e
s
 
o
f
 
a
,
 
b
,
 
a
n
d
 
d
 
m
a
y
 
b
e
 
c
h
o
s
e
n
 
f
o
r
 
d
e
s
i
r
e
d
 
s
k
e
w
n
e
s
s
 
a
n
d
 

k
u
r
t
o
s
i
s
.
 

 *
/
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

 d
a
t
a
 
t
h
e
t
a
s
;
 

 
s
e
t
 
t
h
e
t
a
s
;
 

 
a
r
r
a
y
 
t
h
e
t
a
(
*
)
 
t
h
e
t
a
1
-
t
h
e
t
a
&
n
d
i
m
s
;
 

  
/
*
 
 
S
e
t
 
v
a
l
u
e
s
 
o
f
 
b
,
 
c
,
 
a
n
d
 
d
 
f
o
r
 
e
a
c
h
 
d
i
m
e
n
s
i
o
n
 
*
/
 

 
 
 
 
/
*
 
 
F
o
r
 
n
o
 
t
r
a
n
s
f
o
r
m
a
t
i
o
n
,
 
l
e
t
 
b
 
=
 
1
,
 
c
 
=
 
0
,
 
d
 
=
 
0
 
*
/
 

  
 
 
 
b
=
&
t
r
a
n
s
b
;
 
 
 
 

 
 
 
 
c
=
&
t
r
a
n
s
c
;
 

 
d
=
&
t
r
a
n
s
d
;
 

 
a
=
-
c
;
 

  
d
o
 
i
=
1 

t
o
 
&
n
d
i
m
s
;
 

 
 
 
 
 

t
h
e
t
a
(
i
)
 
=
 
a
 
+
 
b
*
t
h
e
t
a
(
i
)
 
+
 
c
*
(
t
h
e
t
a
(
i
)
*
*
2)

 
+
 
d
*
(
t
h
e
t
a
(
i
)
*
*
3)

;
 

 
e
n
d
;
 

 
 

 
d
r
o
p
 
a
 
b
 
c
 
d
;
 

r
u
n
;
 

%m
en

d 
t
h
e
t
a
g
e
n
;
 

 %m
ac

ro
 
it

em
pa

r;
 

 *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

/
*
 
 
S
U
B
R
O
U
T
I
N
E
 
I
T
E
M
P
A
R
 

  
 
 
 
I
N
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
<
F
I
L
E
 
i
d
e
n
t
i
f
i
e
d
 
b
y
 
&
p
a
r
m
f
i
l
e
>
 

 
 
 
 
O
U
T
P
U
T
 
D
A
T
A
S
E
T
S
 
 
I
T
E
M
_
P
A
R
_
F
U
L
L
 

 
 

 
 

 
 
I
T
E
M
_
P
A
R
 

 
 

 
 

 
 
M
O
D
E
L
_
T
Y
P
E
 

 
 

 
 

 
 
N
C
A
T
_
I
N
F
O
 

;
 
 
 
 

*
R
E
A
D
 
I
T
E
M
 
P
a
r
a
m
e
t
e
r
s
;
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*
/
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

 /
*
 
 
S
t
e
p
 
1
 
o
f
 
3
:
 
 
E
x
t
r
a
c
t
 
i
t
e
m
 
p
a
r
a
m
e
t
e
r
 
i
n
f
o
r
m
a
t
i
o
n
 
*
/
 

 /
*
%
g
l
o
b
a
l
 
n
p
o
o
l
 
n
i
t
e
m
s
;
*
/
 

 d
a
t
a
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

 
 
i
n
f
i
l
e
 
w
r
k
d
i
r
(
&
p
a
r
m
f
i
l
e
)
 
m
i
s
s
o
v
e
r
;
 

 
 
i
n
p
u
t
 
i
t
e
m
i
d
 
$
 
m
o
d
e
l
 
$
 
n
c
a
t
 
x
1
-
x
&
n
p
a
r
m
s
;
 

 
 
c
a
l
l
 
s
y
m
p
u
t
(
'
n
p
o
o
l
'
,
_
n
_
)
;
 
 
/
*
 
 
D
e
t
e
r
m
i
n
e
 
s
i
z
e
 
o
f
 
i
t
e
m
 
p
o
o
l
 
*
/
 

r
u
n
;
 

 %
l
e
t
 
n
p
o
o
l
=
%
e
v
a
l
(
&
n
p
o
o
l
)
;
 

 d
a
t
a
 
i
t
e
m
_
p
a
r
;
 

 
 
 
s
e
t
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

*
i
f
 
r
e
a
d
i
n
g
 
i
n
 
p
a
r
a
m
e
t
e
r
s
 
f
o
r
 
t
h
e
 
1
P
 
o
r
 
2
P
 
m
o
d
e
l
s
 
n
e
e
d
 
t
o
 
s
e
t
 
c
=
0
;
 

*
 
 
x
3
=
0
;
 

 
 
 
a
r
r
a
y
 
y
{
*
}
 
x
1
-
x
&
n
p
a
r
m
s
;
 

 
 
 
k
e
e
p
 
p
;
 

 
 
 
d
o
 
j
=
1 

t
o
 
&
n
p
a
r
m
s
;
 

 
 
 
 
 
p
=
y
{
j
}
;
 

 
 
 
 
 
o
u
t
p
u
t
;
 

 
 
 
e
n
d
;
 

r
u
n
;
 

 /
*
 
 
C
r
e
a
t
e
 
a
 
r
o
w
 
v
e
c
t
o
r
 
w
i
t
h
 
i
t
e
m
 
p
a
r
a
m
e
t
e
r
s
 
a
s
 
e
l
e
m
e
n
t
s
 
*
/
 

p
r
o
c
 
t
r
a
n
s
p
o
s
e
 
d
a
t
a
=
i
t
e
m
_
p
a
r
 
o
u
t
=
i
t
e
m
_
p
a
r
 
p
r
e
f
i
x
=
p
;
 

 
v
a
r
 
p
;
 

r
u
n
;
 

 /
*
 
 
S
t
e
p
 
2
 
o
f
 
3
:
 
 
E
x
t
r
a
c
t
 
m
o
d
e
l
 
t
y
p
e
 
i
n
f
o
r
m
a
t
i
o
n
 
*
/
 

 d
a
t
a
 
m
o
d
e
l
_
t
y
p
e
;
 

 
s
e
t
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

 
k
e
e
p
 
m
o
d
e
l
;
 

r
u
n
;
 



 

 

181 

 p
r
o
c
 
t
r
a
n
s
p
o
s
e
 
d
a
t
a
=
m
o
d
e
l
_
t
y
p
e
 
o
u
t
=
m
o
d
e
l
_
t
y
p
e
 
p
r
e
f
i
x
=
m
o
d
e
l
;
 

 
v
a
r
 
m
o
d
e
l
;
 

r
u
n
;
 

 /
*
 
 
S
t
e
p
 
3
 
o
f
 
3
:
 
 
E
x
t
r
a
c
t
 
n
u
m
b
e
r
 
o
f
 
c
a
t
e
g
o
r
i
e
s
 
i
n
f
o
r
m
a
t
i
o
n
 
*
/
 

 d
a
t
a
 
n
c
a
t
_
i
n
f
o
;
 

 
 
 
 
 
s
e
t
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

 
 
k
e
e
p
 
n
c
a
t
;
 

r
u
n
;
 

 p
r
o
c
 
t
r
a
n
s
p
o
s
e
 
d
a
t
a
=
n
c
a
t
_
i
n
f
o
 
o
u
t
=
n
c
a
t
_
i
n
f
o
 
p
r
e
f
i
x
=
n
c
a
t
;
 

 
 
 
 
 
v
a
r
 
n
c
a
t
;
 

r
u
n
;
 

 %m
en

d 
i
t
e
m
p
a
r
;
 

 %m
ac

ro
 
gr

;
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

/
*
 
 
S
U
B
R
O
U
T
I
N
E
 
G
R
 

  
 
 
 
C
o
m
p
u
t
e
s
 
p
r
o
b
a
b
i
l
i
t
y
 
f
u
n
c
t
i
o
n
s
 
f
o
r
 
g
r
a
d
e
d
 
r
e
s
p
o
n
s
e
 

 
 
 
 
m
o
d
e
l
 

*
/
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

  
 
 
 
d
o
;
 

 
 
 
 
i
f
 
r
e
s
p
 
=
 
 
(
n
c
a
t
[
j
]
 
-
 
1)

 
t
h
e
n
 

 
 
 
 
 
 
 
x
x
=
1/

(
1+

e
x
p
(
-
&
d
*
p
{
j
,
1}

*
(
t
h
e
t
a
1
-
p
{
j
,
r
e
s
p
+
1}

)
)
)
;
 

 
 
 
 
e
l
s
e
 
i
f
 
r
e
s
p
=
0 

t
h
e
n
 

 
 
 
 
 
 
 
x
x
=
1-

1/
(
1+

e
x
p
(
-
&
d
*
p
{
j
,
1}

*
(
t
h
e
t
a
1
-
p
{
j
,
2}

)
)
)
;
 

 
 
 
 
e
l
s
e
 

 
 
 
 
 
 
 
x
x
=
1/

(
1+

e
x
p
(
-
&
d
*
p
{
j
,
1}

*
(
t
h
e
t
a
1
-
p
{
j
,
r
e
s
p
+
1}

)
)
)
 

 
 
 
 
 
 
 
 
 
 
 
-
1/

(
1+

e
x
p
(
-
&
d
*
p
{
j
,
1}

*
(
t
h
e
t
a
1
-
p
{
j
,
r
e
s
p
+
2}

)
)
)
;
 

 
e
n
d
;
 

%m
en

d 
g
r
;
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%m
ac

ro
 
di

;
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

/
*
 
 
S
U
B
R
O
U
T
I
N
E
 
D
I
 

  
 
 
 
C
o
m
p
u
t
e
s
 
p
r
o
b
a
b
i
l
i
t
y
 
f
u
n
c
t
i
o
n
s
 
f
o
r
 
u
n
i
d
i
m
e
n
s
i
o
n
a
l
 

 
 
 
 
3
P
L
 
d
i
c
h
o
t
o
m
o
u
s
l
y
 
s
c
o
r
e
d
 
m
o
d
e
l
 
 

*
/
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

 
 
 
 
 
d
o
;
 

 
 

 
x
x
=
.;

 
 
 
 
 
 

 
x
x
=
p
{
j
,
3}

+
(
1-

p
{
j
,
3}

)
/
(
1+

e
x
p
(
-
&
d
*
p
{
j
,
1}

*
(
t
h
e
t
a
1
-
p
{
j
,
2}

)
)
)
;
 

 
 
 

 
i
f
 
r
e
s
p
=
0 

t
h
e
n
 
x
x
=
1-

x
x
;
 

 
 
 

 
e
n
d
;
 

 %m
en

d 
d
i
;
 

 %m
ac

ro
 
md

;
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

/
*
 
 
S
U
B
R
O
U
T
I
N
E
 
M
D
 

  
 
 
 
C
o
m
p
u
t
e
s
 
p
r
o
b
a
b
i
l
i
t
y
 
f
u
n
c
t
i
o
n
s
 
f
o
r
 
m
u
l
t
i
d
i
m
e
n
s
i
o
n
a
l
 

d
i
c
h
o
t
o
m
o
u
s
l
y
 
s
c
o
r
e
d
 
m
o
d
e
l
 
w
i
t
h
 
p
s
e
u
d
o
-
g
u
e
s
s
i
n
g
 
p
a
r
a
m
e
t
e
r
 
 

*
/
 

 /
*
 
 
P
a
r
a
m
e
t
e
r
s
 
i
n
 
p
a
r
a
m
e
t
e
r
 
l
i
s
t
 
a
r
e
 
i
n
 
t
h
e
 
f
o
l
l
o
w
i
n
g
 
s
e
q
u
e
n
c
e
:
 

 
 
 
 
a
1
,
 
a
2
,
 
.
.
.
 
,
a
p
,
 
b
e
t
a
_
0
,
 
c
 

 
 

 
 
 
 
w
h
e
r
e
 
a
1
.
.
.
a
p
 
a
r
e
 
t
h
e
 
d
i
s
c
r
i
m
i
n
a
t
i
o
n
 
p
a
r
a
m
e
t
e
r
s
 
f
o
r
 
t
h
e
 
p
 
d
i
m
e
n
s
i
o
n
s
 

 
 
 
 
b
e
t
a
_
0
 
i
s
 
t
h
e
 
i
n
t
e
r
c
e
p
t
 
p
a
r
a
m
e
t
e
r
 
(
r
e
l
a
t
e
d
 
t
o
 
i
t
e
m
 
d
i
f
f
i
c
u
l
t
y
)
 

 
 
 
 
c
 
i
s
 
t
h
e
 
p
s
e
u
d
o
-
g
u
e
s
s
i
n
g
 
p
a
r
a
m
e
t
e
r
 
*
/
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

  
 
 
 
 
 
d
o
;
 

  
 
 
 
 
 
/
*
 
 
S
t
e
p
 
1
:
 
 
A
s
s
i
g
n
 
t
h
e
 
b
e
t
a
_
0
 
v
a
l
u
e
 
t
o
 
t
h
e
 
a
r
g
u
m
e
n
t
 
*
/
 

 
 
 
 
 
 
a
r
g
m
n
t
 
=
 
p
{
j
,
%
e
v
a
l
(
&
n
d
i
m
s
+
1)

}
;
 

  
 
 
 
 
 
/
*
 
 
S
t
e
p
 
2
:
 
 
A
c
c
u
m
u
l
a
t
e
 
t
h
e
 
t
e
r
m
s
 
w
i
t
h
 
d
i
s
c
r
i
m
i
n
a
t
i
o
n
 
p
a
r
a
m
e
t
e
r
s
 
*
/
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d
o
 
t
h
t
 
=
 
1 

t
o
 
&
n
d
i
m
s
;
 
 
 

 
 
 
 
 
 
a
r
g
m
n
t
 
=
 
a
r
g
m
n
t
 
+
 
p
{
j
,
t
h
t
}
*
t
h
e
t
a
(
t
h
t
)
;
 

 
 
 
e
n
d
;
 

  
 
 
/
*
 
 
S
t
e
p
 
3
:
 
 
I
d
e
n
t
i
f
y
 
c
 
p
a
r
a
m
e
t
e
r
 
*
/
 

 
 
 
c
p
a
r
m
 
=
 
p
{
j
,
%
e
v
a
l
(
&
n
d
i
m
s
+
2)

}
;
 

  
 
 
 
 
 
x
x
 
=
 
c
p
a
r
m
 
+
 
(
1 

-
 
c
p
a
r
m
)
/
(
1 

+
 
e
x
p
(
-
&
d
*
(
 
a
r
g
m
n
t
 
)
)
)
;
 
 

 
 
 
 
 
 
i
f
 
r
e
s
p
=
0 

t
h
e
n
 
x
x
=
1-

x
x
;
 

 
 
 
 
 
 
e
n
d
;
 

%m
en

d 
m
d
;
 

  %m
ac

ro
 
me

rg
eg

en
;
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

/
*
 
 
S
U
B
R
O
U
T
I
N
E
 
M
I
S
C
 

  
 
 
 
M
e
r
g
e
 
i
t
e
m
 
m
o
d
e
l
 
a
n
d
 
n
u
m
b
e
r
 
o
f
 
c
a
t
e
g
o
r
i
e
s
 
i
n
f
o
r
m
a
t
i
o
n
 

 
 
 
 
 

 
 
 
 
I
N
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
M
O
D
E
L
_
T
Y
P
E
 

 
 

 
 

 
 
N
C
A
T
_
I
N
F
O
 

 
 
 
 
O
U
T
P
U
T
 
D
A
T
A
S
E
T
:
 
 
M
I
S
C
 

*
/
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

 d
a
t
a
 
m
i
s
c
;
 

s
e
t
 
m
o
d
e
l
_
t
y
p
e
;
 

s
e
t
 
n
c
a
t
_
i
n
f
o
;
 

r
u
n
;
 

  *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

/
*
 
 
S
U
B
R
O
U
T
I
N
E
 
M
E
R
G
E
P
A
R
M
S
 

 I
N
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
I
T
E
M
_
P
A
R
,
 
T
H
E
T
A
S
,
 
M
I
S
C
 

O
U
T
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
P
A
R
M
S
 

 T
h
i
s
 
s
u
b
r
o
u
t
i
n
e
 
c
r
e
a
t
e
s
 
a
 
m
a
t
r
i
x
 
w
h
e
r
e
 
t
h
e
 
r
o
w
 
v
e
c
t
o
r
 
o
f
 
i
t
e
m
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p
a
r
a
m
e
t
e
r
s
 
i
s
 
r
e
p
e
a
t
e
d
 
&
n
s
u
b
j
 
t
i
m
e
s
 
a
l
o
n
g
s
i
d
e
 
a
 
s
u
b
m
a
t
r
i
x
 

c
o
n
s
i
s
t
i
n
g
 
o
f
 
t
h
e
 
g
e
n
e
r
a
t
e
d
 
t
h
e
t
a
 
v
a
l
u
e
s
 
t
h
e
t
a
_
1
 
.
.
.
.
 
t
h
e
t
a
_
p
 

 *
/
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

 d
a
t
a
 
p
a
r
m
s
;
 

o
n
e
=
1;

 
 
 
 
/
*
 
 
s
e
t
 
p
o
i
n
t
e
r
 
t
o
 
o
n
e
 
*
/
 

m
e
r
g
e
 
t
h
e
t
a
s
;
 

s
e
t
 
i
t
e
m
_
p
a
r
 
p
o
i
n
t
=
o
n
e
;
 

s
e
t
 
m
i
s
c
 
p
o
i
n
t
=
o
n
e
;
 

r
u
n
;
 

%m
en

d 
m
e
r
g
e
g
e
n
;
 

 %m
ac

ro
 
ge

nd
at

a;
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

/
*
 
 
S
U
B
R
O
U
T
I
N
E
 
G
E
N
D
A
T
A
 

  
 
 
 
S
i
m
u
l
a
t
e
s
 
I
R
T
 
d
a
t
a
 
a
c
c
o
r
d
i
n
g
 
t
o
 
s
p
e
c
i
f
i
e
d
 
m
o
d
e
l
s
 

  
 
 
 
I
N
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
P
A
R
M
S
 

 
 
 
 
I
N
P
U
T
 
M
A
C
R
O
 
V
A
R
I
A
B
L
E
S
:
 
 
&
N
D
I
M
S
,
 
&
N
I
T
E
M
S
,
 
&
n
p
a
r
m
s
,
 

 
 

 
 

 
 

 
&
n
p
a
r
m
s
,
 
&
S
E
E
D
R
E
S
P
 

 
 
 
 
O
U
T
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
G
E
N
_
D
A
T
A
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S
E
E
D
S
 

*
/
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

d
a
t
a
 
g
e
n
_
d
a
t
a
 
s
e
e
d
s
 
(
k
e
e
p
=
s
e
e
d
)
;
 

  
s
e
t
 
p
a
r
m
s
;
 

 
a
r
r
a
y
 
t
h
e
t
a
{
&
n
d
i
m
s
}
 
t
h
e
t
a
1
-
t
h
e
t
a
&
n
d
i
m
s
;
 

 
a
r
r
a
y
 
p
{
&
n
i
t
e
m
s
,
&
n
p
a
r
m
s
}
 
p
1
-
p
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
n
p
a
r
m
s
)
;
 

 
a
r
r
a
y
 
i
x
{
&
n
i
t
e
m
s
}
 
i
x
1
-
i
x
&
n
i
t
e
m
s
;
 

 
a
r
r
a
y
 
n
c
a
t
{
&
n
i
t
e
m
s
}
 
n
c
a
t
1
-
n
c
a
t
&
n
i
t
e
m
s
;
 

 
a
r
r
a
y
 
m
o
d
e
l
{
&
n
i
t
e
m
s
}
 
m
o
d
e
l
1
-
m
o
d
e
l
&
n
i
t
e
m
s
;
 

 
a
r
r
a
y
 
c
u
m
p
r
o
b
{
*
}
 
c
u
m
p
r
o
b
1
-
c
u
m
p
r
o
b
%
e
v
a
l
(
&
m
a
x
c
a
t
)
;
 

 
 
 
 
 

 
r
e
t
a
i
n
 
s
e
e
d
 
&
s
e
e
d
r
e
s
p
;
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/
*
 
 
A
l
l
 
u
n
i
d
i
m
e
n
s
i
o
n
a
l
 
m
o
d
e
l
s
 
u
s
e
 
t
h
e
t
a
1
 
a
s
 
t
h
e
 
l
a
t
e
n
t
 
v
a
r
i
a
b
l
e
 
*
/
 

 
/
*
 
 
M
u
l
t
i
d
i
m
e
n
s
i
o
n
a
l
 
m
o
d
e
l
s
 
m
a
y
 
u
s
e
 
t
h
e
t
a
1
 
t
h
r
o
u
g
h
 
t
h
e
t
a
&
n
d
i
m
s
 
*
/
 

  
d
o
 
j
=
1 

t
o
 
&
n
i
t
e
m
s
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
o
 
k
=
1 

t
o
 
&
m
a
x
c
a
t
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c
u
m
p
r
o
b
[
k
]
=
.;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
o
 
r
e
s
p
=
0 

t
o
 
n
c
a
t
{
j
}
-
1;

 
 

 
 

 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%
di

;
 

 
 

 
 

 
e
n
d
;
 

 
 

 
 

e
l
s
e
 
i
f
 
m
o
d
e
l
[
j
]
=
"
g
r
"
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
%
gr

;
 

 
 

 
 

 
e
n
d
;
 

 
 

 
 

e
l
s
e
 
i
f
 
m
o
d
e
l
[
j
]
=
"
m
d
"
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
%
md

;
 

 
 

 
 

 
e
n
d
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
r
e
s
p
=
0 

t
h
e
n
 
c
u
m
p
r
o
b
{
1}

=
x
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
l
s
e
 
c
u
m
p
r
o
b
{
r
e
s
p
+
1}

=
x
x
+
c
u
m
p
r
o
b
{
r
e
s
p
}
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

  
 

 
c
a
l
l
 
r
a
n
u
n
i
(
s
e
e
d
,
r
0
1
)
;
 

  
 

 
 
 
 
d
o
 
r
e
s
p
=
1 

t
o
 
n
c
a
t
{
j
}
-
1;

 
 
 
 
 
 
 
 
 
 
 
 
 
 

i
f
 
r
e
s
p
=
1 

a
n
d
 
(
1-

r
0
1
)
 
<
=
 
c
u
m
p
r
o
b
{
r
e
s
p
}
 
t
h
e
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i
x
{
j
}
=
0;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
l
s
e
 
i
f
 
(
1-

r
0
1
)
 
>
 
c
u
m
p
r
o
b
{
r
e
s
p
}
 
a
n
d
 
(
1-

r
0
1
)
 
<
=
 
c
u
m
p
r
o
b
{
r
e
s
p
+
1}

 
t
h
e
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
x
{
j
}
=
r
e
s
p
;
 

 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 

 
 

 
 

e
n
d
;
 
 

  
 

 
/
*
f
i
l
e
 
w
r
k
d
i
r
(
&
o
u
t
f
i
l
e
)
;
 
 

 
 
 
 
 
 
 
 
 
 
 
 
p
u
t
 
(
i
x
1
-
i
x
2
0
)
 
(
1
.
)
;
*
/
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r
u
n
;
 

 %m
en

d 
g
e
n
d
a
t
a
;
 

 %m
ac

ro
 
qu

ad
;
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

/
*
 
 
S
U
B
R
O
U
T
I
N
E
 
Q
U
A
D
 

  
 
 
 
C
o
n
f
i
g
u
r
e
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
a
n
d
 
p
r
i
o
r
 
w
e
i
g
h
t
s
 

  
 
 
 
I
N
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
<
N
O
N
E
>
 

 
 
 
 
I
N
P
U
T
 
M
A
C
R
O
 
V
A
R
I
A
B
L
E
S
:
 
 
&
N
Q
P
T
,
 
&
S
I
G
M
A
,
 
&
M
E
A
N
 

 
 
 
 
O
U
T
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
Q
U
A
D
 

*
/
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

 d
a
t
a
 
q
u
a
d
;
 

a
r
r
a
y
 
q
p
t
{
&
n
q
p
t
}
;
 

a
r
r
a
y
 
p
r
i
o
r
{
&
n
q
p
t
}
;
 

 /
*
 
 
C
o
m
p
u
t
e
 
i
n
c
r
e
m
e
n
t
 
f
o
r
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
*
/
 

x
i
n
c
=
&
x
i
n
c
;
 

 /
*
 
 
A
s
s
i
g
n
 
v
a
l
u
e
s
 
f
o
r
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
,
 
s
t
o
r
e
 
i
n
 
q
p
t
{
}
 
a
r
r
a
y
 
*
/
 

 d
o
 
j
=
1 

t
o
 
&
n
q
p
t
;
 

 
 
 
 
 
 
 
 
q
p
t
{
j
}
=
-
&
u
b
+
(
j
-
1)

*
x
i
n
c
;
 

e
n
d
;
 

 a
r
g
=
2*

&
s
i
g
m
a
2
;
 

p
i
 
=
 
3.

14
15

;
 

t
o
t
a
l
=
0;

 
 /
*
 
 
D
e
t
e
r
m
i
n
e
 
o
r
d
i
n
a
t
e
s
 
o
f
 
n
o
r
m
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
a
t
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
*
/
 

/
*
 
 
I
f
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
i
o
n
 
i
s
 
b
y
 
M
L
,
 
a
s
s
i
g
n
 
a
 
u
n
i
f
o
r
m
 
p
r
i
o
r
,
 
e
l
s
e
 
a
s
s
i
g
n
 

 
 
 
 
a
 
n
o
r
m
a
l
 
p
r
i
o
r
 
*
/
 

 d
o
 
j
=
1 

t
o
 
&
n
q
p
t
;
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i
f
 
&
e
s
t
=
1 

o
r
 
&
e
s
t
=
4 

t
h
e
n
 
d
o
;
 

 
 

 
 
 

 
p
r
i
o
r
{
j
}
=
1;

 
 

 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 

 
 
e
l
s
e
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 

 
p
r
i
o
r
{
j
}
=
(
1/

s
q
r
t
(
a
r
g
*
p
i
)
)
*
e
x
p
(
-
(
q
p
t
{
j
}
-
&
m
e
a
n
)
*
*
2/

a
r
g
)
;
 

 
 

 
 

e
n
d
;
 

 
 
 
 
 
 
 
 
 
 

e
n
d
;
 

 r
u
n
;
 

  %m
en

d 
q
u
a
d
;
 

 %m
ac

ro
 
qu

ad
gr

id
;
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

/
*
 
 
S
U
B
R
O
U
T
I
N
E
 
Q
U
A
D
G
R
I
D
 

  
 
 
 
C
o
n
f
i
g
u
r
e
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
a
n
d
 
p
r
i
o
r
 
w
e
i
g
h
t
s
 
f
o
r
 
f
i
n
e
-
s
c
a
l
e
d
 

 
q
u
a
d
r
a
t
u
r
e
 
g
r
i
d
 

  
 
 
 
I
N
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
<
N
O
N
E
>
 

 
 
 
 
I
N
P
U
T
 
M
A
C
R
O
 
V
A
R
I
A
B
L
E
S
:
 
 
&
N
Q
P
T
,
 
&
S
I
G
M
A
,
 
&
M
E
A
N
,
 
&
Q
F
I
N
E
 

 
 
 
 
O
U
T
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
Q
U
A
D
G
R
I
D
 

*
/
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

 %
l
e
t
 
g
r
i
d
n
u
m
s
 
=
 
%
e
v
a
l
(
&
n
q
p
t
 
*
 
&
q
f
i
n
e
)
;
 

 d
a
t
a
 
q
u
a
d
g
r
i
d
;
 

 
a
r
r
a
y
 
q
g
r
i
d
{
&
n
q
p
t
,
&
q
f
i
n
e
}
 
 
q
g
r
i
d
1
-
q
g
r
i
d
&
g
r
i
d
n
u
m
s
;
 
/
*
 
Q
u
a
d
 
p
o
i
n
t
s
 
*
/
 

 
a
r
r
a
y
 
p
g
r
i
d
{
&
n
q
p
t
,
&
q
f
i
n
e
}
 
 
p
g
r
i
d
1
-
p
g
r
i
d
&
g
r
i
d
n
u
m
s
;
 
/
*
 
P
r
i
o
r
s
 
*
/
 

  
/
*
 
 
C
o
a
r
s
e
-
s
c
a
l
e
d
 
i
n
c
r
e
m
e
n
t
 
*
/
 

 
x
i
n
c
 
=
 
&
x
i
n
c
;
 

  
/
*
 
 
C
o
m
p
u
t
e
 
f
i
n
e
-
s
c
a
l
e
d
 
i
n
c
r
e
m
e
n
t
 
f
o
r
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
*
/
 

 
 
 
 
g
r
i
d
i
n
c
=
%
s
y
s
e
v
a
l
f
(
&
x
i
n
c
/
&
q
f
i
n
e
)
;
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/
*
 
 
A
s
s
i
g
n
 
v
a
l
u
e
s
 
f
o
r
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
,
 
s
t
o
r
e
 
i
n
 
q
p
t
{
}
 
a
r
r
a
y
 
*
/
 

  
d
o
 
j
=
1 

t
o
 
&
n
q
p
t
;
 

 
 

d
o
 
k
=
1 

t
o
 
&
q
f
i
n
e
;
 

 
 
 
 
 
 
 
 
 

q
g
r
i
d
{
j
,
k
}
=
-
&
u
b
 
+
 
(
j
-
1)

*
x
i
n
c
 
+
 
(
k
-
1)

*
g
r
i
d
i
n
c
;
 

 
 

e
n
d
;
 

 
e
n
d
;
 

  
a
r
g
=
2*

&
s
i
g
m
a
2
;
 

 
p
i
 
=
 
3.

14
15

9;
 

 
t
o
t
a
l
=
0;

 
  

/
*
 
 
D
e
t
e
r
m
i
n
e
 
o
r
d
i
n
a
t
e
s
 
o
f
 
n
o
r
m
a
l
 
d
i
s
t
r
i
b
u
t
i
o
n
 
a
t
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
*
/
 

  
d
o
 
j
=
1 

t
o
 
&
n
q
p
t
;
 

 
 

d
o
 
k
=
1 

t
o
 
&
q
f
i
n
e
;
 

 
 

 
i
f
 
&
e
s
t
=
1 

o
r
 
&
e
s
t
=
4 

t
h
e
n
 
d
o
;
 

 
 

 
 

p
g
r
i
d
{
j
,
k
}
=
1;

 
 

 
 

 
e
n
d
;
 

 
 

 
e
l
s
e
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 

 
p
g
r
i
d
{
j
,
k
}
=
(
1/

s
q
r
t
(
a
r
g
*
p
i
)
)
*
e
x
p
(
-
(
q
g
r
i
d
{
j
,
k
}
-
&
m
e
a
n
)
*
*
2/

a
r
g
)
;
 

 
 

 
 

e
n
d
;
 

 
 
 
 
 
 
 
 
 
 
 

 
 

e
n
d
;
 

 
e
n
d
;
 

  
 

 
r
u
n
;
 

 %m
en

d 
q
u
a
d
g
r
i
d
;
 

  %m
ac

ro
 
me

rg
ea

bl
;
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

/
*
 
 
S
U
B
R
O
U
T
I
N
E
 
M
E
R
G
E
A
B
L
 

  
 
 
 
M
e
r
g
e
 
d
a
t
a
s
e
t
s
 
f
o
r
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
i
o
n
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I
N
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
G
E
N
_
D
A
T
A
,
 
I
T
E
M
_
P
A
R
,
 
M
I
S
C
,
 
Q
U
A
D
 

 
 
 
 
I
N
P
U
T
 
M
A
C
R
O
 
V
A
R
I
A
B
L
E
S
:
 
 
&
N
D
I
M
S
 

 
 
 
 
O
U
T
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
M
E
R
G
E
A
B
L
 

*
/
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

 /
*
 
 
M
e
r
g
e
 
d
a
t
a
s
e
t
s
 
f
o
r
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
i
o
n
 
*
/
 

 d
a
t
a
 
m
e
r
g
e
a
b
l
;
 

o
n
e
=
1;

 
 
 
 
/
*
 
 
s
e
t
 
p
o
i
n
t
e
r
 
t
o
 
o
n
e
 
*
/
 

m
e
r
g
e
 
g
e
n
_
d
a
t
a
;
 
 
 
/
*
 
 
D
a
t
a
s
e
t
 
w
i
t
h
 
i
t
e
m
 
r
e
s
p
o
n
s
e
s
 
*
/
 

s
e
t
 
i
t
e
m
_
p
a
r
 
p
o
i
n
t
=
o
n
e
;
 
 
/
*
 
 
I
t
e
m
 
p
a
r
a
m
e
t
e
r
s
 
*
/
 

s
e
t
 
m
i
s
c
 
p
o
i
n
t
=
o
n
e
;
 
 
 
 
 
 
/
*
 
 
M
o
d
e
l
 
t
y
p
e
 
a
n
d
 
#
 
o
f
 
c
a
t
e
g
o
r
i
e
s
 
i
n
f
o
r
m
a
t
i
o
n
 
*
/
 

s
e
t
 
q
u
a
d
 
p
o
i
n
t
=
o
n
e
;
 
 
 
/
*
 
 
Q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
a
n
d
 
p
r
i
o
r
s
 
*
/
 

r
e
n
a
m
e
 
t
h
e
t
a
1
-
t
h
e
t
a
&
n
d
i
m
s
 
=
 
t
r
u
e
1
-
t
r
u
e
&
n
d
i
m
s
;
 
 

r
u
n
;
 

 %m
en

d 
m
e
r
g
e
a
b
l
;
 

 %m
ac

ro
 
li

ke
ho

od
;
 

 /
*
 
 
C
a
l
c
u
l
a
t
e
 
l
i
k
e
l
i
h
o
o
d
 
f
u
n
c
t
i
o
n
s
 
i
n
 
C
A
T
 
e
n
v
i
r
o
n
m
e
n
t
 
*
/
 

 d
a
t
a
 
l
i
k
e
h
o
o
d
;
 

s
e
t
 
m
e
r
g
e
a
b
l
;
 

 a
r
r
a
y
 
m
o
d
e
l
{
&
n
i
t
e
m
s
}
;
 

a
r
r
a
y
 
n
c
a
t
{
&
n
i
t
e
m
s
}
;
 

a
r
r
a
y
 
i
x
{
&
n
i
t
e
m
s
}
 
i
x
1
-
i
x
&
n
i
t
e
m
s
;
 

a
r
r
a
y
 
p
{
&
n
i
t
e
m
s
,
&
n
p
a
r
m
s
}
 
p
1
-
p
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
n
p
a
r
m
s
)
;
 

a
r
r
a
y
 
q
p
t
{
&
n
q
p
t
}
 
q
p
t
1
-
q
p
t
&
n
q
p
t
;
 

a
r
r
a
y
 
p
r
i
o
r
{
&
n
q
p
t
}
 
p
r
i
o
r
1
-
p
r
i
o
r
&
n
q
p
t
;
 

a
r
r
a
y
 
l
k
{
%
e
v
a
l
(
&
n
q
p
t
 
+
 
1)

}
;
 

  *
 
c
o
m
p
u
t
e
 
l
i
k
e
l
i
h
o
o
d
 
o
f
 
r
e
s
p
o
n
s
e
 
p
a
t
t
e
r
n
 
a
t
 
t
h
e
t
a
 
p
o
i
n
t
s
 
-
 
h
a
n
d
l
e
s
 
m
i
x
e
d
 

m
o
d
e
l
s
;
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*
 
T
o
 
d
o
 
s
o
 
m
e
a
n
s
 
t
h
a
t
 
t
h
e
 
d
a
t
a
s
e
t
 
w
e
i
g
h
t
s
 
i
s
 
a
t
t
a
c
h
e
d
 
t
o
 
e
a
c
h
 
r
e
c
o
r
d
;
 

 
 
d
o
 
i
=
1 

t
o
 
&
n
q
p
t
;
 

 
 
 
 
 
 
 
 
l
k
{
i
}
=
1;

 
 
 
 
 
 
 
 
 
d
o
 
j
=
1 

t
o
 
&
n
i
t
e
m
s
;
 

 
 
 
 
 
 
 
 
 
 
 
r
e
s
p
=
i
x
{
j
}
;
 

 
 
 
 
 
 
 
 
 
 
 
i
f
 
r
e
s
p
 
~
=
 
&
m
i
s
s
i
n
g
 
t
h
e
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
t
h
e
t
a
1
=
q
p
t
[
i
]
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%
di

;
 

 
 

 
 

 
e
n
d
;
 

 
 

 
 

 
e
l
s
e
 
i
f
 
m
o
d
e
l
[
j
]
=
"
g
r
"
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
%
gr

;
 

 
 

 
 

 
e
n
d
;
 

 
 

 
 
 
 
 
 
e
l
s
e
 
i
f
 
m
o
d
e
l
[
j
]
=
"
p
c
"
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
%
pc

;
 

 
 

 
 

 
e
n
d
;
 

 
 

 
 

 
e
l
s
e
 
i
f
 
m
o
d
e
l
[
j
]
=
"
g
p
c
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
%
gp

c;
 

 
 

 
 

 
e
n
d
;
 

 
 

 
 

 
e
l
s
e
 
i
f
 
m
o
d
e
l
[
j
]
=
"
m
d
"
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
%
di

;
 

 
 

 
 

 
e
n
d
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
l
k
{
i
}
=
l
k
{
i
}
*
x
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 
 

 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 
e
n
d
;
 

%m
en

d 
l
i
k
e
h
o
o
d
;
 

 %m
ac

ro
 
ea

pe
st

;
 

/
*
 
 
E
s
t
i
m
a
t
e
 
a
b
i
l
i
t
y
 
u
s
i
n
g
 
E
A
P
 
*
/
 

 d
a
t
a
 
e
a
p
f
u
l
l
 
e
a
p
(
k
e
e
p
=
e
a
p
 
e
a
p
v
a
r
 
t
r
u
e
1
)
;
 

s
e
t
 
l
i
k
e
h
o
o
d
;
 

 a
r
r
a
y
 
m
o
d
e
l
{
&
n
i
t
e
m
s
}
;
 

a
r
r
a
y
 
n
c
a
t
{
&
n
i
t
e
m
s
}
;
 

a
r
r
a
y
 
i
x
{
&
n
i
t
e
m
s
}
 
i
x
1
-
i
x
&
n
i
t
e
m
s
;
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a
r
r
a
y
 
p
{
&
n
i
t
e
m
s
,
&
n
p
a
r
m
s
}
 
p
1
-
p
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
n
p
a
r
m
s
)
;
 

a
r
r
a
y
 
q
p
t
{
&
n
q
p
t
}
 
q
p
t
1
-
q
p
t
&
n
q
p
t
;
 

a
r
r
a
y
 
p
r
i
o
r
{
&
n
q
p
t
}
 
p
r
i
o
r
1
-
p
r
i
o
r
&
n
q
p
t
;
 

a
r
r
a
y
 
l
k
{
%
e
v
a
l
(
&
n
q
p
t
 
+
 
1)

}
;
 

 /
*
 
 
N
o
w
 
c
o
m
p
u
t
e
 
E
A
P
 
a
n
d
 
v
a
r
{
E
A
P
}
 
*
/
 

 r
e
t
a
i
n
 
e
a
p
m
e
a
n
 
(
0)

 
e
a
p
v
a
r
 
(
0)

;
 

z
z
=
0;

 
z
=
0;

 
x
x
=
0;

 
y
y
=
0;

 
s
s
u
m
=
0;

 
 d
o
 
i
=
1 

t
o
 
&
n
q
p
t
;
 

 
x
x
 
=
 
x
x
 
+
 
l
k
{
i
}
*
q
p
t
{
i
}
*
p
r
i
o
r
{
i
}
;
 

 
y
y
 
=
 
l
k
{
i
}
*
p
r
i
o
r
{
i
}
;
 

 
s
s
u
m
 
=
 
s
s
u
m
+
y
y
;
 

e
n
d
;
 

 e
a
p
 
=
 
x
x
/
s
s
u
m
;
 

 d
o
 
i
=
1 

t
o
 
&
n
q
p
t
;
 

 
z
 
=
 
z
 
+
 
l
k
{
i
}
*
p
r
i
o
r
{
i
}
*
(
q
p
t
{
i
}
 
-
 
(
x
x
/
s
s
u
m
)
)
*
*
2;

 
e
n
d
;
 

 e
a
p
v
a
r
 
=
 
(
z
/
s
s
u
m
)
;
 

r
u
n
;
 

 %m
en

d 
e
a
p
e
s
t
;
 

 %m
ac

ro
 
in

fo
fn

;
 

/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 

/
*
*
*
*
 
 
I
t
e
m
 
i
n
f
o
r
m
a
t
i
o
n
 
f
u
n
c
t
i
o
n
 
r
o
u
t
i
n
e
 
*
*
*
*
/
 

/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 

 /
*
 
 
C
o
m
p
u
t
e
s
 
i
t
e
m
 
i
n
f
o
r
m
a
t
i
o
n
 
f
o
r
 
d
i
c
h
o
t
o
m
o
u
s
 
a
n
d
 

 
 
 
 
g
r
a
d
e
d
 
r
e
s
p
o
n
s
e
 
i
t
e
m
s
 
*
/
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 /
*
 
 
T
r
a
n
s
p
o
s
e
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
*
/
 

p
r
o
c
 
t
r
a
n
s
p
o
s
e
 
d
a
t
a
=
q
u
a
d
 
(
k
e
e
p
 
=
 
q
p
t
1
-
q
p
t
&
n
q
p
t
)
 
o
u
t
=
q
u
a
d
t
 
p
r
e
f
i
x
=
q
u
a
d
;
 

r
u
n
;
 

 d
a
t
a
 
q
u
a
d
t
;
 

 
s
e
t
 
q
u
a
d
t
;
 

 
r
e
n
a
m
e
 
q
u
a
d
1
 
=
 
t
h
e
t
a
1
;
 

r
u
n
;
 

 d
a
t
a
 
i
n
f
o
f
u
l
l
 
i
n
f
o
f
n
 
(
k
e
e
p
=
t
h
e
t
a
1
 
i
n
f
o
1
-
i
n
f
o
&
n
i
t
e
m
s
)
;
 

 
o
n
e
=
1;

 
 
 
 
/
*
 
 
s
e
t
 
p
o
i
n
t
e
r
 
t
o
 
o
n
e
 
*
/
 

 
m
e
r
g
e
 
q
u
a
d
t
;
 

 
s
e
t
 
i
t
e
m
_
p
a
r
 
p
o
i
n
t
=
o
n
e
;
 
 
 

 
s
e
t
 
m
o
d
e
l
_
t
y
p
e
 
p
o
i
n
t
=
o
n
e
;
 

 
s
e
t
 
n
c
a
t
_
i
n
f
o
 
p
o
i
n
t
=
o
n
e
;
 

  
a
r
r
a
y
 
t
h
e
t
a
{
&
n
d
i
m
s
}
 
t
h
e
t
a
1
-
t
h
e
t
a
&
n
d
i
m
s
;
 
 
 
 
 
/
*
 
 
F
o
r
 
f
u
t
u
r
e
 
e
x
p
a
n
s
i
o
n
 
t
o
 
M
I
R
T
 
i
t
e
m
 
i
n
f
o
 
*
/
 

 
a
r
r
a
y
 
m
o
d
e
l
{
&
n
i
t
e
m
s
}
;
 

 
a
r
r
a
y
 
n
c
a
t
{
&
n
i
t
e
m
s
}
;
 

 
a
r
r
a
y
 
p
{
&
n
i
t
e
m
s
,
&
n
p
a
r
m
s
}
 
p
1
-
p
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
n
p
a
r
m
s
)
;
 
 

  
/
*
 
 
P
r
o
b
a
b
i
l
i
t
y
 
f
u
n
c
t
i
o
n
s
 
f
o
r
 
e
a
c
h
 
r
e
s
p
o
n
s
e
 
c
a
t
e
g
o
r
y
 
*
/
 
 

 
a
r
r
a
y
 
c
u
m
p
r
o
b
{
*
}
 
c
u
m
p
r
o
b
1
-
c
u
m
p
r
o
b
%
e
v
a
l
(
&
m
a
x
c
a
t
)
;
 

  
/
*
 
 
B
o
u
n
d
a
r
y
 
o
g
i
v
e
s
 
(
e
x
t
e
n
d
 
+
1
 
p
a
s
t
 
#
 
o
f
 
c
a
t
e
g
o
r
i
e
s
)
 
*
/
 
 

 
a
r
r
a
y
 
o
g
i
v
e
{
*
}
 
o
g
i
v
e
1
-
o
g
i
v
e
%
e
v
a
l
(
&
m
a
x
c
a
t
+
1)

;
 
 

  
/
*
 
 
A
l
l
o
c
a
t
e
 
s
p
a
c
e
 
f
o
r
 
i
n
f
o
r
m
a
t
i
o
n
 
f
u
n
c
t
i
o
n
s
 
*
/
 

 
a
r
r
a
y
 
i
n
f
o
{
&
n
i
t
e
m
s
}
 
i
n
f
o
1
-
i
n
f
o
&
n
i
t
e
m
s
;
 

  
/
*
 
 
C
a
l
c
u
l
a
t
e
 
p
r
o
b
a
b
i
l
i
t
y
 
f
u
n
c
t
i
o
n
s
 
*
/
 

  
d
o
 
j
=
1 

t
o
 
&
n
i
t
e
m
s
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
 
k
=
1 

t
o
 
&
m
a
x
c
a
t
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c
u
m
p
r
o
b
[
k
]
=
.;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
 
r
e
s
p
=
0 

t
o
 
n
c
a
t
{
j
}
-
1;
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i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%
di

;
 

 
 

 
 
 
 
 
e
n
d
;
 

 
 

 
 

e
l
s
e
 
i
f
 
m
o
d
e
l
[
j
]
=
"
g
r
"
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
%
gr

;
 

 
 

 
 

e
n
d
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
r
e
s
p
=
0 

t
h
e
n
 
c
u
m
p
r
o
b
{
1}

=
x
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
l
s
e
 
c
u
m
p
r
o
b
{
r
e
s
p
+
1}

=
x
x
+
c
u
m
p
r
o
b
{
r
e
s
p
}
;
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

  
 

 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 

i
n
f
o
[
j
]
 
=
 
(
&
d
*
*
2)

*
(
p
{
j
,
1}

*
*
2)

*
c
u
m
p
r
o
b
{
1}

/
(
1-

c
u
m
p
r
o
b
{
1}

)
*
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
 
(
(
 
(
1-

c
u
m
p
r
o
b
{
1}

)
 
-
 
p
{
j
,
3}

)
*
*
2)

/
(
(
1 

-
 
p
{
j
,
3}

)
*
*
2)

 
)
;
 
 

 
 

 
 
 
 
e
n
d
;
 

  
 
 
 
 
 
 
 
 
 
 
 
i
f
 
m
o
d
e
l
[
j
]
=
"
g
r
"
 
t
h
e
n
 
d
o
;
 

  
 

 
 
 
 
 
 
 
/
*
 
 
N
e
e
d
 
t
o
 
f
i
n
d
 
b
o
u
n
d
a
r
y
 
o
g
i
v
e
s
,
 
o
r
 
P
*
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
c
u
m
p
r
o
b
{
i
}
 
=
 
s
u
m
 
(
f
r
o
m
 
1
 
t
o
 
i
)
 
o
f
 
t
h
e
 
P
(
c
a
t
e
g
o
r
y
)
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
r
e
 
c
a
t
e
g
o
r
y
 
g
o
e
s
 
f
r
o
m
 
1
 
t
o
 
k
 

  
 

 
 
 
 
 
 
 
 
 
 
 
T
h
e
n
 
P
*
(
i
)
 
=
 
1
 
-
 
c
u
m
p
r
o
b
{
i
}
 

 
 

 
 
 
 
 
 
 
*
/
 

  
 

 
 

 
 
/
*
 
F
i
r
s
t
 
a
s
s
i
g
n
 
v
a
l
u
e
 
t
o
 
l
o
w
e
s
t
 
b
o
u
n
d
a
r
y
 
p
o
i
n
t
 
*
/
 

 
 

 
 
 
 
 
 
 
o
g
i
v
e
(
1)

 
=
 
1;

 
 

 
 

 
  

 
 

 
 
 
/
*
 
 
N
o
w
 
f
i
n
d
 
b
o
u
n
d
a
r
y
 
o
g
i
v
e
s
 
f
o
r
 
r
e
m
a
i
n
i
n
g
 
p
o
i
n
t
s
 

 
 

 
 

 
 
 
 
 
 
(
n
o
t
e
 
t
h
a
t
 
l
a
s
t
 
p
o
i
n
t
 
i
s
 
a
l
w
a
y
s
 
e
q
u
a
l
 
t
o
 
z
e
r
o
)
 
*
/
 

  
 

 
 

 
 
d
o
 
i
=
1 

t
o
 
n
c
a
t
(
j
)
;
 

 
 

 
 

 
 
 

 
o
g
i
v
e
(
i
+
1)

=
1-

c
u
m
p
r
o
b
(
i
)
;
 

 
 

 
 

 
 
e
n
d
;
 

 
 

 
 

 
 

 
 
 
 
 
 
/
*
 
 
C
a
l
c
u
l
a
t
e
 
i
n
f
o
r
m
a
t
i
o
n
 
(
s
e
e
 
B
a
k
e
r
 
(
1
9
9
1
)
 
C
h
.
8
 
p
.
 
2
4
6
)
*
/
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
n
f
o
s
u
m
=
0;
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d
o
 
k
=
2 

t
o
 
n
c
a
t
(
j
)
+
1;

 
 

 
 

 
 
 
 
 
 
i
n
f
o
s
u
m
 
=
 
i
n
f
o
s
u
m
 
+
 
(
 
&
d
*
p
{
j
,
1}

 
)
*
*
2 

*
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
 
 
(
 
 
o
g
i
v
e
(
k
-
1)

*
(
1-

o
g
i
v
e
(
k
-
1)

)
 
-
 
o
g
i
v
e
(
k
)
*
(
1-

o
g
i
v
e
(
k
)
)
 
)
*
*
2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
 

 
 

 
 

 
 

 
 
 
 
(
 
 
o
g
i
v
e
(
k
-
1)

 
-
 
o
g
i
v
e
(
k
)
 
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 

 
 
 
 
 
 
 
i
n
f
o
[
j
]
=
i
n
f
o
s
u
m
;
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 

 
 

e
n
d
;
 

  
r
u
n
;
 

 /
*
 
 
T
r
a
n
s
p
o
s
e
 
d
a
t
a
s
e
t
 
s
o
 
t
h
a
t
 
e
a
c
h
 
r
o
w
 
r
e
p
r
e
s
e
n
t
s
 
a
n
d
 
i
t
e
m
,
 
c
o
l
u
m
n
s
 
g
i
v
e
 

 
 
 
 
i
t
e
m
 
i
n
f
o
r
m
a
t
i
o
n
 
a
t
 
e
a
c
h
 
o
f
 
t
h
e
 
&
n
q
p
t
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
*
/
 

 p
r
o
c
 
t
r
a
n
s
p
o
s
e
 
d
a
t
a
=
i
n
f
o
f
n
 
o
u
t
=
i
n
f
o
f
n
 
p
r
e
f
i
x
=
i
n
f
o
;
 

 
v
a
r
 
i
n
f
o
1
-
i
n
f
o
&
n
i
t
e
m
s
;
 

r
u
n
;
 

 d
a
t
a
 
i
n
f
o
f
n
;
 

 
r
e
t
a
i
n
 
i
t
e
m
 
0;

 
 

o
n
e
=
1;

 
 

m
e
r
g
e
 
i
n
f
o
f
n
;
 

 
s
e
t
 
q
u
a
d
 
p
o
i
n
t
=
o
n
e
;
 

 
k
e
e
p
 
i
n
f
o
1
-
i
n
f
o
&
n
q
p
t
 
q
p
t
1
-
q
p
t
&
n
q
p
t
 
i
t
e
m
;
 

 
i
t
e
m
=
i
t
e
m
+
1;

 
 

o
u
t
p
u
t
;
 

r
u
n
;
 

 %m
en

d 
i
n
f
o
f
n
;
 

 %m
ac

ro
 
in

fo
ma

x;
 

/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 

/
*
*
*
*
 
I
d
e
n
t
i
f
y
 
p
o
i
n
t
 
o
f
 
m
a
x
i
m
u
m
 
i
n
f
o
r
m
a
t
i
o
n
 
*
*
*
*
/
 

/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 

 



 

 

195 

d
a
t
a
 
i
n
f
o
m
a
x
;
 

r
e
t
a
i
n
 
i
t
e
m
 
0;

 
s
e
t
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

a
r
r
a
y
 
x
{
&
n
p
a
r
m
s
}
 
x
1
-
x
&
n
p
a
r
m
s
;
 

 i
f
 
m
o
d
e
l
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
t
h
e
t
a
m
a
x
 
=
 
x
{
2}

 
+
 
(
1/

(
&
d
*
x
{
1}

)
)
*
l
o
g
(
0.

5 
+
 
0.

5 
*
 
s
q
r
t
(
1 

+
 
8*

x
{
3}

)
 
)
;
 

 
 
 
 
i
n
f
o
m
a
x
 
=
 
(
 
(
&
d
*
*
2 

*
 
x
{
1}

*
*
2)

 
/
 
(
8 

*
 
(
1 

-
 
x
{
3}

)
*
*
2 

)
 
)
 
*
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
(
 
1 

-
 
20

*
x
{
3}

 
-
 
8*

x
{
3}

*
*
2 

+
 
(
1 

+
 
8*

x
{
3}

)
*
*
(
3/

2)
 
)
;
 

e
n
d
;
 

  i
t
e
m
 
=
 
i
t
e
m
 
+
 
1;

 
o
u
t
p
u
t
;
 

r
u
n
;
 

 %m
en

d 
i
n
f
o
m
a
x
;
 

 %m
ac

ro
 
ca

t;
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

/
*
 
 
S
U
B
R
O
U
T
I
N
E
 
C
A
T
 

  
H
i
g
h
e
s
t
-
l
e
v
e
l
 
m
o
d
u
l
e
 
f
o
r
 
e
x
e
c
u
t
i
n
g
 
a
 
C
A
T
 
a
d
m
i
n
i
s
t
r
a
t
i
o
n
 

  
I
N
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
 
<
n
o
n
e
>
 

 
I
N
P
U
T
 
M
A
C
R
O
 
V
A
R
I
A
B
L
E
S
:
 
 
&
N
S
U
B
J
,
 
&
C
A
T
L
E
N
G
T
H
 

 
O
U
T
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
C
A
T
 
 

*
/
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

  
%
ge

nc
at

2;
 

 
/
*
 
 
S
i
m
u
l
a
t
e
 
e
x
a
m
i
n
e
e
 
r
e
s
p
o
n
s
e
s
 
t
o
 
a
l
l
 
i
t
e
m
s
;
 
C
A
T
 
w
i
l
l
 
s
e
l
e
c
t
 
*
/
 

 
%
qu

ad
;
 

 
 

/
*
 
 
F
i
n
d
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
a
n
d
 
a
s
s
i
g
n
 
p
r
i
o
r
s
 
*
/
 

  
%
qu

ad
gr

id
 
 
 
 
 
 
 
/
*
 
 
F
i
n
e
-
s
c
a
l
e
d
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
a
n
d
 
p
r
i
o
r
s
 
*
/
 

  
/
*
 
 
P
r
e
p
a
r
e
 
i
t
e
m
 
s
e
t
s
 
f
o
r
 
t
h
e
 
C
A
T
 
a
d
m
i
n
i
s
t
r
a
t
i
o
n
 
*
/
 

 
/
*
 
O
r
d
e
r
 
o
f
 
i
n
f
o
f
n
 
a
n
d
 
i
t
e
m
p
r
o
c
 
i
m
p
o
r
t
a
n
t
 
h
e
r
e
!
 
*
/
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/
*
 

 
%
i
n
f
o
f
n
;
 

*
/
 
 

 
%
it

em
pr

oc
;
 

/
*
 

 
%
i
n
f
o
r
o
w
;
 

*
/
 

 
 

 
%
ex

pc
on

;
 

 
 
/
*
 
 
C
r
e
a
t
e
 
r
o
w
 
v
e
c
t
o
r
 
o
f
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
p
a
r
a
m
e
t
e
r
s
 
*
/
 

 /
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 

/
*
 
 
 
 
 
 
 
 
B
E
G
I
N
 
C
A
T
 
A
D
M
I
N
I
S
T
R
A
T
I
O
N
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*
/
 

/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 

  
%
ca

tl
oo

p;
 

  
d
a
t
a
 
c
a
t
;
 

 
 

s
e
t
 
c
a
t
l
o
o
p
;
 

 
r
u
n
;
 

 %m
en

d 
c
a
t
;
 

 %m
ac

ro
 
ca

tl
oo

p;
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

/
*
 
 
S
U
B
R
O
U
T
I
N
E
 
C
A
T
L
O
O
P
 

  
 
 
 
C
o
n
d
u
c
t
s
 
a
 
C
A
T
 
a
d
m
i
n
i
s
t
r
a
t
i
o
n
 
f
o
r
 
e
x
a
m
i
n
e
e
s
.
 
 
A
l
l
o
c
a
t
e
s
 

 
 
 
 
d
a
t
a
 
s
p
a
c
e
 
f
o
r
 
e
a
c
h
 
e
x
a
m
i
n
e
e
,
 
s
e
l
e
c
t
s
 
i
t
e
m
s
,
 
c
o
m
p
u
t
e
s
 
p
r
o
v
i
s
i
o
n
a
l
 

 
 
 
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
e
s
.
 

  
 
 
 
C
a
l
l
s
 
t
h
e
 
f
o
l
l
o
w
i
n
g
 
s
u
b
r
o
u
t
i
n
e
s
:
 

 
 

-
 
 
F
I
N
D
Q
U
A
D
 
 
 
 
 
F
i
n
d
s
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
 
f
o
r
 
c
u
r
r
e
n
t
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
e
 

 
 
 
 
 
 
 
 
-
 
 
I
T
E
M
S
E
L
E
C
T
 
 
 
S
e
l
e
c
t
s
 
i
t
e
m
s
 

 
 

-
 
 
L
I
K
E
H
O
O
D
C
A
T
 
 
C
o
m
p
u
t
e
s
 
l
i
k
e
l
i
h
o
o
d
 
f
u
n
c
t
i
o
n
 
a
f
t
e
r
 
e
a
c
h
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a
d
m
i
n
i
s
t
e
r
e
d
 
i
t
e
m
 

 
 

-
 
 
I
T
E
M
R
E
C
 

 
 
 
 
R
e
c
o
r
d
s
 
i
t
e
m
s
 
e
x
p
o
s
e
d
 
t
o
 
e
x
a
m
i
n
e
e
 
i
n
 
I
T
E
M
_
P
A
R
_
F
U
L
L
 

  
 
 
 
I
N
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
I
T
E
M
_
P
A
R
_
F
U
L
L
,
 
C
A
T
L
O
O
P
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M
A
C
R
O
 
V
A
R
I
A
B
L
E
S
:
 
 
&
C
A
T
L
E
N
G
T
H
,
 
&
n
p
a
r
m
s
,
 
&
I
C
O
U
N
T
E
R
,
 

 
 

 
 

 
 

 
&
n
p
a
r
m
s
,
 

 
 
 
 
O
U
T
P
U
T
 
D
A
T
A
S
E
T
S
:
 
 
C
A
T
L
O
O
P
 

 *
/
 

/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 

  
d
a
t
a
 
g
e
n
_
d
a
t
a
2
;
 

 
 

o
n
e
=
1;

 
 

 
m
e
r
g
e
 
g
e
n
_
d
a
t
a
;
 

*
 

 
s
e
t
 
i
n
f
o
r
o
w
 
p
o
i
n
t
=
o
n
e
;
 

 
 

s
e
t
 
q
u
a
d
 
p
o
i
n
t
=
o
n
e
;
 

 
 

s
e
t
 
q
u
a
d
g
r
i
d
 
p
o
i
n
t
=
o
n
e
;
 

 
 

s
e
t
 
e
x
p
c
o
n
 
p
o
i
n
t
=
o
n
e
;
 

 
 

s
e
t
 
b
i
n
p
t
s
 
p
o
i
n
t
=
o
n
e
;
 

 
r
u
n
;
 

 
  

/
*
 
 
A
l
l
o
c
a
t
e
 
s
p
a
c
e
 
f
o
r
 
e
x
a
m
i
n
e
e
 
r
e
c
o
r
d
 
*
/
 

 
d
a
t
a
 
c
a
t
l
o
o
p
;
 

 
 

s
e
t
 
g
e
n
_
d
a
t
a
2
;
 

 
 
 
 
 
 
 
 
 

 
 

/
*
 
 
E
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
v
a
r
i
a
b
l
e
s
 
*
/
 

 
 

r
e
t
a
i
n
 
e
x
p
o
s
e
_
s
1
-
e
x
p
o
s
e
_
s
%
e
v
a
l
(
&
b
i
n
s
 
*
 
&
n
i
t
e
m
s
)
 
0;

 
 
/
*
 
 
S
e
l
e
c
t
e
d
 
*
/
 

 
 

r
e
t
a
i
n
 
e
x
p
o
s
e
_
a
1
-
e
x
p
o
s
e
_
a
%
e
v
a
l
(
&
b
i
n
s
 
*
 
&
n
i
t
e
m
s
)
 
0;

 
 
/
*
 
 
S
e
l
e
c
t
e
d
 
a
n
d
 
a
d
m
i
n
i
s
t
e
r
e
d
 
*
/
 

 
 

r
e
t
a
i
n
 
s
e
e
d
 
0;

 
 

 
 

 
 

 
/
*
 
 
S
e
e
d
 
f
o
r
 
S
y
m
p
s
o
n
-
H
e
t
t
e
r
 
r
a
n
d
o
m
 
n
u
m
b
e
r
s
 
*
/
 

  
 

/
*
 
 
T
h
e
s
e
 
a
r
r
a
y
s
 
a
r
e
 
f
o
r
 
i
t
e
m
s
 
s
e
l
e
c
t
e
d
 
b
y
 
t
h
e
 
C
A
T
 
*
/
 

 
 

a
r
r
a
y
 
a
d
m
i
n
{
*
}
 
a
d
m
i
n
1
-
a
d
m
i
n
&
c
a
t
l
e
n
g
t
h
;
 
 
/
*
 
I
t
e
m
 
i
d
 
i
n
f
o
 
o
f
 
a
d
m
i
n
i
s
t
e
r
e
d
 
i
t
e
m
s
 
*
/
 

 
 
 
 
 

a
r
r
a
y
 
m
o
d
e
l
{
&
c
a
t
l
e
n
g
t
h
}
 
$
 
m
o
d
e
l
1
-
m
o
d
e
l
&
c
a
t
l
e
n
g
t
h
;
 
/
*
 
I
t
e
m
 
t
y
p
e
 
*
/
 

 
 
 
 
 

a
r
r
a
y
 
n
c
a
t
{
&
c
a
t
l
e
n
g
t
h
}
 
n
c
a
t
1
-
n
c
a
t
&
c
a
t
l
e
n
g
t
h
;
 
 
/
*
 
 
N
u
m
b
e
r
 
o
f
 
c
a
t
e
g
o
r
i
e
s
 
*
/
 

 
 

 
 

 
a
r
r
a
y
 
i
x
{
*
}
 
 
i
x
1
-
i
x
&
c
a
t
l
e
n
g
t
h
;
 
 
 
 
/
*
 
E
x
a
m
i
n
e
e
 
r
e
s
p
o
n
s
e
s
 
t
o
 
i
t
e
m
s
 
*
/
 

 
 

a
r
r
a
y
 
p
r
o
v
{
*
}
 
 
p
r
o
v
1
-
p
r
o
v
&
c
a
t
l
e
n
g
t
h
;
 
 
 
 
/
*
 
P
r
o
v
i
s
i
o
n
a
l
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
e
s
 
*
/
 

 
 
 
 
 

a
r
r
a
y
 
p
{
&
c
a
t
l
e
n
g
t
h
,
&
n
p
a
r
m
s
}
 
p
1
-
p
%
e
v
a
l
(
&
c
a
t
l
e
n
g
t
h
 
*
 
&
n
p
a
r
m
s
)
;
 
/
*
 
I
t
e
m
 
p
a
r
a
m
e
t
e
r
s
 
o
f
 
s
e
l
e
c
t
e
d
 
i
t
e
m
s
 
*
/
 
 

 
 
 
 
 
 
 
 
a
r
r
a
y
 
p
a
r
{
&
n
i
t
e
m
s
,
&
n
p
a
r
m
s
}
 
p
a
r
1
-
p
a
r
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
n
p
a
r
m
s
)
;
 

 *
 

 
a
r
r
a
y
 
i
n
f
o
(
&
n
i
t
e
m
s
,
&
n
q
p
t
)
 
i
n
f
o
1
-
i
n
f
o
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
n
q
p
t
)
;
 
/
*
 
 
I
t
e
m
 
i
n
f
o
r
m
a
t
i
o
n
 
*
/
 

 
 

a
r
r
a
y
 
p
i
c
k
e
d
{
&
n
i
t
e
m
s
}
 
p
i
c
k
e
d
1
 
-
 
p
i
c
k
e
d
&
n
i
t
e
m
s
;
 
 
/
*
 
N
e
w
 
a
r
r
a
y
 
f
o
r
 
%
e
x
a
c
t
 
*
/
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r
r
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y
 
e
x
p
o
s
e
_
s
{
&
n
i
t
e
m
s
,
&
b
i
n
s
}
 
e
x
p
o
s
e
_
s
1
 
-
 
e
x
p
o
s
e
_
s
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
b
i
n
s
)
;
 
/
*
 
E
x
p
o
s
u
r
e
:
 
 

s
e
l
e
c
t
e
d
 
i
t
e
m
s
 
*
/
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r
r
a
y
 
e
x
p
o
s
e
_
a
{
&
n
i
t
e
m
s
,
&
b
i
n
s
}
 
e
x
p
o
s
e
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1
 
-
 
e
x
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o
s
e
_
a
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
b
i
n
s
)
;
 
/
*
 
E
x
p
o
s
u
r
e
:
 
 

s
e
l
e
c
t
e
d
 
&
 
a
d
m
i
n
i
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t
e
r
e
d
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t
e
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s
 
*
/
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r
r
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y
 
e
x
p
c
o
n
{
&
n
i
t
e
m
s
,
&
b
i
n
s
}
 
e
x
p
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o
n
1
 
-
 
e
x
p
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o
n
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
b
i
n
s
)
;
 
/
*
 
E
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 

p
a
r
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m
e
t
e
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s
 
*
/
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r
r
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y
 
b
i
n
p
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(
&
b
i
n
s
)
 
b
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n
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1
 
-
 
b
i
n
p
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&
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s
;
 
/
*
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f
 
p
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s
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o
r
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n
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n
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l
 
e
x
p
o
s
u
r
e
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/
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*
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e
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e
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e
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e
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r
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x
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f
 
s
i
m
u
l
a
t
e
d
 
i
t
e
m
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*
/
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y
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{
&
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}
 
$
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-
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e
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e
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s
;
 
/
*
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t
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m
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p
e
 
*
/
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r
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y
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r
n
c
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{
&
n
i
t
e
m
s
}
 
p
a
r
n
c
a
t
1
-
p
a
r
n
c
a
t
&
n
i
t
e
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s
;
 
 
/
*
 
 
N
u
m
b
e
r
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f
 
c
a
t
e
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r
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s
 
*
/
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y
 
p
a
r
i
x
(
&
n
i
t
e
m
s
)
 
p
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r
i
x
1
-
p
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r
i
x
&
n
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t
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;
 
 
/
*
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d
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/
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e
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e
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r
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i
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y
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n
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/
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y
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{
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n
q
p
t
}
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-
q
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p
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;
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*
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r
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u
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e
 
p
o
i
n
t
s
 
*
/
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y
 
p
r
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{
&
n
q
p
t
}
 
p
r
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r
1
-
p
r
i
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r
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n
q
p
t
;
 
 
 

 
/
*
 
 
P
r
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r
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i
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y
 
*
/
 

 
 

a
r
r
a
y
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l
(
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n
q
p
t
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;
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*
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d
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n
 
*
/
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y
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t
{
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p
t
}
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1
-
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o
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t
&
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p
t
;
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*
 
 
P
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t
e
r
i
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r
 
d
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y
 
*
/
 
 
 

 
 

a
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r
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y
 
c
u
m
p
r
o
b
{
*
}
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u
m
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b
1
-
c
u
m
p
r
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(
&
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;
 

/
*
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u
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e
 
p
r
o
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s
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r
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o
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n
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/
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r
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{
*
}
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o
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(
&
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;
 

 
/
*
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i
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s
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r
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o
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n
 
*
/
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y
 
q
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r
i
d
(
&
n
q
p
t
,
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i
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e
)
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g
r
i
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1
 
-
 
q
g
r
i
d
%
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a
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(
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q
p
t
 
*
 
&
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;
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*
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d
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e
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r
i
d
 
*
/
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y
 
p
g
r
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(
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t
,
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)
 
p
g
r
i
d
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-
 
p
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(
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p
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*
 
&
q
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;
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*
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r
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y
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r
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d
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i
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*
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/
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c
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-
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c
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h
;
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(
&
c
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t
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-
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l
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h
;
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y
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*
/
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0;

 
 

 
  

 
/
*
 
 
C
l
e
a
r
 
a
r
r
a
y
s
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i
t
e
m
 
s
e
l
e
c
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n
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*
/
 

 
 

%
cl
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;
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o
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o
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h
;
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d
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/
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/
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;
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i
d
 
i
n
f
o
r
m
a
t
i
o
n
 
i
n
 
a
d
m
i
n
{
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/
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;
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S
a
v
e
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r
a
m
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t
e
r
s
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f
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e
l
e
c
t
e
d
 
i
t
e
m
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n
 
C
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P
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/
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d
e
l
[
i
c
o
u
n
t
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]
=
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r
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(
s
e
l
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c
t
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;
 

 
 
 
 
 
 
 
 
 

n
c
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[
i
c
o
u
n
t
e
r
]
=
p
a
r
n
c
a
t
(
s
e
l
e
c
t
e
d
)
;
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o
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1 
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o
 
&
n
p
a
r
m
s
;
 

 
 

 
 

p
[
i
c
o
u
n
t
e
r
,
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=
p
a
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[
s
e
l
e
c
t
e
d
,
j
]
;
 

 
 

 
e
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d
;
 

  
 
 
 
 
 
 
 
 

/
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S
a
v
e
 
r
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s
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o
n
s
e
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o
 
c
u
r
r
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n
t
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l
e
c
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e
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/
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x
[
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u
n
t
e
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=
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r
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(
s
e
l
e
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t
e
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)
;
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E
s
t
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m
a
t
e
 
a
b
i
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y
 
*
/
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;
 

  
 

 
/
*
 
 
S
a
v
e
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
e
 
i
n
 
e
x
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m
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n
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r
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r
d
 
*
/
 

 
 

 
p
r
o
v
(
i
c
o
u
n
t
e
r
)
=
t
h
t
e
s
t
;
 

  
 

 
%
i
f
 
&
e
x
p
s
e
l
e
c
t
 
=
 
1 

%
t
h
e
n
 
%
d
o
;
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*
 
 
E
x
p
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r
i
m
e
n
t
a
l
 
i
t
e
m
 
s
e
l
e
c
t
i
o
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*
/
 

 
 

 
 

%
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;
 

 
 

 
 

%
e
n
d
;
 

  
 

 
%
i
f
 
&
e
x
p
s
e
l
e
c
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=
 
2 
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h
e
n
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;
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*
 
 
H
y
b
r
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i
t
e
m
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n
 

 
 

 
 

 
I
t
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E
x
p
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t
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I
t
e
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-
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/
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;
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;
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e
n
d
;
 

  
 

 
 

%
e
n
d
;
 

  
 

 
%
i
f
 
&
e
x
p
s
e
l
e
c
t
 
=
 
3 

%
t
h
e
n
 
%
d
o
;
 

 
 

 
 

t
h
t
e
s
t
 
=
 
t
r
u
e
1
;
 

 
 

 
 

%
e
n
d
;
 

  
 

 
/
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C
a
l
c
u
l
a
t
e
 
t
e
s
t
 
i
n
f
o
r
m
a
t
i
o
n
 
m
e
a
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u
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e
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r
 

 
 

 
 

r
e
l
a
t
i
v
e
 
e
f
f
i
c
i
e
n
c
y
 
c
o
m
p
a
r
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s
 
*
/
 

  
 

 
%
i
f
 
&
i
n
f
o
m
e
a
s
 
=
 
1 

%
t
h
e
n
 
%
d
o
;
 
*
 
A
t
 
t
r
u
e
 
t
h
e
t
a
;
 

 
 

 
 

%
in
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;
 

 
 

 
 

%
e
n
d
;
 

  
 

 
%
i
f
 
&
i
n
f
o
m
e
a
s
 
=
 
2 

%
t
h
e
n
 
%
d
o
;
 
*
 
A
t
 
e
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i
m
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t
e
d
 
t
h
e
t
a
;
 

 
 

 
 

%
in
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%
e
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d
;
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F
o
r
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a
r
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b
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e
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l
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n
g
t
h
 
C
A
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,
 
c
h
e
c
k
 
p
r
e
c
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e
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*
/
 

 
 

 
i
f
 
&
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t
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p
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2 
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n
d
 
t
h
t
v
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<
=
 
&
c
a
t
p
r
e
c
2
 
t
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e
n
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;
 

 
 

 
 

l
e
n
g
t
h
 
=
 
i
c
o
u
n
t
e
r
;
 
/
*
 
R
e
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o
r
d
 
l
e
n
g
t
h
 
o
f
 
a
d
m
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i
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t
e
r
e
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s
t
 
*
/
 

 
 

 
 

l
e
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e
n
d
;
 

 
 
 
 
 

  
 

e
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;
 

  
r
u
n
;
 

  
 
 
 
/
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r
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s
 
t
h
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t
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o
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e
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*
/
 

 
%
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*
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r
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m
 
C
A
T
L
O
O
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t
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e
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k
e
e
p
i
n
g
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y
 
r
e
l
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t
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n
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*
/
 

  
d
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a
 
c
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o
p
;
 

 
 

s
e
t
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t
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;
 

 
 

k
e
e
p
 
t
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;
 
 

 
 

 
 

 
 

k
e
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-
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n
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h
;
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e
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h
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e
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e
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g
t
h
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(
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e
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g
t
h
 
*
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n
p
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r
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;
 

 
 

k
e
e
p
 
i
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-
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x
&
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t
l
e
n
g
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h
;
 

 
 

k
e
e
p
 
p
r
o
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-
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r
o
v
&
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t
l
e
n
g
t
h
;
 

 
 

k
e
e
p
 
t
h
t
e
s
t
 
t
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a
r
;
 

 
 

k
e
e
p
 
l
e
n
g
t
h
;
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N
e
e
d
e
d
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o
r
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r
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l
e
 
l
e
n
g
t
h
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A
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*
/
 

 
 

k
e
e
p
 
b
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n
;
 

 
/
*
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i
n
 
n
u
m
b
e
r
,
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o
r
 
e
x
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o
s
u
r
e
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l
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e
e
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p
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n
p
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;
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A
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i
l
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y
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p
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s
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e
 
c
o
n
t
r
o
l
 
*
/
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h
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k
e
e
p
 
i
n
f
o
m
e
a
s
1
 
-
 
i
n
f
o
m
e
a
s
&
c
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h
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;
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p
;
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d
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&
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;
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i
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l
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e
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d
 
i
t
e
m
 
i
n
f
o
r
m
a
t
i
o
n
 
 
 
 
 
 
 
*
/
 

  
 

/
*
 
 
I
n
i
t
i
a
l
i
z
e
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
v
a
r
i
a
b
l
e
s
 
*
/
 

  
 
 
 
 
r
e
t
a
i
n
 
e
x
p
o
s
e
d
_
s
1
 
-
 
e
x
p
o
s
e
d
_
s
&
b
i
n
s
 
0;

 
 
/
*
 
 
I
t
e
m
s
 
s
e
l
e
c
t
e
d
 
*
/
 

 
 
 
 
 

r
e
t
a
i
n
 
e
x
p
o
s
e
d
_
a
1
 
-
 
e
x
p
o
s
e
d
_
a
&
b
i
n
s
 
0;

 
 
/
*
 
 
I
t
e
m
s
 
s
e
l
e
c
t
e
d
 
a
n
d
 
a
d
m
i
n
i
s
t
e
r
e
d
 
*
/
 

 
 

r
e
t
a
i
n
 
e
x
p
c
o
n
1
 
-
 
e
x
p
c
o
n
&
b
i
n
s
 
1;

 
 
 
 
 
 
 
 
/
*
 
 
I
n
i
t
i
a
l
i
z
e
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
p
a
r
a
m
e
t
e
r
 
*
/
 

  
d
r
o
p
 
q
p
t
1
-
q
p
t
&
n
q
p
t
;
 
 
/
*
 
 
Q
u
a
d
 
p
o
i
n
t
s
 
f
r
o
m
 
I
N
F
O
F
N
 
n
o
t
 
n
e
e
d
e
d
 
h
e
r
e
 
*
/
 
 
 

 r
u
n
;
 

 /
*
 
 
G
e
n
e
r
a
t
e
 
a
b
i
l
i
t
y
 
s
c
a
l
e
 
c
u
t
p
o
i
n
t
s
 
f
o
r
 
c
o
n
d
i
t
i
o
n
a
l
 
S
y
m
p
s
o
n
-
H
e
t
t
e
r
 
*
/
 

 d
a
t
a
 
b
i
n
p
t
s
;
 

 
a
r
r
a
y
 
b
i
n
p
t
(
&
b
i
n
s
)
 
b
i
n
p
t
1
 
-
 
b
i
n
p
t
&
b
i
n
s
;
 

 
e
x
p
i
n
c
 
=
 
(
2 

*
 
&
u
b
)
 
/
 
&
b
i
n
s
;
 
/
*
 
C
o
n
s
i
d
e
r
 
r
a
n
g
e
 
+
/
-
 
&
u
b
 
*
/
 

 
d
o
 
i
 
=
 
1 

t
o
 
&
b
i
n
s
;
 

 
 
 

b
i
n
p
t
(
i
)
 
=
 
-
&
u
b
 
+
 
i
*
e
x
p
i
n
c
;
 

 
e
n
d
;
 

r
u
n
;
 

 %m
en

d 
e
x
p
c
o
n
s
e
t
;
 

 %m
ac

ro
 
ex

pc
on

ou
t;

 
 /
*
 
 
O
u
t
p
u
t
 
n
u
m
b
e
r
 
o
f
 
b
i
n
s
,
 
a
b
i
l
i
t
y
 
s
c
a
l
e
 
c
u
t
p
o
i
n
t
s
,
 
a
n
d
 
e
x
p
o
s
u
r
e
 

 
c
o
n
t
r
o
l
 
p
a
r
a
m
e
t
e
r
s
 
t
o
 
a
 
f
i
l
e
 
*
/
 

 d
a
t
a
 
e
x
p
c
o
n
o
u
t
;
 

 
s
e
t
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

 
f
i
l
e
 
w
r
k
d
i
r
(
&
e
x
p
c
o
n
o
u
t
)
;
 

 
b
i
n
s
 
=
 
&
b
i
n
s
;
 

 
p
u
t
 
i
t
e
m
i
d
 
b
i
n
s
 
(
b
i
n
p
t
1
 
-
 
b
i
n
p
t
&
b
i
n
s
)
 
(
7.

3)
 
(
e
x
p
c
o
n
1
 
-
 
e
x
p
c
o
n
&
b
i
n
s
)
 
(
7.

3)
;
 

r
u
n
;
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 %m
en

d 
e
x
p
c
o
n
o
u
t
;
 

  %m
ac

ro
 
ex

pc
on

in
;
 

 /
*
 
 
L
o
a
d
 
f
i
r
s
t
 
l
i
n
e
 
o
f
 
f
i
l
e
 
t
o
 
i
d
e
n
t
i
f
y
 
n
u
m
b
e
r
 
o
f
 
b
i
n
s
 
*
/
 

 d
a
t
a
 
e
x
p
c
o
n
i
n
;
 

 
i
n
f
i
l
e
 
w
r
k
d
i
r
(
&
e
x
p
c
o
n
i
n
)
 
f
i
r
s
t
o
b
s
 
=
 
1 

o
b
s
 
=
 
1;

 
 

i
n
p
u
t
 
i
t
e
m
i
d
 
b
i
n
s
;
 
 

 
c
a
l
l
 
s
y
m
p
u
t
(
'
b
i
n
s
'
,
b
i
n
s
)
;
 

r
u
n
;
 

 /
*
 
 
N
o
w
 
l
o
a
d
 
a
b
i
l
i
t
y
 
s
c
a
l
e
 
c
u
t
p
o
i
n
t
s
 
a
n
d
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
p
a
r
a
m
e
t
e
r
s
 

 
f
r
o
m
 
e
n
t
i
r
e
 
f
i
l
e
 
*
/
 

 %
l
e
t
 
b
i
n
s
 
=
 
%
e
v
a
l
(
&
b
i
n
s
)
;
 

 d
a
t
a
 
e
x
p
c
o
n
i
n
 
(
d
r
o
p
 
=
 
i
t
e
m
i
d
)
;
 

 
i
n
f
i
l
e
 
w
r
k
d
i
r
(
&
e
x
p
c
o
n
i
n
)
;
 

 
i
n
p
u
t
 
i
t
e
m
i
d
 
b
i
n
s
 
b
i
n
p
t
1
 
-
 
b
i
n
p
t
&
b
i
n
s
 
e
x
p
c
o
n
1
 
-
 
e
x
p
c
o
n
&
b
i
n
s
;
 

r
u
n
;
 

 /
*
 
 
M
e
r
g
e
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
i
n
f
o
r
m
a
t
i
o
n
 
w
i
t
h
 
I
T
E
M
_
P
A
R
_
F
U
L
L
 
*
/
 

/
*
 
 
A
 
m
a
t
c
h
 
m
e
r
g
e
 
w
o
u
l
d
 
b
e
 
p
r
e
f
e
r
a
b
l
e
,
 
b
u
t
 
e
r
r
o
r
s
 
a
r
e
 
c
u
r
r
e
n
t
l
y
 

 
e
n
c
o
u
n
t
e
r
e
d
 
r
e
g
a
r
d
i
n
g
 
t
h
e
 
v
a
r
i
a
b
l
e
 
t
y
p
e
 
d
e
c
l
a
r
a
t
i
o
n
 
o
f
 
I
T
E
M
I
D
 
*
/
 

 d
a
t
a
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

 
s
e
t
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 
 
/
*
 
 
O
b
t
a
i
n
 
i
t
e
m
 
t
y
p
e
s
 
&
 
p
a
r
a
m
e
t
e
r
s
 
*
/
 

 
s
e
t
 
i
n
f
o
f
n
;
 
 
 
 
 
 
 
 
 
/
*
 
 
A
p
p
e
n
d
 
i
t
e
m
 
i
n
f
o
r
m
a
t
i
o
n
 
 
 
 
 
 
 
*
/
 

 
m
e
r
g
e
 
e
x
p
c
o
n
i
n
;
 

 
/
*
 
 
M
e
r
g
e
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
p
a
r
a
m
e
t
e
r
s
 
*
/
 

  
 

/
*
 
 
I
n
i
t
i
a
l
i
z
e
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
v
a
r
i
a
b
l
e
s
 
*
/
 

  
 
 
 
 
r
e
t
a
i
n
 
e
x
p
o
s
e
d
_
s
1
 
-
 
e
x
p
o
s
e
d
_
s
&
b
i
n
s
 
0;

 
 
/
*
 
 
I
t
e
m
s
 
s
e
l
e
c
t
e
d
 
*
/
 

 
 
 
 
 

r
e
t
a
i
n
 
e
x
p
o
s
e
d
_
a
1
 
-
 
e
x
p
o
s
e
d
_
a
&
b
i
n
s
 
0;

 
 
/
*
 
 
I
t
e
m
s
 
s
e
l
e
c
t
e
d
 
a
n
d
 
a
d
m
i
n
i
s
t
e
r
e
d
 
*
/
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d
r
o
p
 
q
p
t
1
-
q
p
t
&
n
q
p
t
;
 
 
/
*
 
 
Q
u
a
d
 
p
o
i
n
t
s
 
f
r
o
m
 
I
N
F
O
F
N
 
n
o
t
 
n
e
e
d
e
d
 
h
e
r
e
 
*
/
 
 
 

 r
u
n
;
 

 /
*
 
 
L
o
a
d
 
a
b
i
l
i
t
y
 
s
c
a
l
e
 
c
u
t
p
o
i
n
t
s
 
f
o
r
 
c
o
n
d
i
t
i
o
n
a
l
 
S
y
m
p
s
o
n
-
H
e
t
t
e
r
 
*
/
 

 d
a
t
a
 
b
i
n
p
t
s
 
(
k
e
e
p
 
=
 
b
i
n
p
t
1
 
-
 
b
i
n
p
t
&
b
i
n
s
)
;
 

 
s
e
t
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

r
u
n
;
 

 %m
en

d 
e
x
p
c
o
n
i
n
;
 

 %m
ac

ro
 
ge

nc
at

2;
 

 /
*
 
 
G
e
n
e
r
a
t
e
 
f
u
l
l
 
p
a
t
t
e
r
n
 
o
f
 
i
t
e
m
 
r
e
s
p
o
n
s
e
s
 
b
e
f
o
r
e
 
C
A
T
 
e
x
e
c
u
t
e
s
.
 
 
T
h
i
s
 

 
m
e
t
h
o
d
 
s
a
v
e
s
 
c
o
m
p
u
t
a
t
i
o
n
a
l
 
t
i
m
e
 
i
n
 
S
A
S
 
*
/
 

 %
se

ed
s;

 
%
th

et
ag

en
;
 

%
it

em
pa

r;
 

 %
l
e
t
 
n
i
t
e
m
s
=
&
n
p
o
o
l
;
 

 %
ca

tt
yp

e;
 
/
*
 
 
S
e
t
 
p
r
o
g
r
a
m
 
p
a
r
a
m
e
t
e
r
s
 
f
o
r
 
f
i
x
e
d
-
 
o
r
 
v
a
r
i
a
b
l
e
-
l
e
n
g
t
h
 
C
A
T
 
*
/
 

%
me

rg
eg

en
;
 

%
ge

nd
at

a;
 

  
/
*
 
 
R
e
n
a
m
e
 
i
t
e
m
 
t
y
p
e
 
&
 
p
a
r
a
m
e
t
e
r
 
i
n
f
o
r
m
a
t
i
o
n
 
f
o
r
 
u
s
e
 
w
i
t
h
 
C
A
T
L
O
O
P
 
*
/
 

  
d
a
t
a
 
g
e
n
_
d
a
t
a
;
 

 
 

s
e
t
 
g
e
n
_
d
a
t
a
;
 

 
 

r
e
n
a
m
e
 
p
1
-
p
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
n
p
a
r
m
s
)
 
=
 
p
a
r
1
-
p
a
r
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
n
p
a
r
m
s
)
;
 

 
 

r
e
n
a
m
e
 
m
o
d
e
l
1
-
m
o
d
e
l
&
n
i
t
e
m
s
 
=
 
p
a
r
m
o
d
e
l
1
-
p
a
r
m
o
d
e
l
&
n
i
t
e
m
s
;
 

 
 

r
e
n
a
m
e
 
n
c
a
t
1
-
n
c
a
t
&
n
i
t
e
m
s
 
=
 
p
a
r
n
c
a
t
1
-
p
a
r
n
c
a
t
&
n
i
t
e
m
s
;
 

 
 

r
e
n
a
m
e
 
i
x
1
-
i
x
&
n
i
t
e
m
s
 
=
 
p
a
r
i
x
1
 
-
 
p
a
r
i
x
&
n
i
t
e
m
s
;
 

 
 

r
e
n
a
m
e
 
t
h
e
t
a
1
-
t
h
e
t
a
&
n
d
i
m
s
 
=
 
t
r
u
e
1
-
t
r
u
e
&
n
d
i
m
s
;
 

  
r
u
n
;
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 %m
en

d 
g
e
n
c
a
t
2
;
 

 %m
ac

ro
 
ca

tt
yp

e;
 

%
g
l
o
b
a
l
 
c
a
t
p
r
e
c
2
;
 

/
*
 
 
S
e
t
 
p
a
r
a
m
e
t
e
r
s
 
t
o
 
c
o
n
f
o
r
m
 
t
o
 
f
i
x
e
d
-
 
o
r
 
v
a
r
i
a
b
l
e
-
l
e
n
g
t
h
 
C
A
T
 
*
/
 

 /
*
 
 
H
e
r
e
,
 
m
a
c
r
o
 
v
a
r
i
a
b
l
e
s
 
d
e
c
l
a
r
e
d
 
i
n
 
t
h
e
 
m
a
i
n
 
p
r
o
g
r
a
m
 
m
a
y
 
b
e
 
r
e
s
e
t
 
*
/
 

 /
*
 
 
N
o
t
e
 
t
h
a
t
 
t
h
i
s
 
r
o
u
t
i
n
e
 
d
o
e
s
 
n
o
t
 
a
f
f
e
c
t
 
d
a
t
a
 
s
e
t
s
,
 
i
n
s
t
e
a
d
 
i
t
 

 
 
 
 
s
e
t
s
 
v
a
l
u
e
s
 
f
o
r
 
m
a
c
r
o
 
v
a
r
i
a
b
l
e
s
 
*
/
 

 /
*
 
 
I
N
P
U
T
 
V
A
R
I
A
B
L
E
S
:
 
 
&
C
A
T
T
Y
P
E
,
 
&
C
A
T
L
E
N
G
T
H
,
 
&
C
A
T
P
R
E
C
,
 
&
N
I
T
E
M
S
 

 
O
U
T
P
U
T
 
V
A
R
I
A
B
L
E
S
:
 
 
&
C
A
T
P
R
E
C
2
 
 
 
 
*
/
 

  
/
*
 
 
I
n
s
u
r
e
 
t
h
a
t
 
l
e
n
g
t
h
 
l
i
m
i
t
s
 
f
o
r
 
v
a
r
i
a
b
l
e
-
l
e
n
g
t
h
 
C
A
T
 
d
o
 
n
o
t
 
e
x
c
e
e
d
 

 
 
 
 
i
t
e
m
 
p
o
o
l
 
s
i
z
e
 
*
/
 

  
%
i
f
 
&
c
a
t
l
i
m
i
t
>
&
n
i
t
e
m
s
 
%
t
h
e
n
 
%
d
o
;
 

 
 

%
l
e
t
 
c
a
t
l
i
m
i
t
=
&
n
i
t
e
m
s
;
 

 
 

%
e
n
d
;
 

  
/
*
 
 
F
i
x
e
d
-
l
e
n
g
t
h
 
C
A
T
 
p
a
r
a
m
e
t
e
r
s
 
*
/
 

 
%
i
f
 
&
c
a
t
t
y
p
e
=
1 

%
t
h
e
n
 
%
d
o
;
 

 
 

%
l
e
t
 
c
a
t
p
r
e
c
 
=
 
0
;
 

 
 

%
e
n
d
;
 

  
/
*
 
 
V
a
r
i
a
b
l
e
-
l
e
n
g
t
h
 
C
A
T
 
p
a
r
a
m
e
t
e
r
s
 
*
/
 

 
%
e
l
s
e
 
%
i
f
 
&
c
a
t
t
y
p
e
=
2 

%
t
h
e
n
 
%
d
o
;
 

 
 

%
l
e
t
 
c
a
t
l
e
n
g
t
h
=
&
c
a
t
l
i
m
i
t
;
 

 
 

%
e
n
d
;
 

  
%
l
e
t
 
c
a
t
p
r
e
c
2
=
%
s
y
s
e
v
a
l
f
(
&
c
a
t
p
r
e
c
*
*
2
)
;
 
/
*
 
S
q
u
a
r
e
 
o
f
 
s
t
a
n
d
a
r
d
 
e
r
r
o
r
 
o
f
 
m
e
a
s
u
r
e
m
e
n
t
 
*
/
 

 %m
en

d 
c
a
t
t
y
p
e
;
 

 %m
ac

ro
 
it

em
se

le
ct

;
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
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/
*
 
 
S
U
B
R
O
U
T
I
N
E
 
I
T
E
M
S
E
L
E
C
T
 

  
 
 
 
S
e
l
e
c
t
s
 
i
t
e
m
s
 
i
n
 
C
A
T
 
e
n
v
i
r
o
n
m
e
n
t
,
 
a
n
d
 
u
p
d
a
t
e
s
 

 
 
 
 
e
x
p
o
s
u
r
e
 
i
n
f
o
r
m
a
t
i
o
n
 

  
M
o
d
i
f
i
e
d
 
t
o
 
e
x
e
c
u
t
e
 
W
I
T
H
I
N
 
d
a
t
a
 
s
t
e
p
;
 
i
n
c
r
e
a
s
e
s
 

 
 
 
 
e
f
f
i
c
i
e
n
c
y
 

*
/
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

  
/
*
 
 
U
s
e
 
S
y
m
p
s
o
n
-
H
e
t
t
e
r
 
f
o
r
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
*
/
 

 
/
*
 
 
W
h
e
n
 
f
l
a
g
 
i
s
 
e
q
u
a
l
 
t
o
 
o
n
e
,
 
a
n
 
i
t
e
m
 
i
s
 
s
e
l
e
c
t
e
d
 
*
/
 

 
/
*
 
 
I
f
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
i
s
 
n
o
t
 
b
e
i
n
g
 
u
s
e
d
,
 
f
l
a
g
 
i
s
 
a
l
w
a
y
s
 
e
q
u
a
l
 
t
o
 
o
n
e
 
*
/
 

 
 

 
i
f
 
&
e
x
p
c
o
n
=
1 

t
h
e
n
 
d
o
;
 
 
 
/
*
 
&
e
x
p
c
o
n
 
=
 
1
 
<
=
=
>
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
O
N
 
*
/
 

 
 

f
l
a
g
 
=
 
0;

 
 

 
e
n
d
;
 

 
e
l
s
e
 
d
o
;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
*
 
&
e
x
p
c
o
n
 
=
 
0
 
<
=
=
>
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
O
F
F
 
*
/
 

 
 

f
l
a
g
 
=
 
1;

 
 

 
e
n
d
;
 

  
d
o
 
l
o
o
p
 
=
 
1 

t
o
 
&
n
i
t
e
m
s
;
 
 
/
*
 
M
o
r
e
 
r
o
b
u
s
t
 
t
h
a
n
 
a
 
d
o
 
w
h
i
l
e
 
o
r
 
u
n
t
i
l
 
l
o
o
p
 
*
/
 

  
 

 
i
f
 
&
i
t
e
m
s
e
l
=
1 

t
h
e
n
 
d
o
;
 
 
/
*
M
a
x
 
i
n
f
o
 
s
e
l
e
c
t
i
o
n
 
*
/
 

 
 

 
 

%
ex

ac
t;

 
 

 
 

 
e
n
d
;
 

  
 

 
i
f
 
&
i
t
e
m
s
e
l
=
2 

t
h
e
n
 
d
o
;
 

 
 

 
 

%
fi

i;
 

 
 

 
 

e
n
d
;
 

  
 

 
/
*
 
 
N
O
T
E
:
 
 
T
h
i
s
 
c
o
d
e
 
h
a
s
 
b
e
e
n
 
m
o
d
i
f
i
e
d
 
t
o
 
c
o
n
f
o
r
m
 
w
i
t
h
 

 
 

 
 

m
a
c
r
o
 
%
e
x
a
c
t
 
*
/
 

  
 

 
/
*
 
 
I
t
e
m
 
h
a
s
 
n
o
w
 
b
e
e
n
 
s
e
l
e
c
t
e
d
,
 
a
n
d
 
p
o
i
n
t
e
r
 
t
o
 
i
t
e
m
 
i
s
 

 
 

 
 

v
a
r
i
a
b
l
e
 
"
s
e
l
e
c
t
e
d
"
 
*
/
 

  
 

 
/
*
 
 
F
i
n
d
 
p
r
o
p
e
r
 
b
i
n
,
 
b
a
s
e
d
 
o
n
 
e
x
a
m
i
n
e
e
 
a
b
i
l
i
t
y
,
 
t
o
 
r
e
c
o
r
d
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i
t
e
m
 
e
x
p
o
s
u
r
e
 
i
n
f
o
r
m
a
t
i
o
n
 
*
/
 

  
 

 
d
o
 
i
 
=
 
&
b
i
n
s
 
t
o
 
1 

b
y
 
-
1;

 
/
*
 
D
e
s
c
e
n
d
i
n
g
 
s
e
a
r
c
h
 
*
/
 

 
 

 
 

i
f
 
t
r
u
e
1
 
<
=
 
b
i
n
p
t
(
i
)
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
b
i
n
 
=
 
i
;
 

 
 

 
 

 
e
n
d
;
 

 
 

 
 

e
l
s
e
 
i
f
 
t
r
u
e
1
 
>
 
b
i
n
p
t
(
&
b
i
n
s
)
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
b
i
n
 
=
 
&
b
i
n
s
;
 

 
 

 
 

 
e
n
d
;
 

 
 

 
e
n
d
;
 

  
 

 
/
*
 
 
I
n
c
r
e
a
s
e
 
"
s
e
l
e
c
t
e
d
"
 
e
x
p
o
s
u
r
e
 
c
o
u
n
t
e
r
 
f
o
r
 
i
t
e
m
 
*
/
 

 
 

 
e
x
p
o
s
e
_
s
(
s
e
l
e
c
t
e
d
,
b
i
n
)
=
 
e
x
p
o
s
e
_
s
(
s
e
l
e
c
t
e
d
,
b
i
n
)
+
1;

 
  
 
 
 
 
 
 
 
 
 
 
 
/
*
 
 
A
p
p
l
y
 
S
y
m
p
s
o
n
-
H
e
t
t
e
r
 
t
e
c
h
n
i
q
u
e
 
*
/
 

 
 

 
i
f
 
&
e
x
p
c
o
n
 
=
 
1 

t
h
e
n
 
d
o
;
 

 
 

 
 

c
a
l
l
 
r
a
n
u
n
i
(
s
e
e
d
,
r
)
;
 

 
 

 
 

i
f
 
r
 
<
=
 
e
x
p
c
o
n
(
s
e
l
e
c
t
e
d
,
b
i
n
)
 
t
h
e
n
 
d
o
;
 
 
/
*
 
 
A
d
m
i
n
i
s
t
e
r
 
i
t
e
m
 
*
/
 

 
 

 
 

 
e
x
p
o
s
e
_
a
(
s
e
l
e
c
t
e
d
,
b
i
n
)
 
=
 
e
x
p
o
s
e
_
a
(
s
e
l
e
c
t
e
d
,
b
i
n
)
 
+
 
1;

 
 

 
 

 
 

f
l
a
g
 
=
 
1;

 
 

 
 

 
e
n
d
;
 

 
 

 
e
n
d
;
 

  
 

 
i
f
 
f
l
a
g
 
=
 
1 

t
h
e
n
 
l
e
a
v
e
;
 
/
*
 
 
L
e
a
v
e
 
l
o
o
p
 
w
h
e
n
 
i
t
e
m
 
i
s
 
s
e
l
e
c
t
e
d
 
f
o
r
 
a
d
m
i
n
i
s
t
r
a
t
i
o
n
 
*
/
 

  
e
n
d
;
 

  
 

 
 

%m
en

d 
i
t
e
m
s
e
l
e
c
t
;
 

 %m
ac

ro
 
ma

xi
nf

o;
 

/
*
 
 
M
a
x
i
m
u
m
 
i
n
f
o
r
m
a
t
i
o
n
 
i
t
e
m
 
s
e
l
e
c
t
i
o
n
 
*
/
 

  
 

 
m
a
x
v
a
l
u
e
=
0;

 
 

 
 

s
e
l
e
c
t
e
d
=
0;

 
  

 
 

d
o
 
s
e
a
r
c
h
=
1 

t
o
 
&
n
i
t
e
m
s
;
 

 
 

 
 

i
f
 
i
n
f
o
(
s
e
a
r
c
h
,
q
p
o
i
n
t
e
r
)
>
m
a
x
v
a
l
u
e
 
t
h
e
n
 
d
o
;
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m
a
x
v
a
l
u
e
=
i
n
f
o
(
s
e
a
r
c
h
,
q
p
o
i
n
t
e
r
)
;
 

 
 

 
 
 
 

 
 

 
 

 
s
e
l
e
c
t
e
d
=
s
e
a
r
c
h
;
 

 
 

 
 

 
 

e
n
d
;
 

 
 

 
e
n
d
;
 

 %m
en

d 
m
a
x
i
n
f
o
;
 

 %m
ac

ro
 
fi

p;
 

/
*
 
 
F
i
s
h
e
r
 
i
n
f
o
r
m
a
t
i
o
n
 
w
i
t
h
 
p
o
s
t
e
r
i
o
r
 
w
e
i
g
h
t
 
f
u
n
c
t
i
o
n
 
*
/
 

  
m
a
x
v
a
l
u
e
=
0;

 
 

s
e
l
e
c
t
e
d
=
0;

 
  

d
o
 
s
e
a
r
c
h
=
1 

t
o
 
&
n
i
t
e
m
s
;
 

 
 
 
 
 
i
n
t
e
g
r
a
l
 
=
 
0;

 
 

 
d
o
 
i
 
=
 
1 

t
o
 
&
n
q
p
t
;
 

 
 

 
i
n
t
e
g
r
a
l
 
=
 
i
n
t
e
g
r
a
l
 
+
 
p
o
s
t
{
i
}
*
i
n
f
o
(
s
e
a
r
c
h
,
i
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 
 
 
 
 
 
 
i
f
 
i
n
t
e
g
r
a
l
 
>
 
m
a
x
v
a
l
u
e
 
t
h
e
n
 
d
o
;
 

 
 

 
m
a
x
v
a
l
u
e
 
=
 
i
n
t
e
g
r
a
l
;
 

 
 

 
s
e
l
e
c
t
e
d
 
=
 
s
e
a
r
c
h
;
 

 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 
 
 
e
n
d
;
 

 %m
en

d 
f
i
p
;
 

 
 

%m
ac

ro
 
cl

ea
re

xa
ct

;
 

 d
o
 
i
 
=
 
1 

t
o
 
&
n
i
t
e
m
s
;
 

 
p
i
c
k
e
d
(
i
)
 
=
 
0;

 
e
n
d
;
 

 %m
en

d 
c
l
e
a
r
e
x
a
c
t
;
 

 %m
ac

ro
 
ex

ac
t;

 
/
*
 
 
M
a
x
i
m
u
m
 
i
n
f
o
r
m
a
t
i
o
n
 
i
t
e
m
 
s
e
l
e
c
t
i
o
n
 
w
i
t
h
o
u
t
 

 
 
 
 
t
a
b
l
e
d
 
i
n
f
o
r
m
a
t
i
o
n
 
v
a
l
u
e
s
;
 
c
o
m
p
u
t
e
s
 
i
n
f
o
r
m
a
t
i
o
n
 

 
a
t
 
t
h
t
e
s
t
 
e
a
c
h
 
t
i
m
e
 
*
/
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 m
a
x
v
a
l
u
e
 
=
 
0;

 
s
e
l
e
c
t
e
d
 
=
 
0;

 
 d
o
 
s
e
a
r
c
h
 
=
 
1 

t
o
 
&
n
i
t
e
m
s
;
 

  
/
*
 
 
A
n
 
i
t
e
m
 
h
a
s
 
a
l
r
e
a
d
y
 
b
e
e
n
 
a
d
m
i
n
i
s
t
e
r
e
d
 

 
 

i
f
 
p
i
c
k
e
d
(
*
)
 
=
 
1
;
 
s
k
i
p
 
t
h
i
s
 
i
t
e
m
 

 
 

i
f
 
a
l
r
e
a
d
y
 
a
d
m
i
n
i
s
t
e
r
e
d
 
*
/
 

  
i
f
 
p
i
c
k
e
d
(
s
e
a
r
c
h
)
 
~
=
 
1 

t
h
e
n
 
d
o
;
 
 
 

  
/
*
 
 
C
o
m
p
u
t
e
 
i
n
f
o
r
m
a
t
i
o
n
 
a
t
 
t
h
t
e
s
t
 
f
o
r
 
i
t
e
m
 
*
/
 
 

  
 

 
j
 
=
 
s
e
a
r
c
h
;
 
 
*
 
a
s
s
i
g
n
 
i
n
d
e
x
 
v
a
r
i
a
b
l
e
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
o
 
k
=
1 

t
o
 
&
m
a
x
c
a
t
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c
u
m
p
r
o
b
[
k
]
=
.;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

  
 
 
 
 
 
 
 
 
 
 
 
d
o
 
r
e
s
p
=
0 

t
o
 
p
a
r
n
c
a
t
{
j
}
-
1;

 
 

 
 

 
/
*
 
 
M
o
d
i
f
i
e
d
 
%
d
i
 
m
a
c
r
o
 
t
o
 
r
e
f
l
e
c
t
 
c
h
a
n
g
e
 
f
r
o
m
 

 
 

 
 

 
p
(
*
)
 
t
o
 
p
a
r
(
*
)
 
a
r
r
a
y
 
*
/
 

 
 

 
 

 
x
x
=
.;

 
 
 
 
 
 

 
 

 
x
x
=
p
a
r
{
j
,
3}

+
(
1-

p
a
r
{
j
,
3}

)
/
(
1+

e
x
p
(
-
&
d
*
p
a
r
{
j
,
1}

*
(
t
h
t
e
s
t
-
p
a
r
{
j
,
2}

)
)
)
;
 

 
 
 

 
 

 
i
f
 
r
e
s
p
=
0 

t
h
e
n
 
x
x
=
1-

x
x
;
 

 
 

 
 

/
*
 
 
E
n
d
 
m
o
d
i
f
i
e
d
 
%
d
i
 
m
a
c
r
o
 
*
/
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
r
e
s
p
=
0 

t
h
e
n
 
c
u
m
p
r
o
b
{
1}

=
x
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
l
s
e
 
c
u
m
p
r
o
b
{
r
e
s
p
+
1}

=
x
x
+
c
u
m
p
r
o
b
{
r
e
s
p
}
;
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
i
t
e
m
i
n
f
o
 
=
 
(
&
d
*
*
2)

*
(
p
a
r
{
j
,
1}

*
*
2)

*
c
u
m
p
r
o
b
{
1}

/
(
1-

c
u
m
p
r
o
b
{
1}

)
 
*
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
 
(
(
 
(
1-

c
u
m
p
r
o
b
{
1}

)
 
-
 
p
a
r
{
j
,
3}

)
*
*
2)

/
(
(
1 

-
 
p
a
r
{
j
,
3}

)
*
*
2)

 
)
;
 
 

 
 

 
 
 
 
 

 
/
*
 
 
C
o
m
p
a
r
e
 
i
n
f
o
r
m
a
t
i
o
n
 
&
 
u
p
d
a
t
e
 
*
/
 

  
 

 
i
f
 
i
t
e
m
i
n
f
o
 
>
 
m
a
x
v
a
l
u
e
 
t
h
e
n
 
d
o
;
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m
a
x
v
a
l
u
e
 
=
 
i
t
e
m
i
n
f
o
;
 

 
 

 
 
 
 

 
 

 
 

s
e
l
e
c
t
e
d
 
=
 
s
e
a
r
c
h
;
 

 
 

 
 

 
e
n
d
;
 

  
 

e
n
d
;
 
 

 e
n
d
;
 
 

 /
*
 
 
R
e
c
o
r
d
 
i
t
e
m
 
t
h
a
t
 
h
a
s
 
b
e
e
n
 
p
i
c
k
e
d
 
*
/
 

 p
i
c
k
e
d
(
s
e
l
e
c
t
e
d
)
 
=
 
1;

 
 %m

en
d 

e
x
a
c
t
;
 

 %m
ac

ro
 
fi

i;
 

/
*
 
 
I
t
e
m
 
s
e
l
e
c
t
i
o
n
 
b
y
 
F
i
s
h
e
r
 
i
n
t
e
r
v
a
l
 
i
n
f
o
r
m
a
t
i
o
n
 
(
F
I
I
)
,
 

 
 
 
 
u
s
e
s
 
e
x
a
c
t
 
s
o
l
u
t
i
o
n
 
t
o
 
i
n
t
e
g
r
a
l
 
f
o
r
 
3
P
 
c
a
s
e
 
*
/
 

 *
 

i
f
 
i
c
o
u
n
t
e
r
 
>
 
1
 
t
h
e
n
 
d
o
;
 
 
 
/
*
 
 
A
n
 
i
n
t
e
r
v
a
l
 
e
x
i
s
t
s
 
o
n
l
y
 
w
h
e
n
 
i
c
o
u
n
t
e
r
 
>
 
1
 
*
/
 

  
 

/
*
 
 
R
e
s
e
t
 
s
e
a
r
c
h
 
v
a
r
i
a
b
l
e
s
 
*
/
 

 
 

m
a
x
v
a
l
u
e
 
=
 
0;

 
 

 
s
e
l
e
c
t
e
d
 
=
 
0;

 
  

 
/
*
 
 
F
o
r
m
 
i
n
t
e
r
v
a
l
 
a
s
 
s
u
g
g
e
s
t
e
d
 
b
y
 
C
h
e
n
,
 
A
n
k
e
n
m
a
n
n
,
 
&
 
C
h
a
n
g
 
(
A
P
M
,
 
2
0
0
0
)
,
 
p
.
 
2
4
8
 
*
/
 

 
 

l
b
f
 
=
 
t
h
t
e
s
t
 
-
 
&
z
f
i
i
 
*
 
1/

(
s
q
r
t
(
i
c
o
u
n
t
e
r
)
 
+
 
1)

;
 

 
 

u
b
f
 
=
 
t
h
t
e
s
t
 
+
 
&
z
f
i
i
 
*
 
1/

(
s
q
r
t
(
i
c
o
u
n
t
e
r
)
 
+
 
1)

;
 

  
 

/
*
 
 
I
n
s
u
r
e
 
i
n
t
e
r
v
a
l
 
i
s
 
b
o
u
n
d
e
d
 
b
y
 
[
-
&
u
b
,
 
&
u
b
]
 
*
/
 

 
 

i
f
 
l
b
f
 
<
 
-
&
u
b
 
t
h
e
n
 
d
o
;
 

 
 

 
l
b
f
 
=
 
-
&
u
b
;
 

 
 

 
e
n
d
;
 

  
 

i
f
 
u
b
f
 
>
 
&
u
b
 
t
h
e
n
 
d
o
;
 

 
 

 
u
b
f
 
=
 
&
u
b
;
 

 
 

 
e
n
d
;
 

 
 

 
 

/
*
 
 
S
e
a
r
c
h
 
t
h
r
o
u
g
h
 
i
t
e
m
s
 
f
o
r
 
m
a
x
i
m
u
m
 
F
I
I
 
*
/
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d
o
 
s
e
a
r
c
h
 
=
 
1 

t
o
 
&
n
i
t
e
m
s
;
 

  
 

 
/
*
 
 
A
n
 
i
t
e
m
 
h
a
s
 
a
l
r
e
a
d
y
 
b
e
e
n
 
a
d
m
i
n
i
s
t
e
r
e
d
 

 
 

 
 

i
f
 
p
i
c
k
e
d
(
*
)
 
=
 
1
;
 
s
k
i
p
 
t
h
i
s
 
i
t
e
m
 

 
 

 
 

i
f
 
a
l
r
e
a
d
y
 
a
d
m
i
n
i
s
t
e
r
e
d
 
*
/
 

  
 

 
i
f
 
p
i
c
k
e
d
(
s
e
a
r
c
h
)
 
~
=
 
1 

t
h
e
n
 
d
o
;
 
 
 

  
 

 
 

/
*
 
 
C
o
m
p
u
t
e
 
t
e
r
m
s
 
f
o
r
 
e
x
a
c
t
 
s
o
l
u
t
i
o
n
 
t
o
 
3
P
 
F
I
I
 
*
/
 

 
 

 
 

A
 
=
 
&
d
 
*
 
p
a
r
(
s
e
a
r
c
h
,
1)

;
 

 
 

 
 

B
 
=
 
p
a
r
{
s
e
a
r
c
h
,
2}

;
 

 
 

 
 

C
 
=
 
p
a
r
{
s
e
a
r
c
h
,
3}

;
 

 
 

 
 

x
1
 
=
 
e
x
p
(
A
*
B
)
;
 

 
 

 
 

x
2
 
=
 
e
x
p
(
A
*
l
b
f
)
;
 

 
 

 
 

x
3
 
=
 
e
x
p
(
A
*
(
l
b
f
 
-
 
B
)
)
;
 

 
 

 
 

x
4
 
=
 
e
x
p
(
A
*
u
b
f
)
;
 

 
 

 
 

x
5
 
=
 
e
x
p
(
A
*
(
u
b
f
 
-
 
B
)
)
;
 

 
 

 
 

f
i
i
 
=
 
A
 
*
 
(
 
(
C
-
1)

*
x
1
 
+
 
C
*
(
x
1
 
+
 
x
2
)
*
l
o
g
(
1 

+
 
x
3
)
 
-
 
C
*
(
x
1
 
+
 
x
2
)
*
l
o
g
(
C
 
+
 
x
3
)
 
)
 

 
 

 
 

 
 

 
 
/
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
(
 
(
C
-
1)

*
(
x
1
 
+
 
x
2
)
 
)
 

  
 

 
 
 

 
 

 
 
-
 

  
 

 
 

 
 

 
 
A
 
*
 
(
 
(
C
-
1)

*
x
1
 
+
 
C
*
(
x
1
 
+
 
x
4
)
*
l
o
g
(
1 

+
 
x
5
)
 
-
 
C
*
(
x
1
 
+
 
x
4
)
*
l
o
g
(
C
 
+
 
x
5
)
 
)
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
/
 

 
 

 
 
 
 

 
 
 
 
 

 
 
(
 
(
C
-
1)

*
(
x
1
 
+
 
x
4
)
 
)
;
 

  
 

 
 

/
*
 
 
C
o
m
p
a
r
e
 
F
I
I
 
i
n
d
e
x
 
&
 
u
p
d
a
t
e
 
*
/
 

  
 

 
 

i
f
 
f
i
i
 
>
 
m
a
x
v
a
l
u
e
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
m
a
x
v
a
l
u
e
 
=
 
f
i
i
;
 

 
 

 
 
 
 

 
 

 
 

 
s
e
l
e
c
t
e
d
 
=
 
s
e
a
r
c
h
;
 

 
 

 
 

 
 

e
n
d
;
 

  
 

 
e
n
d
;
 
/
*
 
E
n
d
 
c
o
n
d
i
t
i
o
n
a
l
 
o
n
 
p
i
c
k
e
d
(
s
e
a
r
c
h
)
 
*
/
 

  
 

e
n
d
;
 
 
/
*
 
I
t
e
r
a
t
i
v
e
 
l
o
o
p
 
f
o
r
 
<
s
e
a
r
c
h
>
 
*
/
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/
*
 
 
R
e
c
o
r
d
 
i
t
e
m
 
t
h
a
t
 
h
a
s
 
b
e
e
n
 
p
i
c
k
e
d
 
*
/
 

 
 

p
i
c
k
e
d
(
s
e
l
e
c
t
e
d
)
 
=
 
1;

 
 *
 

e
n
d
;
 
/
*
 
C
o
n
d
i
t
i
o
n
a
l
 
o
n
 
<
i
c
o
u
n
t
e
r
>
 
*
/
 

 *
 

e
l
s
e
 
d
o
;
 

/
*
 
 
O
t
h
e
r
w
i
s
e
,
 
p
e
r
f
o
r
m
 
m
a
x
 
i
n
f
o
 
(
F
I
)
 
i
t
e
m
 
s
e
l
e
c
t
i
o
n
 
*
/
 

*
 

 
%
e
x
a
c
t
;
 

*
 

 
e
n
d
;
 

   
 

/
*
 
 
N
O
T
E
S
 
 
 

  
 

C
h
e
n
 
e
t
 
a
l
.
 
(
A
P
M
,
 
2
0
0
0
)
 
s
u
g
g
e
s
t
 
e
a
r
l
i
e
r
 
i
n
 
t
h
e
i
r
 
p
a
p
e
r
 
t
h
a
t
 

 
 

a
 
c
o
n
f
i
d
e
n
c
e
 
i
n
t
e
r
v
a
l
 
b
e
 
f
o
r
m
e
d
 
b
a
s
e
d
 
o
n
 
t
h
e
 
i
n
f
o
r
m
a
t
i
o
n
 
m
e
a
s
u
r
e
 

 
 

a
t
 
t
h
e
 
c
u
r
r
e
n
t
 
p
r
o
v
i
s
i
o
n
a
l
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
e
 
(
s
e
e
 
p
p
.
 
2
4
3
 
-
 
2
4
4
)
.
 

 
 

H
o
w
e
v
e
r
,
 
w
h
e
n
 
t
h
i
s
 
c
o
n
f
i
d
e
n
c
e
 
i
n
t
e
r
v
a
l
 
i
s
 
u
s
e
d
,
 
F
I
I
 
i
t
e
m
 
s
e
l
e
c
t
i
o
n
 

 
 

p
e
r
f
o
r
m
s
 
q
u
i
t
e
 
p
o
o
r
l
y
.
 
 

  
 

T
h
e
 
f
o
l
l
o
w
i
n
g
 
c
o
d
e
 
i
s
 
p
r
o
v
i
d
e
d
 
i
n
 
o
r
d
e
r
 
t
o
 
t
e
s
t
 
o
u
t
 
s
u
c
h
 
a
n
 
 

 
 

i
n
t
e
r
v
a
l
.
 
*
/
 

  
 

/
*
 
 
F
i
n
d
 
i
n
f
o
r
m
a
t
i
o
n
 
a
t
 
c
u
r
r
e
n
t
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
e
 
t
h
t
e
s
t
 
*
/
 

*
 

 
%
i
n
f
o
e
s
t
2
;
 

  
 

/
*
 
 
F
i
n
d
 
l
o
w
e
r
 
a
n
d
 
u
p
p
e
r
 
b
o
u
n
d
s
 
f
o
r
 
i
n
t
e
r
v
a
l
 
*
/
 

*
 

 
l
b
f
 
=
 
t
h
t
e
s
t
 
-
 
&
z
f
i
i
 
*
 
(
1
/
s
q
r
t
(
t
e
s
t
i
n
f
o
)
)
;
 

*
 

 
u
b
f
 
=
 
t
h
t
e
s
t
 
+
 
&
z
f
i
i
 
*
 
(
1
/
s
q
r
t
(
t
e
s
t
i
n
f
o
)
)
;
 

 %m
en

d 
f
i
i
;
 

 %m
ac

ro
 
fi

i2
;
 

 /
*
 
 
F
I
I
 
b
y
 
a
p
p
r
o
x
i
m
a
t
i
o
n
 
t
o
 
i
n
t
e
g
r
a
l
 
*
/
 

  
i
f
 
i
c
o
u
n
t
e
r
 
>
 
1 

t
h
e
n
 
d
o
;
 
 
 
/
*
 
 
A
n
 
i
n
t
e
r
v
a
l
 
e
x
i
s
t
s
 
o
n
l
y
 
w
h
e
n
 
i
c
o
u
n
t
e
r
 
>
 
1
 
*
/
 

  
 

/
*
 
 
R
e
s
e
t
 
s
e
a
r
c
h
 
v
a
r
i
a
b
l
e
s
 
*
/
 

 
 

m
a
x
v
a
l
u
e
 
=
 
0;
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s
e
l
e
c
t
e
d
 
=
 
0;

 
  

 
/
*
 
 
F
i
n
d
 
i
n
f
o
r
m
a
t
i
o
n
 
a
t
 
c
u
r
r
e
n
t
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
e
 
t
h
t
e
s
t
 
*
/
 

 
 

%
in

fo
es

t2
;
 

  
 

/
*
 
 
F
o
r
m
 
i
n
t
e
r
v
a
l
 
a
s
 
s
u
g
g
e
s
t
e
d
 
b
y
 
C
h
e
n
,
 
A
n
k
e
n
m
a
n
n
,
 
&
 
C
h
a
n
g
 
(
A
P
M
,
 
2
0
0
0
)
,
 
p
.
 
2
4
8
 
*
/
 

 
 

l
b
f
 
=
 
t
h
t
e
s
t
 
-
 
&
z
f
i
i
 
*
 
1/

(
s
q
r
t
(
i
c
o
u
n
t
e
r
)
 
+
 
1)

;
 

 
 

u
b
f
 
=
 
t
h
t
e
s
t
 
+
 
&
z
f
i
i
 
*
 
1/

(
s
q
r
t
(
i
c
o
u
n
t
e
r
)
 
+
 
1)

;
 

  
 

/
*
 
 
I
n
s
u
r
e
 
i
n
t
e
r
v
a
l
 
i
s
 
b
o
u
n
d
e
d
 
b
y
 
[
-
&
u
b
,
 
&
u
b
]
 
*
/
 

 
 

i
f
 
l
b
f
 
<
 
-
&
u
b
 
t
h
e
n
 
d
o
;
 

 
 

 
l
b
f
 
=
 
-
&
u
b
;
 

 
 

 
e
n
d
;
 

  
 

i
f
 
u
b
f
 
>
 
&
u
b
 
t
h
e
n
 
d
o
;
 

 
 

 
u
b
f
 
=
 
&
u
b
;
 

 
 

 
e
n
d
;
 

  
 

i
n
c
r
e
m
e
n
t
 
=
 
(
u
b
f
 
-
 
l
b
f
)
/
20

;
 

 
 

 
 

/
*
 
 
S
e
a
r
c
h
 
t
h
r
o
u
g
h
 
i
t
e
m
s
 
f
o
r
 
m
a
x
i
m
u
m
 
F
I
I
 
*
/
 

 
 

d
o
 
s
e
a
r
c
h
 
=
 
1 

t
o
 
&
n
i
t
e
m
s
;
 

  
 

 
/
*
 
 
A
n
 
i
t
e
m
 
h
a
s
 
a
l
r
e
a
d
y
 
b
e
e
n
 
a
d
m
i
n
i
s
t
e
r
e
d
 

 
 

 
 

i
f
 
p
i
c
k
e
d
(
*
)
 
=
 
1
;
 
s
k
i
p
 
t
h
i
s
 
i
t
e
m
 

 
 

 
 

i
f
 
a
l
r
e
a
d
y
 
a
d
m
i
n
i
s
t
e
r
e
d
 
*
/
 

  
 

 
i
f
 
p
i
c
k
e
d
(
s
e
a
r
c
h
)
 
~
=
 
1 

t
h
e
n
 
d
o
;
 
 
 

  
 

 
 

f
i
i
 
=
 
0;

 
 

 
 

 
j
 
=
 
s
e
a
r
c
h
;
 

  
 

 
 

d
o
 
t
h
t
p
t
 
=
 
l
b
f
 
t
o
 
u
b
f
 
b
y
 
i
n
c
r
e
m
e
n
t
;
 

  
 

 
 

 
/
*
 
 
G
e
t
 
i
n
f
o
 
*
/
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
d
o
 
k
=
1 

t
o
 
&
m
a
x
c
a
t
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
c
u
m
p
r
o
b
[
k
]
=
.;
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e
n
d
;
 

  
 
 
 
 
 
 
 
 
 
 
 
 

 
d
o
 
r
e
s
p
=
0 

t
o
 
p
a
r
n
c
a
t
{
j
}
-
1;

 
 

 
 

 
 

 
/
*
 
 
M
o
d
i
f
i
e
d
 
%
d
i
 
m
a
c
r
o
 
t
o
 
r
e
f
l
e
c
t
 
c
h
a
n
g
e
 
f
r
o
m
 

 
 

 
 

 
 

p
(
*
)
 
t
o
 
p
a
r
(
*
)
 
a
r
r
a
y
 
*
/
 

 
 

 
 

 
 

 
x
x
=
.;

 
 
 
 
 
 

 
 

 
 

 
x
x
=
p
a
r
{
j
,
3}

+
(
1-

p
a
r
{
j
,
3}

)
/
(
1+

e
x
p
(
-
&
d
*
p
a
r
{
j
,
1}

*
(
t
h
t
p
t
-
p
a
r
{
j
,
2}

)
)
)
;
 

 
 
 

 
 

 
 

 
i
f
 
r
e
s
p
=
0 

t
h
e
n
 
x
x
=
1-

x
x
;
 

 
 

 
 

 
 

/
*
 
 
E
n
d
 
m
o
d
i
f
i
e
d
 
%
d
i
 
m
a
c
r
o
 
*
/
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i
f
 
r
e
s
p
=
0 

t
h
e
n
 
c
u
m
p
r
o
b
{
1}

=
x
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

e
l
s
e
 
c
u
m
p
r
o
b
{
r
e
s
p
+
1}

=
x
x
+
c
u
m
p
r
o
b
{
r
e
s
p
}
;
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
e
n
d
;
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
i
t
e
m
i
n
f
o
 
=
 
(
&
d
*
*
2)

*
(
p
a
r
{
j
,
1}

*
*
2)

*
c
u
m
p
r
o
b
{
1}

/
(
1-

c
u
m
p
r
o
b
{
1}

)
 
*
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
 
(
(
 
(
1-

c
u
m
p
r
o
b
{
1}

)
 
-
 
p
a
r
{
j
,
3}

)
*
*
2)

/
(
(
1 

-
 
p
a
r
{
j
,
3}

)
*
*
2)

 
)
;
 
 

  
 

 
 

 
f
i
i
 
=
 
f
i
i
 
+
 
i
t
e
m
i
n
f
o
;
 

  
 

 
 

e
n
d
;
 

  
 

 
 

/
*
 
 
C
o
m
p
a
r
e
 
F
I
I
 
i
n
d
e
x
 
&
 
u
p
d
a
t
e
 
*
/
 

  
 

 
 

i
f
 
f
i
i
 
>
 
m
a
x
v
a
l
u
e
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
m
a
x
v
a
l
u
e
 
=
 
f
i
i
;
 

 
 

 
 
 
 

 
 

 
 

 
s
e
l
e
c
t
e
d
 
=
 
s
e
a
r
c
h
;
 

 
 

 
 

 
 

e
n
d
;
 

  
 

 
e
n
d
;
 
/
*
 
E
n
d
 
c
o
n
d
i
t
i
o
n
a
l
 
o
n
 
p
i
c
k
e
d
(
s
e
a
r
c
h
)
 
*
/
 

  
 

e
n
d
;
 
 
/
*
 
I
t
e
r
a
t
i
v
e
 
l
o
o
p
 
f
o
r
 
<
s
e
a
r
c
h
>
 
*
/
 

  
 

/
*
 
 
R
e
c
o
r
d
 
i
t
e
m
 
t
h
a
t
 
h
a
s
 
b
e
e
n
 
p
i
c
k
e
d
 
*
/
 

 
 

p
i
c
k
e
d
(
s
e
l
e
c
t
e
d
)
 
=
 
1;

 
  

e
n
d
;
 
/
*
 
C
o
n
d
i
t
i
o
n
a
l
 
o
n
 
<
i
c
o
u
n
t
e
r
>
 
*
/
 

  
e
l
s
e
 
d
o
;
 

/
*
 
 
O
t
h
e
r
w
i
s
e
,
 
p
e
r
f
o
r
m
 
m
a
x
 
i
n
f
o
 
(
F
I
)
 
i
t
e
m
 
s
e
l
e
c
t
i
o
n
 
*
/
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%
ex

ac
t;

 
 

 
e
n
d
;
 

 %m
en

d 
f
i
i
2
;
 

   %m
ac

ro
 
fi

nd
qu

ad
;
 

  
q
p
o
i
n
t
e
r
=
 
i
n
t
(
 
(
t
h
t
e
s
t
 
+
 
&
u
b
)
 
/
 
&
x
i
n
c
 
)
 
+
 
1;

 
 

i
f
 
q
p
o
i
n
t
e
r
 
<
 
1 

t
h
e
n
 
q
p
o
i
n
t
e
r
 
=
 
1;

 
 

 
e
l
s
e
 
i
f
 
q
p
o
i
n
t
e
r
 
>
 
&
n
q
p
t
 
t
h
e
n
 
q
p
o
i
n
t
e
r
 
=
 
&
n
q
p
t
;
 

 %m
en

d 
f
i
n
d
q
u
a
d
;
 

 %m
ac

ro
 
in

fo
ro

w;
 

/
*
 
 
C
o
n
v
e
r
t
 
t
h
e
 
i
t
e
m
 
i
n
f
o
r
m
a
t
i
o
n
 
m
a
t
r
i
x
 
i
n
 
I
N
F
O
F
N
 
t
o
 
a
 
r
o
w
 
f
o
r
 

a
p
p
e
n
d
i
n
g
 
t
o
 
C
A
T
L
O
O
P
 
d
a
t
a
s
e
t
 
*
/
 

  
d
a
t
a
 
i
n
f
o
r
o
w
;
 

 
 

s
e
t
 
i
n
f
o
f
n
;
 

 
 

a
r
r
a
y
 
y
{
*
}
 
i
n
f
o
1
-
i
n
f
o
&
n
q
p
t
;
 

 
 
 
 

 
k
e
e
p
 
p
;
 

 
 
 
 

 
d
o
 
j
=
1 

t
o
 
&
n
q
p
t
;
 

 
 
 
 
 
 
 

p
=
y
{
j
}
;
 

 
 
 
 
 
 
 

o
u
t
p
u
t
;
 

 
 
 
 

 
e
n
d
;
 

 
r
u
n
;
 

 /
*
 
 
C
r
e
a
t
e
 
a
 
r
o
w
 
v
e
c
t
o
r
 
w
i
t
h
 
i
t
e
m
 
p
a
r
a
m
e
t
e
r
s
 
a
s
 
e
l
e
m
e
n
t
s
 
*
/
 

 
p
r
o
c
 
t
r
a
n
s
p
o
s
e
 
d
a
t
a
=
i
n
f
o
r
o
w
 
o
u
t
=
i
n
f
o
r
o
w
 
p
r
e
f
i
x
=
i
n
f
o
;
 

 
 

v
a
r
 
p
;
 

 
r
u
n
;
 

 %m
en

d 
i
n
f
o
r
o
w
;
 

 %m
ac

ro
 
li

ke
ho

od
ca

t;
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/
*
 
 
S
i
m
i
l
a
r
 
t
o
 
s
u
b
r
o
u
t
i
n
e
 
L
I
K
E
H
O
O
D
 
e
x
c
e
p
t
 
t
h
i
s
 
i
s
 
a
 
s
e
g
m
e
n
t
 
o
f
 
 

 
 
 
 
S
A
S
 
s
t
a
t
e
m
e
n
t
s
,
 
r
a
t
h
e
r
 
t
h
a
n
 
a
 
s
e
l
f
-
c
o
n
t
a
i
n
e
d
 
D
A
T
A
 
s
t
e
p
 
*
/
 

  
 
d
o
 
i
=
1 

t
o
 
&
n
q
p
t
;
 

 
 
 

 
t
h
e
t
a
1
=
q
p
t
[
i
]
;
 
/
*
 
P
a
s
s
 
q
u
a
d
 
p
o
i
n
t
 
a
s
 
t
h
e
t
a
 
v
a
l
u
e
 
*
/
 

 
 
 
 
 
 
 
 
l
k
{
i
}
=
1;

 
 

 
d
o
 
j
=
1 

t
o
 
i
c
o
u
n
t
e
r
;
 

 
 
 
 
 
 
 
 
 
 
 
r
e
s
p
=
i
x
{
j
}
;
 

 
 
 
 
 
 
 
 
 
 
 
i
f
 
r
e
s
p
 
~
=
 
&
m
i
s
s
i
n
g
 
t
h
e
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%
di

;
 

 
 

 
 

 
e
n
d
;
 

 
 

 
 

 
e
l
s
e
 
i
f
 
m
o
d
e
l
[
j
]
=
"
g
r
"
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
%
gr

;
 

 
 

 
 

 
e
n
d
;
 

 
 

 
 
 
 
 
 
 
 
 
l
k
{
i
}
=
l
k
{
i
}
*
x
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 
 

 
 
 
 
 
 
 
 
e
n
d
;
 

 
 
e
n
d
;
 

%m
en

d 
l
i
k
e
h
o
o
d
c
a
t
;
 

 %m
ac

ro
 
th

te
st

;
 

/
*
 
 
E
s
t
i
m
a
t
e
 
a
b
i
l
i
t
y
 
u
s
i
n
g
 
p
a
r
t
i
c
u
l
a
r
 
e
s
t
i
m
a
t
i
o
n
 

 
m
e
t
h
o
d
 
(
M
L
,
 
M
A
P
,
 
o
r
 
E
A
P
)
 

  
N
e
w
t
o
n
 
-
 
R
a
p
h
s
o
n
:
 

 
M
L
 
i
f
 
&
e
s
t
=
1
;
 
M
A
P
 
i
f
 
&
e
s
t
=
2
;
 
 

  
E
A
P
 
i
f
 
&
e
s
t
=
3
;
 

  
G
r
i
d
 
s
e
a
r
c
h
:
 

 
 
 
 
M
L
 
i
f
 
&
e
s
t
=
4
;
 
M
A
P
 
i
f
 
&
e
s
t
=
5
 
*
/
 

  
 

 
i
f
 
&
e
s
t
=
3 

t
h
e
n
 
d
o
;
 

 
 

 
 

%
ea

pe
st

ca
t;

 
 

 
 

 
t
h
t
e
s
t
=
e
a
p
;
 

 
 

 
 

t
h
t
v
a
r
=
e
a
p
v
a
r
;
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e
n
d
;
 

 
 

 
e
l
s
e
 
i
f
 
&
e
s
t
=
4 

t
h
e
n
 
d
o
;
 
 
/
*
 
G
r
i
d
 
s
e
a
r
c
h
 
f
o
r
 
M
L
E
 
*
/
 

 
 

 
 

%
ma

xs
ea

rc
h;

 
 

 
 

 
t
h
t
e
s
t
=
m
a
x
p
o
i
n
t
;
 

 
 

 
 

%
mo

da
ls

e;
 
/
*
 
F
i
n
d
 
a
s
y
m
p
t
o
t
i
c
 
S
E
 
o
f
 
M
L
 
e
s
t
i
m
a
t
o
r
 
*
/
 

 
 

 
 

t
h
t
v
a
r
=
m
l
v
a
r
;
 

 
 

 
 

e
n
d
;
 

 
 

 
e
l
s
e
 
i
f
 
&
e
s
t
=
5 

t
h
e
n
 
d
o
;
 
 
/
*
 
G
r
i
d
 
s
e
a
r
c
h
 
f
o
r
 
M
A
P
 
*
/
 

 
 

 
 

%
ma

xs
ea

rc
h;

 
 

 
 

 
t
h
t
e
s
t
=
m
a
x
p
o
i
n
t
;
 

 
 

 
 

%
mo

da
ls

e;
 

 
 

 
 

t
h
t
v
a
r
=
m
a
p
v
a
r
;
 

 
 

 
 

e
n
d
;
 

 
 

 
e
l
s
e
 
i
f
 
&
e
s
t
=
1 

t
h
e
n
 
d
o
;
 
/
*
 
N
e
w
t
o
n
-
R
a
p
h
s
o
n
 
f
o
r
 
M
L
E
 
*
/
 

 
 

 
 

%
ne

wt
on

;
 

 
 

 
 

i
f
 
c
a
l
l
n
e
w
t
 
=
 
1 

t
h
e
n
 
d
o
;
 
/
*
 
C
a
l
l
n
e
w
t
 
=
 
1
 
f
o
r
 
n
o
n
-
p
e
r
f
e
c
t
 
r
e
s
p
o
n
s
e
 
p
a
t
t
e
r
n
 
*
/
 

 
 

 
 

 
%
mo

da
ls

e;
 

 
 

 
 

 
t
h
t
v
a
r
=
m
l
v
a
r
;
 

 
 

 
 

 
e
n
d
;
 

 
 

 
 

e
l
s
e
 
d
o
;
 
 
/
*
 
 
P
e
r
f
e
c
t
 
r
e
s
p
o
n
s
e
 
p
a
t
t
e
r
n
;
 
a
b
i
l
i
t
y
 
a
s
s
i
g
n
e
d
 
t
o
 
+
/
-
 
&
u
b
,
 
n
o
 
S
E
 

a
v
a
i
l
a
b
l
e
 
*
/
 

 
 

 
 

 
t
h
t
v
a
r
 
=
 
0;

 
 

 
 

 
 

 
e
n
d
;
 

 
 

 
 

e
n
d
;
 

 
 

 
e
l
s
e
 
i
f
 
&
e
s
t
=
2 

t
h
e
n
 
d
o
;
 
/
*
 
N
e
w
t
o
n
-
R
a
p
h
s
o
n
 
f
o
r
 
M
A
P
 
*
/
 

 
 

 
 

%
ne

wt
on

;
 

 
 

 
 

%
mo

da
ls

e;
 

 
 

 
 

t
h
t
v
a
r
=
m
a
p
v
a
r
;
 

 
 

 
 

e
n
d
;
 

 
 

 
e
l
s
e
 
i
f
 
&
e
s
t
=
6 

t
h
e
n
 
d
o
;
 
/
*
 
G
o
l
d
e
n
 
s
e
a
r
c
h
 
s
t
r
a
t
e
g
y
 
(
G
S
S
)
 
*
/
 

 
 

 
 

%
gs

s;
 

 
 

 
 

%
mo

da
ls

e;
 

 
 

 
 

t
h
t
v
a
r
=
m
l
v
a
r
;
 

 
 

 
 

e
n
d
;
 

%m
en

d 
t
h
t
e
s
t
;
 

  %m
ac

ro
 
po

st
;
 



 

 

218 

/
*
 
 
C
o
m
p
u
t
e
 
p
o
s
t
e
r
i
o
r
 
d
i
s
t
r
i
b
u
t
i
o
n
,
 
s
t
o
r
e
 
i
n
 
p
o
s
t
{
}
 
a
r
r
a
y
 
*
/
 

  
d
o
 
i
=
1 

t
o
 
&
n
q
p
t
;
 

 
 

p
o
s
t
[
i
]
 
=
 
l
k
[
i
]
*
p
r
i
o
r
[
i
]
;
 

 
e
n
d
;
 

 %m
en

d 
p
o
s
t
;
 

 %m
ac

ro
 
ea

pe
st

ca
t;

 
/
*
 
 
S
i
m
i
l
a
r
 
t
o
 
s
u
b
r
o
u
t
i
n
e
 
E
A
P
E
S
T
 
e
x
c
e
p
t
 
t
h
i
s
 
i
s
 
a
 
s
e
g
m
e
n
t
 
o
f
 
 

 
 
 
 
S
A
S
 
s
t
a
t
e
m
e
n
t
s
 
*
/
 

  
/
*
 
 
E
s
t
i
m
a
t
e
 
a
b
i
l
i
t
y
 
u
s
i
n
g
 
E
A
P
 
*
/
 

  
/
*
 
 
C
o
m
p
u
t
e
 
l
i
k
e
l
i
h
o
o
d
 
f
u
n
c
t
i
o
n
 
*
/
 

 
%
li

ke
ho

od
ca

t;
 

  
/
*
 
 
C
a
l
c
u
l
a
t
e
 
p
o
s
t
e
r
i
o
r
 
d
i
s
t
r
i
b
u
t
i
o
n
 
*
/
 

 
%
po

st
;
 

  
z
z
=
0;

 
 

z
=
0;

 
 

x
x
=
0;

 
 

y
y
=
0;

 
 

s
s
u
m
=
0;

 
  

d
o
 
i
=
1 

t
o
 
&
n
q
p
t
;
 

 
 

x
x
 
=
 
x
x
 
+
 
p
o
s
t
{
i
}
*
q
p
t
{
i
}
;
 

 
 

y
y
 
=
 
p
o
s
t
{
i
}
;
 

 
 

s
s
u
m
 
=
 
s
s
u
m
+
y
y
;
 

 
e
n
d
;
 

  
e
a
p
 
=
 
x
x
/
s
s
u
m
;
 

  
d
o
 
i
=
1 

t
o
 
&
n
q
p
t
;
 

 
 

z
 
=
 
z
 
+
 
p
o
s
t
{
i
}
*
(
q
p
t
{
i
}
 
-
 
(
e
a
p
)
)
*
*
2;

 
 

e
n
d
;
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e
a
p
v
a
r
 
=
 
(
z
/
s
s
u
m
)
;
 

 %m
en

d 
e
a
p
e
s
t
c
a
t
;
 

 %m
ac

ro
 
ma

xs
ea

rc
h;

 
/
*
 
 
E
x
p
e
r
i
m
e
n
t
a
l
 
m
a
c
r
o
 
f
o
r
 
g
l
o
b
a
l
 
m
a
x
i
m
u
m
 
s
e
a
r
c
h
 
*
/
 

 /
*
 
 
R
o
u
g
h
-
s
c
a
l
e
d
 
s
e
a
r
c
h
 
f
o
r
 
m
a
x
i
m
u
m
 
*
/
 

  
/
*
 
 
C
o
m
p
u
t
e
 
l
i
k
e
l
i
h
o
o
d
 
f
u
n
c
t
i
o
n
 
*
/
 

 
%
li

ke
ho

od
ca

t;
 

  
/
*
 
 
C
o
m
p
u
t
e
 
p
o
s
t
e
r
i
o
r
 
d
i
s
t
r
i
b
u
t
i
o
n
*
/
 

 
%
po

st
;
 

  
/
*
 
 
I
n
i
t
i
a
l
i
z
e
 
m
a
x
v
a
l
u
e
 
&
 
m
a
x
p
o
i
n
t
 
*
/
 

 
m
a
x
v
a
l
u
e
 
=
 
0;

 
 

m
a
x
p
o
i
n
t
 
=
 
0;

 
  

d
o
 
i
=
1 

t
o
 
&
n
q
p
t
;
 

 
 

i
f
 
p
o
s
t
{
i
}
 
>
 
m
a
x
v
a
l
u
e
 
t
h
e
n
 
d
o
;
 

 
 

 
m
a
x
v
a
l
u
e
 
=
 
p
o
s
t
{
i
}
;
 

 
 

 
m
a
x
p
o
i
n
t
 
=
 
i
;
 

 
 

 
e
n
d
;
 

 
e
n
d
;
 

 
 

  
/
*
 
 
R
e
-
i
n
i
t
i
a
l
i
z
e
 
m
a
x
v
a
l
u
e
 
&
 
c
r
e
a
t
e
 
m
a
x
p
o
i
n
t
1
,
 
m
a
x
p
o
i
n
t
2
 
*
/
 

 
m
a
x
v
a
l
u
e
 
=
 
0;

 
 

m
a
x
p
o
i
n
t
1
 
=
 
0;

 
 

m
a
x
p
o
i
n
t
2
 
=
 
0;

 
  

/
*
 
 
P
e
r
f
o
r
m
 
f
i
n
e
-
s
c
a
l
e
d
 
s
e
a
r
c
h
 

 
S
e
a
r
c
h
 
w
i
l
l
 
b
e
 
+
/
-
 
1
 
r
o
u
g
h
-
s
c
a
l
e
d
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
 
f
r
o
m
 
R
P
O
I
N
T
 
*
/
 

  
/
*
 
 
I
d
e
n
t
i
f
y
 
l
o
w
e
r
 
a
n
d
 
u
p
p
e
r
 
b
o
u
n
d
s
 
f
o
r
 
s
e
a
r
c
h
 
*
/
 

 
l
b
 
=
 
m
a
x
(
1,

m
a
x
p
o
i
n
t
-
1)

;
 

 
u
b
 
=
 
m
i
n
(
&
n
q
p
t
,
m
a
x
p
o
i
n
t
)
;
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/
*
 
 
C
a
l
c
u
l
a
t
e
 
l
i
k
e
l
i
h
o
o
d
s
 
o
n
 
f
i
n
e
r
 
s
c
a
l
e
 
*
/
 

 
 
 

d
o
 
i
=
l
b
 
t
o
 
u
b
;
 

 
 

d
o
 
k
=
1 

t
o
 
&
q
f
i
n
e
;
 

 
 
 

 
 

t
h
e
t
a
1
=
q
g
r
i
d
[
i
,
k
]
;
 
/
*
 
P
a
s
s
 
q
u
a
d
 
p
o
i
n
t
 
a
s
 
t
h
e
t
a
 
v
a
l
u
e
 
*
/
 

 
 
 
 
 
 
 
 
 

l
i
k
e
=
1*

p
g
r
i
d
[
i
,
k
]
;
 

 
 

 
d
o
 
j
=
1 

t
o
 
i
c
o
u
n
t
e
r
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 

r
e
s
p
=
i
x
{
j
}
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 

i
f
 
r
e
s
p
 
~
=
 
&
m
i
s
s
i
n
g
 
t
h
e
n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
%
di

;
 

 
 

 
 

 
 

e
n
d
;
 

 
 

 
 

 
 

e
l
s
e
 
i
f
 
m
o
d
e
l
[
j
]
=
"
g
r
"
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
 

%
gr

;
 

 
 

 
 

 
 

e
n
d
;
 

 
 

 
 
 
 
 
 
 
 
 
 

 
l
i
k
e
=
l
i
k
e
*
x
x
;
 

 
 

 
 

 
e
n
d
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 

 
 
i
f
 
l
i
k
e
 
>
 
m
a
x
v
a
l
u
e
 
t
h
e
n
 
d
o
;
 

 
 

 
 
 
 
 
 
m
a
x
v
a
l
u
e
 
=
 
l
i
k
e
;
 

 
 

 
 
 
 

 
m
a
x
p
o
i
n
t
1
 
=
 
i
;
 

 
 

 
 

 
m
a
x
p
o
i
n
t
2
 
=
 
k
;
 

 
 

 
 

 
e
n
d
;
 

 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
e
n
d
;
 

 
 

 
m
a
x
p
o
i
n
t
 
=
 
q
g
r
i
d
(
m
a
x
p
o
i
n
t
1
,
m
a
x
p
o
i
n
t
2
)
;
 

 %m
en

d 
m
a
x
s
e
a
r
c
h
;
 

 %m
ac

ro
 
mo

da
ls

e;
 

/
*
 
 
U
s
e
 
i
n
f
o
r
m
a
t
i
o
n
 
f
u
n
c
t
i
o
n
 
a
t
 
t
h
e
 
M
L
 
e
s
t
i
m
a
t
e
 
t
o
 
c
o
m
p
u
t
e
 

 
 
 
 
a
s
y
m
p
t
o
t
i
c
 
s
t
a
n
d
a
r
d
 
e
r
r
o
r
 
o
f
 
t
h
e
 
e
s
t
i
m
a
t
e
 
*
/
 

 /
*
 
 
T
h
e
 
c
u
r
r
e
n
t
 
t
e
s
t
 
i
n
f
o
r
m
a
t
i
o
n
 
I
(
t
h
e
t
a
)
 
m
a
y
 
b
e
 
c
o
m
p
u
t
e
d
 
b
y
 
 

 
 
 
 
s
u
m
m
i
n
g
 
t
h
e
 
i
n
d
i
v
i
d
u
a
l
 
i
t
e
m
 
i
n
f
o
r
m
a
t
i
o
n
 
f
u
n
c
t
i
o
n
s
 
I
_
i
(
t
h
e
t
a
)
 

 
 
 
 
w
h
e
r
e
 
t
h
e
t
a
 
i
s
 
e
q
u
a
l
 
t
o
 
t
h
e
 
M
L
 
e
s
t
i
m
a
t
e
.
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T
h
e
n
 
S
E
(
t
h
e
t
a
_
M
L
)
 
=
 
1
 
/
 
s
q
r
t
(
I
(
t
h
e
t
a
_
M
L
)
)
 
*
/
 

 /
*
 
 
R
o
u
t
i
n
e
 
m
a
k
e
s
 
u
s
e
 
o
f
 
c
u
m
p
r
o
b
{
*
}
,
 
o
g
i
v
e
{
*
}
,
 
n
c
a
t
{
*
}
,
 

 
 
 
 
m
o
d
e
l
{
*
}
,
 
a
n
d
 
p
{
*
}
 
a
r
r
a
y
s
 
*
/
 

 /
*
 
 
T
h
e
 
f
o
l
l
o
w
i
n
g
 
c
o
d
e
 
i
s
 
t
a
k
e
n
 
f
r
o
m
 
t
h
e
 
%
i
n
f
o
f
n
 
r
o
u
t
i
n
e
 

 
 
 
 
T
h
e
 
i
n
f
o
{
*
}
 
a
r
r
a
y
 
i
s
 
n
o
t
 
u
s
e
d
;
 
i
t
e
m
 
i
n
f
o
r
m
a
t
i
o
n
 
i
s
 
s
t
o
r
e
d
 
i
n
 

 
 
 
 
t
h
e
 
v
a
r
i
a
b
l
e
 
i
t
e
m
i
n
f
o
;
 
t
e
s
t
 
i
n
f
o
 
i
n
 
v
a
r
i
a
b
l
e
 
t
e
s
t
i
n
f
o
 
*
/
 

 
 

 
/
*
 
 
I
n
f
o
 
f
o
r
 
e
a
c
h
 
i
t
e
m
 
i
s
 
f
o
u
n
d
 
a
t
 
t
h
e
t
a
 
=
 
t
h
e
t
a
_
M
L
.
 
 
T
h
i
s
 
v
a
r
i
a
b
l
e
 

 
 
 
 
 
 
 
 
i
s
 
i
d
e
n
t
i
f
i
e
d
 
a
s
 
t
h
t
e
s
t
.
 
 
T
h
e
 
%
d
i
 
a
n
d
 
%
g
r
 
r
o
u
t
i
n
e
s
 
a
r
e
 
f
u
n
c
t
i
o
n
s
 

 
 
 
 
 
 
 
 
o
f
 
t
h
e
 
v
a
r
i
a
b
l
e
 
t
h
e
t
a
1
 
*
/
 

  
t
h
e
t
a
1
 
=
 
t
h
t
e
s
t
;
 

 
t
e
s
t
i
n
f
o
 
=
 
0;

 
  

d
o
 
j
=
1 

t
o
 
i
c
o
u
n
t
e
r
;
 
/
*
j
 
i
n
d
e
x
 
i
n
s
u
r
e
s
 
c
o
m
p
a
t
i
b
i
l
i
t
y
 
w
i
t
h
 
%
d
i
 
a
n
d
 
%
g
r
 
r
o
u
t
i
n
e
s
*
/
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
 
k
=
1 

t
o
 
&
m
a
x
c
a
t
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c
u
m
p
r
o
b
[
k
]
=
.;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
 
r
e
s
p
=
0 

t
o
 
n
c
a
t
{
j
}
-
1;

 
 

 
 

 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%
di

;
 

 
 

 
 
 
 
 
e
n
d
;
 

 
 

 
 

e
l
s
e
 
i
f
 
m
o
d
e
l
[
j
]
=
"
g
r
"
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
%
gr

;
 

 
 

 
 

e
n
d
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
r
e
s
p
=
0 

t
h
e
n
 
c
u
m
p
r
o
b
{
1}

=
x
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
l
s
e
 
c
u
m
p
r
o
b
{
r
e
s
p
+
1}

=
x
x
+
c
u
m
p
r
o
b
{
r
e
s
p
}
;
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

  
 

 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 

i
t
e
m
i
n
f
o
 
=
 
(
&
d
*
*
2)

*
(
p
{
j
,
1}

*
*
2)

*
c
u
m
p
r
o
b
{
1}

/
(
1-

c
u
m
p
r
o
b
{
1}

)
*
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
 
(
(
 
(
1-

c
u
m
p
r
o
b
{
1}

)
 
-
 
p
{
j
,
3}

)
*
*
2)

/
(
(
1 

-
 
p
{
j
,
3}

)
*
*
2)

 
)
;
 
 

 
 

 
 
 
 
e
n
d
;
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i
f
 
m
o
d
e
l
[
j
]
=
"
g
r
"
 
t
h
e
n
 
d
o
;
 

  
 

 
 
 
 
 
 
 
/
*
 
 
N
e
e
d
 
t
o
 
f
i
n
d
 
b
o
u
n
d
a
r
y
 
o
g
i
v
e
s
,
 
o
r
 
P
*
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
c
u
m
p
r
o
b
{
i
}
 
=
 
s
u
m
 
(
f
r
o
m
 
1
 
t
o
 
i
)
 
o
f
 
t
h
e
 
P
(
c
a
t
e
g
o
r
y
)
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
r
e
 
c
a
t
e
g
o
r
y
 
g
o
e
s
 
f
r
o
m
 
1
 
t
o
 
k
 

  
 

 
 
 
 
 
 
 
 
 
 
 
T
h
e
n
 
P
*
(
i
)
 
=
 
1
 
-
 
c
u
m
p
r
o
b
{
i
}
 

 
 

 
 
 
 
 
 
 
*
/
 

  
 

 
 

 
 
/
*
 
F
i
r
s
t
 
a
s
s
i
g
n
 
v
a
l
u
e
 
t
o
 
l
o
w
e
s
t
 
b
o
u
n
d
a
r
y
 
p
o
i
n
t
 
*
/
 

 
 

 
 
 
 
 
 
 
o
g
i
v
e
(
1)

 
=
 
1;

 
 

 
 

 
  

 
 

 
 
 
/
*
 
 
N
o
w
 
f
i
n
d
 
b
o
u
n
d
a
r
y
 
o
g
i
v
e
s
 
f
o
r
 
r
e
m
a
i
n
i
n
g
 
p
o
i
n
t
s
 

 
 

 
 

 
 
 
 
 
 
(
n
o
t
e
 
t
h
a
t
 
l
a
s
t
 
p
o
i
n
t
 
i
s
 
a
l
w
a
y
s
 
e
q
u
a
l
 
t
o
 
z
e
r
o
)
 
*
/
 

  
 

 
 

 
 
d
o
 
i
=
1 

t
o
 
n
c
a
t
(
j
)
;
 

 
 

 
 

 
 
 

 
o
g
i
v
e
(
i
+
1)

=
1-

c
u
m
p
r
o
b
(
i
)
;
 

 
 

 
 

 
 
e
n
d
;
 

 
 

 
 

 
 

 
 
 
 
 
 
/
*
 
 
C
a
l
c
u
l
a
t
e
 
i
n
f
o
r
m
a
t
i
o
n
 
(
s
e
e
 
B
a
k
e
r
 
(
1
9
9
1
)
 
C
h
.
8
 
p
.
 
2
4
6
)
*
/
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
n
f
o
s
u
m
=
0;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d
o
 
k
=
2 

t
o
 
n
c
a
t
(
j
)
+
1;

 
 

 
 

 
 
 
 
 
 
i
n
f
o
s
u
m
 
=
 
i
n
f
o
s
u
m
 
+
 
(
 
&
d
*
p
{
j
,
1}

 
)
*
*
2 

*
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
 
 
(
 
 
o
g
i
v
e
(
k
-
1)

*
(
1-

o
g
i
v
e
(
k
-
1)

)
 
-
 
o
g
i
v
e
(
k
)
*
(
1-

o
g
i
v
e
(
k
)
)
 
)
*
*
2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/
 

 
 

 
 

 
 

 
 
 
 
(
 
 
o
g
i
v
e
(
k
-
1)

 
-
 
o
g
i
v
e
(
k
)
 
)
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
)
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 

 
 
 
 
 
 
 
i
t
e
m
i
n
f
o
=
i
n
f
o
s
u
m
;
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 

 
 

 
 
t
e
s
t
i
n
f
o
 
=
 
t
e
s
t
i
n
f
o
 
+
 
i
t
e
m
i
n
f
o
;
 

  
 

e
n
d
;
 

  
 
 
 
 
 
 
 
m
l
v
a
r
 
=
 
1/

t
e
s
t
i
n
f
o
;
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/
*
 
 
I
f
 
a
 
n
o
r
m
a
l
 
p
r
i
o
r
 
N
(
0
,
1
)
 
i
s
 
u
s
e
d
,
 
t
h
e
n
 
i
t
 
c
a
n
 
b
e
 
s
h
o
w
n
 
t
h
a
t
 

 
 

 
 
 
 
I
(
t
h
e
t
a
_
M
A
P
)
 
=
 
I
(
t
h
e
t
a
_
M
L
)
 
+
 
1
 
 

  
 

 
 
 
 
M
o
r
e
 
g
e
n
e
r
a
l
l
y
,
 
f
o
r
 
a
 
n
o
r
m
a
l
 
p
r
i
o
r
 
w
i
t
h
 
v
a
r
i
a
n
c
e
 
=
 
s
i
g
m
a
*
*
2
,
 

 
 

 
 
 
 
I
(
t
h
e
t
a
_
M
A
P
)
 
=
 
I
(
t
h
e
t
a
_
M
L
)
 
+
 
(
1
/
s
i
g
m
a
*
*
2
)
 
*
/
 

  
 

m
a
p
v
a
r
 
=
 
1 

/
 
(
t
e
s
t
i
n
f
o
 
+
 
(
1/

&
s
i
g
m
a
2
)
 
)
;
 

 %m
en

d 
m
o
d
a
l
s
e
;
 

  %m
ac

ro
 
in

fo
tr

ue
;
 

 /
*
 
 
C
a
l
c
u
l
a
t
e
 
t
e
s
t
 
i
n
f
o
r
m
a
t
i
o
n
 
a
t
 
t
r
u
e
 
t
h
e
t
a
 
v
a
l
u
e
 
*
/
 

 
t
h
e
t
a
1
 
=
 
t
r
u
e
1
;
 

 
t
e
s
t
i
n
f
o
 
=
 
0;

 
  

d
o
 
j
=
1 

t
o
 
i
c
o
u
n
t
e
r
;
 
/
*
j
 
i
n
d
e
x
 
i
n
s
u
r
e
s
 
c
o
m
p
a
t
i
b
i
l
i
t
y
 
w
i
t
h
 
%
d
i
 
a
n
d
 
%
g
r
 
r
o
u
t
i
n
e
s
*
/
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
 
k
=
1 

t
o
 
&
m
a
x
c
a
t
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c
u
m
p
r
o
b
[
k
]
=
.;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
 
r
e
s
p
=
0 

t
o
 
n
c
a
t
{
j
}
-
1;

 
 

 
 

 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%
di

;
 

 
 

 
 

 
 
 
 
e
n
d
;
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
r
e
s
p
=
0 

t
h
e
n
 
c
u
m
p
r
o
b
{
1}

=
x
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
l
s
e
 
c
u
m
p
r
o
b
{
r
e
s
p
+
1}

=
x
x
+
c
u
m
p
r
o
b
{
r
e
s
p
}
;
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

  
 

 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 

i
t
e
m
i
n
f
o
 
=
 
(
&
d
*
*
2)

*
(
p
{
j
,
1}

*
*
2)

*
c
u
m
p
r
o
b
{
1}

/
(
1-

c
u
m
p
r
o
b
{
1}

)
 
*
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
 
(
(
 
(
1-

c
u
m
p
r
o
b
{
1}

)
 
-
 
p
{
j
,
3}

)
*
*
2)

/
(
(
1 

-
 
p
{
j
,
3}

)
*
*
2)

 
)
;
 
 

 
 

 
 
 
 
 

e
n
d
;
 

 
 

 
 
 

 
 
 
 
 
 

l
a
s
t
p
 
=
 
1 

-
 
c
u
m
p
r
o
b
{
1}

;
 
 
/
*
 
 
S
a
v
e
 
p
r
o
b
 
f
n
 
f
r
o
m
 
l
a
s
t
 
a
d
m
i
n
i
s
t
e
r
e
d
 
i
t
e
m
 
*
/
 

 
 

 
t
e
s
t
i
n
f
o
 
=
 
t
e
s
t
i
n
f
o
 
+
 
i
t
e
m
i
n
f
o
;
 

 
 
 
 
 
 
 
 
 

 
e
n
d
;
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/
*
 
 
S
a
v
e
 
t
e
s
t
 
i
n
f
o
r
m
a
t
i
o
n
 
i
n
 
a
r
r
a
y
 
*
/
 

  
i
n
f
o
m
e
a
s
(
i
c
o
u
n
t
e
r
)
 
=
 
t
e
s
t
i
n
f
o
;
 

 %m
en

d 
i
n
f
o
t
r
u
e
;
 

 %m
ac

ro
 
in

fo
es

t;
 

 /
*
 
 
C
a
l
c
u
l
a
t
e
 
t
e
s
t
 
i
n
f
o
r
m
a
t
i
o
n
 
a
t
 
e
s
t
i
m
a
t
e
d
 
t
h
e
t
a
 
v
a
l
u
e
 
(
p
r
o
v
i
s
i
o
n
a
l
 
e
s
t
i
m
a
t
e
)
 
*
/
 

 
t
h
e
t
a
1
 
=
 
p
r
o
v
(
i
c
o
u
n
t
e
r
)
;
 

 
t
e
s
t
i
n
f
o
 
=
 
0;

 
  

d
o
 
j
=
1 

t
o
 
i
c
o
u
n
t
e
r
;
 
/
*
j
 
i
n
d
e
x
 
i
n
s
u
r
e
s
 
c
o
m
p
a
t
i
b
i
l
i
t
y
 
w
i
t
h
 
%
d
i
 
a
n
d
 
%
g
r
 
r
o
u
t
i
n
e
s
*
/
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
 
k
=
1 

t
o
 
&
m
a
x
c
a
t
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c
u
m
p
r
o
b
[
k
]
=
.;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
 
r
e
s
p
=
0 

t
o
 
n
c
a
t
{
j
}
-
1;

 
 

 
 

 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%
di

;
 

 
 

 
 

 
 
 
 
e
n
d
;
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
r
e
s
p
=
0 

t
h
e
n
 
c
u
m
p
r
o
b
{
1}

=
x
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
l
s
e
 
c
u
m
p
r
o
b
{
r
e
s
p
+
1}

=
x
x
+
c
u
m
p
r
o
b
{
r
e
s
p
}
;
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

  
 

 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 

i
t
e
m
i
n
f
o
 
=
 
(
&
d
*
*
2)

*
(
p
{
j
,
1}

*
*
2)

*
c
u
m
p
r
o
b
{
1}

/
(
1-

c
u
m
p
r
o
b
{
1}

)
 
*
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
 
(
(
 
(
1-

c
u
m
p
r
o
b
{
1}

)
 
-
 
p
{
j
,
3}

)
*
*
2)

/
(
(
1 

-
 
p
{
j
,
3}

)
*
*
2)

 
)
;
 
 

 
 

 
 
 
 
 

e
n
d
;
 

 
 

 
 
 

 
 
 
 
 
 

l
a
s
t
p
 
=
 
1 

-
 
c
u
m
p
r
o
b
{
1}

;
 
 
/
*
 
 
S
a
v
e
 
p
r
o
b
 
f
n
 
f
r
o
m
 
l
a
s
t
 
a
d
m
i
n
i
s
t
e
r
e
d
 
i
t
e
m
 
*
/
 

 
 

 
t
e
s
t
i
n
f
o
 
=
 
t
e
s
t
i
n
f
o
 
+
 
i
t
e
m
i
n
f
o
;
 

 
 
 
 
 
 
 
 
 

 
e
n
d
;
 

  
/
*
 
 
S
a
v
e
 
t
e
s
t
 
i
n
f
o
r
m
a
t
i
o
n
 
i
n
 
a
r
r
a
y
 
*
/
 

  
i
n
f
o
m
e
a
s
(
i
c
o
u
n
t
e
r
)
 
=
 
t
e
s
t
i
n
f
o
;
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 %m
en

d 
i
n
f
o
e
s
t
;
 

 %m
ac

ro
 
in

fo
es

t2
;
 

  
/
*
 
 
T
h
i
s
 
r
o
u
t
i
n
e
 
i
s
 
c
a
l
l
e
d
 
b
e
f
o
r
e
 
t
h
e
 
i
t
e
m
 
i
n
d
i
c
a
t
e
d
 
b
y
 
<
i
c
o
u
n
t
e
r
>
 

 
 
 
 
 
 
 
 
i
s
 
a
d
m
i
n
i
s
t
e
r
e
d
 
*
/
 

  
t
h
e
t
a
1
 
=
 
t
h
t
e
s
t
;
 

 
t
e
s
t
i
n
f
o
 
=
 
0;

 
  

d
o
 
j
=
1 

t
o
 
(
i
c
o
u
n
t
e
r
-
1)

;
 
/
*
j
 
i
n
d
e
x
 
i
n
s
u
r
e
s
 
c
o
m
p
a
t
i
b
i
l
i
t
y
 
w
i
t
h
 
%
d
i
 
a
n
d
 
%
g
r
 
r
o
u
t
i
n
e
s
*
/
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
 
k
=
1 

t
o
 
&
m
a
x
c
a
t
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c
u
m
p
r
o
b
[
k
]
=
.;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
 
r
e
s
p
=
0 

t
o
 
n
c
a
t
{
j
}
-
1;

 
 

 
 

 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%
di

;
 

 
 

 
 

 
 
 
 
e
n
d
;
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
r
e
s
p
=
0 

t
h
e
n
 
c
u
m
p
r
o
b
{
1}

=
x
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
l
s
e
 
c
u
m
p
r
o
b
{
r
e
s
p
+
1}

=
x
x
+
c
u
m
p
r
o
b
{
r
e
s
p
}
;
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

  
 

 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 

i
t
e
m
i
n
f
o
 
=
 
(
&
d
*
*
2)

*
(
p
{
j
,
1}

*
*
2)

*
c
u
m
p
r
o
b
{
1}

/
(
1-

c
u
m
p
r
o
b
{
1}

)
 
*
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
 
(
(
 
(
1-

c
u
m
p
r
o
b
{
1}

)
 
-
 
p
{
j
,
3}

)
*
*
2)

/
(
(
1 

-
 
p
{
j
,
3}

)
*
*
2)

 
)
;
 
 

 
 

 
 
 
 
 

e
n
d
;
 

 
 

 
 
 

 
 

 
t
e
s
t
i
n
f
o
 
=
 
t
e
s
t
i
n
f
o
 
+
 
i
t
e
m
i
n
f
o
;
 

 
 
 
 
 
 
 
 
 

 
e
n
d
;
 

 %m
en

d 
i
n
f
o
e
s
t
2
;
 

 %m
ac

ro
 
fl

ip
;
 

  
z
t
o
l
 
=
 
&
z
t
o
l
;
 
 
/
*
 
 
S
e
t
 
z
-
t
o
l
e
r
a
n
c
e
,
 
i
n
 
S
.
D
.
 
u
n
i
t
s
 
*
/
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/
*
 
 
F
i
n
d
 
o
b
s
e
r
v
e
d
 
p
r
o
p
o
r
t
i
o
n
s
 
*
/
 

 
 

m
n
 
=
 
0;

 
 

 
d
o
 
i
 
=
 
1 

t
o
 
i
c
o
u
n
t
e
r
;
 

 
 

 
m
n
 
=
 
m
n
 
+
 
i
x
(
i
)
;
 

 
 

e
n
d
;
 

  
 

m
n
 
=
 
m
n
 
/
 
i
c
o
u
n
t
e
r
;
 

  
/
*
 
 
F
i
n
d
 
e
x
p
e
c
t
e
d
 
p
r
o
p
o
r
t
i
o
n
s
,
 
g
i
v
e
n
 
i
t
e
m
s
 
(
a
d
j
u
s
t
s
 
f
o
r
 
c
 
p
a
r
a
m
e
t
e
r
s
)
 
*
/
 

 
 

m
n
c
 
=
 
0;

 
 

 
v
a
r
c
 
=
 
0;

 
  

 
d
o
 
i
 
=
 
1 

t
o
 
i
c
o
u
n
t
e
r
;
 

 
 

 
 
 
 
p
c
 
=
 
p
{
i
,
3}

 
+
 
(
1 

-
 
p
{
i
,
3}

)
 
/
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
1 

+
 
(
2 

/
 
(
1 

+
 
s
q
r
t
(
1 

+
 
8*

p
{
i
,
3}

)
 
)
 
)
 
)
;
 
 

 
 

 
m
n
c
 
=
 
m
n
c
 
+
 
p
c
;
 

 
 

 
 

 
v
a
r
c
 
=
 
v
a
r
c
 
+
 
p
c
*
(
1-

p
c
)
;
 
 
 
/
*
 
V
a
r
i
a
n
c
e
 
o
f
 
s
u
m
 
i
s
 
s
u
m
 
o
f
 
v
a
r
i
a
n
c
e
 
f
o
r
 
i
n
d
e
p
e
n
d
e
n
t
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
o
b
s
e
r
v
a
t
i
o
n
s
 
*
/
 

 
 

e
n
d
;
 

  
 

m
n
c
 
=
 
m
n
c
 
/
 
i
c
o
u
n
t
e
r
;
 

  
 

v
a
r
c
 
=
 
v
a
r
c
 
/
 
(
i
c
o
u
n
t
e
r
*
*
2)

;
 

 *
 

 
m
n
 
=
 
o
b
s
e
r
v
e
d
;
 

*
 

 
m
n
c
 
=
 
e
x
p
e
c
t
e
d
;
 

  
/
*
 
 
C
o
m
p
u
t
e
 
s
t
a
n
d
a
r
d
 
e
r
r
o
r
 
f
o
r
 
t
h
e
s
e
 
p
r
o
p
o
r
t
i
o
n
s
 
*
/
 

 
 

s
e
 
=
 
s
q
r
t
(
 
v
a
r
c
 
)
;
 

  
/
*
 
 
C
o
m
p
u
t
e
 
z
-
s
t
a
t
i
s
t
i
c
 
*
/
 

 
 

z
 
=
 
(
m
n
 
-
 
m
n
c
)
 
/
 
s
e
;
 

  
 

/
*
 
 
C
o
n
d
u
c
t
 
h
y
p
o
t
h
e
s
i
s
 
t
e
s
t
s
 
*
/
 

  
 

f
l
a
g
 
=
 
1;
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i
f
 
z
 
<
 
-
z
t
o
l
 
t
h
e
n
 
d
o
;
 
 
/
*
 
 
R
e
j
e
c
t
 
n
u
l
l
 
o
n
 
n
e
g
a
t
i
v
e
 
s
i
d
e
 
*
/
 

 
 

 
n
e
w
p
 
=
 
m
n
c
 
-
 
z
t
o
l
*
s
e
;
 

 
 

 
e
n
d
;
 

  
 

e
l
s
e
 
i
f
 
z
 
>
 
z
t
o
l
 
t
h
e
n
 
d
o
;
 
 
/
*
 
 
R
e
j
e
c
t
 
n
u
l
l
 
o
n
 
p
o
s
i
t
i
v
e
 
s
i
d
e
 
*
/
 

 
 

 
n
e
w
p
 
=
 
m
n
c
 
+
 
z
t
o
l
*
s
e
;
 

 
 

 
e
n
d
;
 

  
 

e
l
s
e
 
d
o
;
 
 
 
/
*
 
 
D
o
 
n
o
t
 
r
e
j
e
c
t
 
n
u
l
l
 
*
/
 

 
 

 
f
l
a
g
 
=
 
0;

 
 

 
 

e
n
d
;
 

 
 

 
 

 
 

/
*
 
 
N
u
l
l
 
h
y
p
o
t
h
e
s
i
s
 
r
e
j
e
c
t
e
d
 
w
h
e
n
 
f
l
a
g
 
=
 
1
 
*
/
 

 
 

i
f
 
f
l
a
g
 
=
 
1 

t
h
e
n
 
d
o
;
 

  
 

 
/
*
 
 
I
f
 
f
l
a
g
=
1
,
 
a
l
t
e
r
n
a
t
i
v
e
 
p
r
o
c
e
d
u
r
e
 
i
s
 
u
s
e
d
.
 

  
 

 
 

U
s
e
 
a
v
e
r
a
g
e
 
I
C
C
 
t
o
 
l
o
c
a
t
e
 
n
e
w
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
e
 
*
/
 

 
 

 
 

 
 

 
 

%
al

t;
 

  
 

 
/
*
 
 
A
s
s
i
g
n
 
t
o
 
t
h
t
e
s
t
 
*
/
 

  
 

 
t
h
t
e
s
t
 
=
 
f
o
r
e
c
a
s
t
(
i
c
o
u
n
t
e
r
)
;
 

 
 

 
 

e
n
d
;
 

 %m
en

d 
f
l
i
p
;
 

 %m
ac

ro
 
al

t;
 

 /
*
 
 
A
l
t
e
r
n
a
t
i
v
e
 
p
r
o
c
e
d
u
r
e
 
u
n
d
e
r
 
M
L
 
e
s
t
i
m
a
t
i
o
n
 
*
/
 

  
r
e
s
p
 
=
 
1;

 
 
*
 
F
o
r
 
%
d
i
 
r
o
u
t
i
n
e
;
 

 
l
b
 
=
 
-
&
u
b
;
 

 
u
b
 
=
 
&
u
b
;
 

  
/
*
 
 
F
i
n
d
 
i
n
v
e
r
s
e
 
o
f
 
n
e
w
p
 
t
h
r
o
u
g
h
 
t
h
e
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a
v
e
r
a
g
e
 
I
C
C
;
 
i
n
v
e
r
s
e
 
i
s
 
t
h
e
 
n
e
w
 
t
h
e
t
a
 
 

 
 

e
s
t
i
m
a
t
e
 
*
/
 

  
 
 
 
/
*
 

U
s
e
 
m
e
t
h
o
d
 
o
f
 
h
a
l
v
i
n
g
 
*
/
 

  
d
o
 
i
 
=
 
1 

t
o
 
15

;
 

 
 

m
i
d
p
o
i
n
t
 
=
 
(
l
b
+
u
b
)
/
2;

 
  

 
/
*
 
 
G
e
t
 
l
o
w
e
r
 
b
o
u
n
d
 
p
r
o
b
 
*
/
 

 
 

l
b
p
 
=
 
0;

 
 

 
t
h
e
t
a
1
 
=
 
l
b
;
 

 
 

d
o
 
j
 
=
 
1 

t
o
 
i
c
o
u
n
t
e
r
;
 

 
 

 
%
di

;
 

 
 

 
l
b
p
 
=
 
l
b
p
 
+
 
x
x
;
 

 
 

e
n
d
;
 

 
 

l
b
p
 
=
 
l
b
p
 
/
 
i
c
o
u
n
t
e
r
;
 
 
*
T
a
k
e
 
a
v
e
r
a
g
e
;
 

  
 

/
*
 
 
G
e
t
 
m
i
d
p
o
i
n
t
 
p
r
o
b
 
*
/
 

 
 

m
i
d
p
 
=
 
0;

 
 

 
t
h
e
t
a
1
 
=
 
m
i
d
p
o
i
n
t
;
 

 
 

d
o
 
j
 
=
 
1 

t
o
 
i
c
o
u
n
t
e
r
;
 

 
 

 
%
di

;
 

 
 

 
m
i
d
p
 
=
 
m
i
d
p
 
+
 
x
x
;
 

 
 

e
n
d
;
 

 
 

m
i
d
p
 
=
 
m
i
d
p
 
/
 
i
c
o
u
n
t
e
r
;
 
*
T
a
k
e
 
a
v
e
r
a
g
e
;
 

  
 

/
*
 
 
G
e
t
 
u
p
p
e
r
 
b
o
u
n
d
 
p
r
o
b
 
*
/
 

 
 

u
b
p
 
=
 
0;

 
 

 
t
h
e
t
a
1
 
=
 
u
b
;
 

 
 

d
o
 
j
 
=
 
1 

t
o
 
i
c
o
u
n
t
e
r
;
 

 
 

 
%
di

;
 

 
 

 
u
b
p
 
=
 
u
b
p
 
+
 
x
x
;
 

 
 

e
n
d
;
 

 
 

u
b
p
 
=
 
u
b
p
 
/
 
i
c
o
u
n
t
e
r
;
 
*
T
a
k
e
 
a
v
e
r
a
g
e
;
 

  
 

/
*
 
 
C
h
e
c
k
 
s
e
c
t
i
o
n
s
 
&
 
u
p
d
a
t
e
 
*
/
 

 
 

i
f
 
 
n
e
w
p
 
<
 
m
i
d
p
 
t
h
e
n
 
d
o
;
 

 
 

 
u
b
 
=
 
m
i
d
p
o
i
n
t
;
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e
n
d
;
 

 
 

e
l
s
e
 
d
o
;
 

 
 

 
l
b
 
=
 
m
i
d
p
o
i
n
t
;
 

 
 

 
e
n
d
;
 

  
e
n
d
;
 

  
 

f
o
r
e
c
a
s
t
(
i
c
o
u
n
t
e
r
)
 
=
 
m
i
d
p
o
i
n
t
;
 

 %m
en

d 
a
l
t
;
 

 %m
ac

ro
 
ne

wt
on

;
 

/
*
 
 
U
s
e
s
 
N
e
w
t
o
n
-
R
a
p
h
s
o
n
 
p
r
o
c
e
d
u
r
e
 
t
o
 
f
i
n
d
 
M
L
 
a
n
d
 
M
A
P
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
e
s
 
*
/
 

 /
*
 
 
N
o
t
e
 
t
h
a
t
 
w
h
e
n
 
t
h
e
 
t
e
s
t
 
i
n
f
o
r
m
a
t
i
o
n
 
f
u
n
c
t
i
o
n
 
i
s
 
l
e
s
s
 
t
h
a
n
 
1
,
 
t
h
i
s
 
p
r
o
c
e
d
u
r
e
 

 
c
a
l
l
s
 
%
m
a
x
s
e
a
r
c
h
 
t
o
 
p
e
r
f
o
r
m
 
a
 
g
r
i
d
 
s
e
a
r
c
h
 
*
/
 

  
c
a
l
l
n
e
w
t
 
=
 
1;

 
 
/
*
 
 
S
e
t
 
f
l
a
g
 
i
n
i
t
i
a
l
l
y
 
t
o
 
c
a
l
l
 
N
e
w
t
o
n
-
R
a
p
h
s
o
n
 
*
/
 

  
/
*
 
 
T
a
b
u
l
a
t
e
 
n
u
m
b
e
r
 
c
o
r
r
e
c
t
 
s
c
o
r
e
 
*
/
 

 
c
o
r
r
e
c
t
=
0;

 
  
 
 

d
o
 
i
=
1 

t
o
 
i
c
o
u
n
t
e
r
;
 

 
 
 
 

 
i
f
 
i
x
[
i
]
=
1 

t
h
e
n
 
c
o
r
r
e
c
t
=
c
o
r
r
e
c
t
+
1;

 
 

e
n
d
;
 

  
/
*
 
 
C
h
e
c
k
 
f
o
r
 
p
e
r
f
e
c
t
 
r
e
s
p
o
n
s
e
 
p
a
t
t
e
r
n
s
 
b
e
f
o
r
e
 
e
m
p
l
o
y
i
n
g
 
N
e
w
t
o
n
-
R
a
p
h
s
o
n
 
o
n
 

 
 

M
L
E
 
*
/
 

  
i
f
 
&
e
s
t
 
=
 
1 

t
h
e
n
 
d
o
;
 
 
/
*
 
&
e
s
t
 
=
 
1
 
i
s
 
M
L
E
 
*
/
 

  
 

i
f
 
c
o
r
r
e
c
t
 
=
 
0 

t
h
e
n
 
d
o
;
 
 
/
*
 
R
e
s
p
o
n
s
e
 
p
a
t
t
e
r
n
 
a
l
l
 
i
n
c
o
r
r
e
c
t
 
*
/
 

 
 

 
t
h
t
o
u
t
 
=
 
-
&
u
b
;
 

 
 

 
c
a
l
l
n
e
w
t
 
=
 
0;

 
/
*
 
F
l
a
g
 
t
o
 
p
a
s
s
 
t
o
 
N
e
w
t
o
n
-
R
a
p
h
s
o
n
,
 
d
o
 
n
o
t
 
e
x
e
c
u
t
e
 
*
/
 

 
 

 
e
n
d
;
 

 
 

e
l
s
e
 
i
f
 
c
o
r
r
e
c
t
 
=
 
i
c
o
u
n
t
e
r
 
t
h
e
n
 
d
o
;
 
/
*
 
R
e
s
p
o
n
s
e
 
p
a
t
t
e
r
n
 
a
l
l
 
c
o
r
r
e
c
t
 
*
/
 

 
 

 
t
h
t
o
u
t
 
=
 
&
u
b
;
 

 
 

 
c
a
l
l
n
e
w
t
 
=
 
0;

 
/
*
 
F
l
a
g
 
t
o
 
p
a
s
s
 
t
o
 
N
e
w
t
o
n
-
R
a
p
h
s
o
n
,
 
d
o
 
n
o
t
 
e
x
e
c
u
t
e
 
*
/
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e
n
d
;
 

  
 

e
n
d
;
 

   
/
*
*
 
N
e
w
t
o
n
-
R
a
p
h
s
o
n
 
p
r
o
c
e
d
u
r
e
 
*
*
/
 

 
/
*
 
 
I
t
e
r
a
t
e
s
 
u
s
i
n
g
 
t
h
e
 
f
o
l
l
o
w
i
n
g
 
t
h
e
t
a
 
v
a
l
u
e
s
:
 

 
 

 
t
h
t
i
n
:
 
 
i
n
p
u
t
 
t
h
e
t
a
 
v
a
l
u
e
 

 
 

 
t
h
t
o
u
t
:
 
 
o
u
t
p
u
t
 
t
h
e
t
a
 
v
a
l
u
e
 
*
/
 

  
i
f
 
c
a
l
l
n
e
w
t
 
=
 
1 

t
h
e
n
 
d
o
;
 

  
 

/
*
 
 
S
e
t
 
s
t
a
r
t
i
n
g
 
v
a
l
u
e
 
t
o
 
a
v
e
r
a
g
e
 
o
f
 
b
-
p
a
r
a
m
e
t
e
r
s
 
*
/
 

 
 

 
s
t
v
a
l
 
=
 
0;

 
 

 
 

d
o
 
i
 
=
 
1 

t
o
 
i
c
o
u
n
t
e
r
;
 

 
 

 
 

s
t
v
a
l
 
=
 
s
t
v
a
l
 
+
 
p
{
i
,
2}

;
 

 
 

 
e
n
d
;
 

 
 

 
t
h
t
i
n
 
=
 
s
t
v
a
l
 
/
 
i
c
o
u
n
t
e
r
;
 

  
 

/
*
 
 
R
e
s
e
t
 
i
t
e
r
a
t
i
o
n
 
c
o
u
n
t
e
r
 
*
/
 

 
 

 
i
t
e
r
s
 
=
 
0;

 
 
 
 

 
 

 
 

 
/
*
 
 
M
i
n
i
m
u
m
 
t
e
s
t
 
i
n
f
o
r
m
a
t
i
o
n
 
r
e
q
u
i
r
e
d
 
f
o
r
 
s
t
a
b
i
l
i
t
y
 
*
/
 

 
 

 
m
i
n
i
n
f
o
 
=
 
1*

&
d
*
*
2;

 
  

 
/
*
 
 
B
e
g
i
n
 
l
o
o
p
 
*
/
 

  
 

d
o
 
u
n
t
i
l
 
(
i
t
e
r
s
=
&
n
e
w
t
o
n
_
m
a
x
 
o
r
 
t
h
t
d
i
f
f
 
<
 
&
c
r
i
t
)
;
 

  
 

 
i
t
e
r
s
 
=
 
i
t
e
r
s
 
+
 
1;

 
  

 
 

/
*
 
 
O
b
t
a
i
n
 
f
i
r
s
t
 
a
n
d
 
s
e
c
o
n
d
 
d
e
r
i
v
a
t
i
v
e
s
 
o
f
 
l
o
g
 
l
i
k
e
l
i
h
o
o
d
 
a
t
 
t
h
t
i
n
 
*
/
 

 
 

 
%
de

ri
v;

 
  

 
 

/
*
 
 
I
f
 
t
e
s
t
i
n
f
o
 
i
s
 
t
o
o
 
s
m
a
l
l
,
 
p
e
r
f
o
r
m
 
g
r
i
d
 
s
e
a
r
c
h
 
i
n
s
t
e
a
d
 
a
n
d
 

 
 

 
 
 
 
 
d
o
 
n
o
t
 
p
e
r
f
o
r
m
 
N
e
w
t
o
n
 
s
t
e
p
 
*
/
 

 
 

 
i
f
 
t
e
s
t
i
n
f
o
 
<
 
m
i
n
i
n
f
o
 
t
h
e
n
 
d
o
;
 
 

 
 

 
 

%
ma

xs
ea

rc
h;
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t
h
t
o
u
t
 
=
 
m
a
x
p
o
i
n
t
;
 

 
 

 
 

l
e
a
v
e
;
 
/
*
 
L
e
a
v
e
 
d
o
-
u
n
t
i
l
 
l
o
o
p
 
*
/
 

 
 

 
 

e
n
d
;
 

  
 

 
/
*
 
 
O
t
h
e
r
w
i
s
e
,
 
p
e
r
f
o
r
m
 
N
e
w
t
o
n
-
R
a
p
h
s
o
n
 
s
t
e
p
 
*
/
 

 
 

 
 

 
 

 
 

t
h
t
o
u
t
 
=
 
t
h
t
i
n
 
-
 
(
d
e
r
i
v
s
u
m
 
/
 
(
-
1*

t
e
s
t
i
n
f
o
)
 
)
;
 

 
 

 
 

t
h
t
d
i
f
f
 
=
 
a
b
s
(
 
t
h
t
i
n
 
-
 
t
h
t
o
u
t
 
)
;
 
/
*
 
F
i
n
d
 
a
b
s
 
d
i
f
f
 
b
e
t
w
e
e
n
 
e
s
t
i
m
a
t
e
s
 
*
/
 

 
 

 
 

t
h
t
i
n
 
=
 
t
h
t
o
u
t
;
 
/
*
 
 
F
e
e
d
 
t
h
e
 
t
h
t
o
u
t
 
v
a
l
u
e
 
a
s
 
t
h
t
i
n
 
f
o
r
 
n
e
x
t
 
i
t
e
r
a
t
i
o
n
 
*
/
 

  
 

  
 

e
n
d
;
 
/
*
d
o
-
u
n
t
i
l
 
l
o
o
p
 
*
/
 
 
 

  
e
n
d
;
 
/
*
 
c
o
n
d
i
t
i
o
n
a
l
:
 
c
a
l
l
n
e
w
t
 
*
/
 

  
t
h
t
e
s
t
 
=
 
t
h
t
o
u
t
;
 
 
/
*
 
F
i
n
a
l
 
t
h
e
t
a
 
e
s
t
i
m
a
t
e
 
(
t
h
t
e
s
t
)
 
*
/
 

 %m
en

d 
n
e
w
t
o
n
;
 

 %m
ac

ro
 
de

ri
v;

 
/
*
 
 
C
a
l
c
u
l
a
t
e
 
f
i
r
s
t
 
a
n
d
 
s
e
c
o
n
d
 
d
e
r
i
v
a
t
i
v
e
s
 
f
o
r
 
N
e
w
t
o
n
-
R
a
p
h
s
o
n
 
*
/
 

  
 

/
*
 
 
C
o
m
p
u
t
e
 
i
t
e
m
 
a
n
d
 
t
e
s
t
 
i
n
f
o
r
m
a
t
i
o
n
 
a
t
 
c
u
r
r
e
n
t
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
e
 
(
t
h
t
i
n
)
 
*
/
 

 
 

/
*
 
 
F
i
s
h
e
r
 
s
c
o
r
i
n
g
 
u
s
e
d
 
f
o
r
 
s
e
c
o
n
d
 
d
e
r
i
v
a
t
i
v
e
,
 
f
i
r
s
t
 
d
e
r
i
v
a
t
i
v
e
 
f
r
o
m
 

 
 

 
t
h
i
s
 
r
e
l
a
t
i
o
n
s
h
i
p
 
*
/
 

  
 

t
h
e
t
a
1
 
=
 
t
h
t
i
n
;
 

 
 

t
e
s
t
i
n
f
o
 
=
 
0;

 
 
 
 
 
/
*
 
F
i
s
h
e
r
 
s
c
o
r
i
n
g
 
f
o
r
 
s
e
c
o
n
d
 
d
e
r
i
v
a
t
i
v
e
 
*
/
 

 
 

d
e
r
i
v
s
u
m
 
=
 
0;

 
 
 
 
 
/
*
 
S
u
m
 
o
f
 
f
i
r
s
t
 
d
e
r
i
v
a
t
i
v
e
s
 
*
/
 

 
 

m
u
 
=
 
&
m
e
a
n
;
 
 
 
 
 
 
 
/
*
 
M
e
a
n
 
o
f
 
p
r
i
o
r
 
d
i
s
t
_
n
 
*
/
 

 
 

s
i
g
m
a
2
 
=
 
&
s
i
g
m
a
2
;
 
/
*
 
V
a
r
i
a
n
c
e
 
o
f
 
p
r
i
o
r
 
d
i
s
t
_
n
 
*
/
 

  
 

d
o
 
j
=
1 

t
o
 
i
c
o
u
n
t
e
r
;
 
 
/
*
j
 
i
n
d
e
x
 
i
n
s
u
r
e
s
 
c
o
m
p
a
t
i
b
i
l
i
t
y
 
w
i
t
h
 
%
d
i
 
a
n
d
 
%
g
r
 
r
o
u
t
i
n
e
s
*
/
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
 
k
=
1 

t
o
 
&
m
a
x
c
a
t
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c
u
m
p
r
o
b
[
k
]
=
.;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

 
 
 
 
 
 
 
 
 
 
 
 
d
o
 
r
e
s
p
=
0 

t
o
 
n
c
a
t
{
j
}
-
1;
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i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%
di

;
 

 
 

 
 

 
 
 
 
e
n
d
;
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
i
f
 
r
e
s
p
=
0 

t
h
e
n
 
c
u
m
p
r
o
b
{
1}

=
x
x
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e
l
s
e
 
c
u
m
p
r
o
b
{
r
e
s
p
+
1}

=
x
x
+
c
u
m
p
r
o
b
{
r
e
s
p
}
;
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
;
 

  
 

 
i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 
 
 
 
 
 
 
 
 
 
 
 

i
t
e
m
i
n
f
o
 
=
 
(
&
d
*
*
2)

*
(
p
{
j
,
1}

*
*
2)

*
c
u
m
p
r
o
b
{
1}

/
(
1-

c
u
m
p
r
o
b
{
1}

)
*
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(
 
(
(
 
(
1-

c
u
m
p
r
o
b
{
1}

)
 
-
 
p
{
j
,
3}

)
*
*
2)

/
(
(
1 

-
 
p
{
j
,
3}

)
*
*
2)

 
)
;
 
 

 
 

 
 
 
 
 

e
n
d
;
 

  
 

 
/
*
 
 
F
i
r
s
t
 
d
e
r
i
v
a
t
i
v
e
 
f
o
r
 
d
i
c
h
o
t
o
m
o
u
s
 
i
t
e
m
s
 
*
/
 

 
 

 
 

i
f
 
m
o
d
e
l
[
j
]
=
"
d
i
"
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
/
*
 
d
P
d
t
 
=
 
(
a
/
n
o
r
m
(
a
)
)
 
*
 
s
q
r
t
(
I
 
*
 
P
 
*
 
Q
)
 
*
/
 

 
 

 
 
 
 
 
 

/
*
 
d
l
n
L
d
t
 
=
 
[
u
 
-
 
P
 
/
 
P
(
1
-
P
)
]
 
*
 
d
P
d
t
 
*
/
 

 
 

 
 

 
/
*
 
S
i
m
p
l
i
f
i
c
a
t
i
o
n
 
o
f
 
d
l
n
L
d
t
 
f
o
l
l
o
w
s
 
*
/
 

 
 

 
 

 
d
l
n
L
d
t
 
=
 
 
(
 
i
x
[
j
]
 
-
 
(
1 

-
 
c
u
m
p
r
o
b
{
1}

)
 
)
 
*
 
(
 
p
{
j
,
1}

/
a
b
s
(
p
{
j
,
1}

)
 
)
 
*
 

 
 

 
 

 
 

 
 
s
q
r
t
(
 
i
t
e
m
i
n
f
o
 
/
 
(
 
(
1 

-
 
c
u
m
p
r
o
b
{
1}

)
 
*
 
c
u
m
p
r
o
b
{
1}

 
)
 
)
;
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

/
*
 
C
o
u
l
d
 
a
l
s
o
 
u
s
e
 
d
i
r
e
c
t
 
d
e
r
i
v
a
t
i
v
e
:
 
*
/
 

 
 

 
 

 
/
*
d
l
n
L
d
t
 
=
 
p
{
j
,
1
}
*
(
i
x
[
j
]
-
(
1
-
c
u
m
p
r
o
b
{
1
}
)
)
*
(
(
1
-
c
u
m
p
r
o
b
{
1
}
)
-
p
{
j
,
3
}
)
 
/
 

 
 

 
 

 
 
 
(
(
1
-
c
u
m
p
r
o
b
{
1
}
)
*
(
1
-
p
{
j
,
3
}
)
)
;
 

 
 

 
 

 
*
/
 

 
 

 
 

 
e
n
d
;
 

  
 

 
/
*
 
 
F
i
r
s
t
 
d
e
r
i
v
a
t
i
v
e
 
f
o
r
 
g
r
a
d
e
d
 
r
e
s
p
o
n
s
e
 
i
t
e
m
s
 
*
/
 

 
 

 
 

/
*
 
 
[
C
o
d
e
 
n
e
e
d
s
 
t
o
 
b
e
 
w
r
i
t
t
e
n
 
h
e
r
e
]
*
/
 

  
 

 
t
e
s
t
i
n
f
o
 
=
 
t
e
s
t
i
n
f
o
 
+
 
i
t
e
m
i
n
f
o
;
 

 
 
 
 
 
 

 
 

 
 

d
e
r
i
v
s
u
m
 
=
 
d
e
r
i
v
s
u
m
 
+
 
d
l
n
L
d
t
;
 

 
 

 
 

 
e
n
d
;
 

 
 

 
 

/
*
 
 
I
f
 
u
s
i
n
g
 
M
A
P
,
 
m
u
s
t
 
t
a
k
e
 
i
n
t
o
 
a
c
c
o
u
n
t
 
i
n
f
o
 
f
r
o
m
 
p
r
i
o
r
 
*
/
 

 
 

i
f
 
&
e
s
t
 
=
 
2 

t
h
e
n
 
d
o
;
 
 
 

 
 

 
 

/
*
 
 
F
o
r
 
N
(
m
u
,
s
i
g
m
a
*
*
2
)
 
p
r
i
o
r
 
d
e
n
s
i
t
y
 
p
 
=
 
p
(
t
h
e
t
a
)
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d
l
n
p
/
d
t
 
=
 
-
 
(
t
h
e
t
a
 
-
 
m
u
)
 
/
 
s
i
g
m
a
*
*
2
 

 
 

 
 

 
d
2
l
n
p
/
d
t
2
 
=
 
-
 
(
1
 
/
 
s
i
g
m
a
*
*
2
)
 

 
 

 
 

 
I
 
=
 
-
E
{
d
2
l
n
p
/
d
t
2
}
 

 
 

 
 

*
/
 

 
 

 
 

 
 

 
 

 
d
e
r
i
v
s
u
m
 
=
 
d
e
r
i
v
s
u
m
 
-
 
(
 
(
t
h
e
t
a
1
 
-
 
m
u
)
 
/
 
s
i
g
m
a
2
)
;
 

 
 

 
 

t
e
s
t
i
n
f
o
 
=
 
t
e
s
t
i
n
f
o
 
+
 
(
1 

/
 
s
i
g
m
a
2
)
;
 

 
 

 
 

e
n
d
;
 

 
 

 
 %m

en
d 

d
e
r
i
v
;
 

 %m
ac

ro
 
gs

s;
 

/
*
 
 
A
b
i
l
i
t
y
 
e
s
t
i
m
a
t
i
o
n
 
b
y
 
g
o
l
d
e
n
 
s
e
a
r
c
h
 
s
t
r
a
t
e
g
y
 
(
G
S
S
)
 
*
/
 

 /
*
 
 
U
s
e
s
 
a
l
g
o
r
i
t
h
m
 
a
s
 
d
e
s
c
r
i
b
e
d
 
b
y
 
X
i
a
o
(
1
9
9
9
,
 
A
P
M
)
 
*
/
 

  
/
*
 
 
R
e
s
e
t
 
f
l
a
g
,
 
w
h
e
n
 
f
l
a
g
 
=
 
1
 
a
n
 
a
b
i
l
i
t
y
 
e
s
t
i
m
a
t
e
 
h
a
s
 
b
e
e
n
 
f
o
u
n
d
 
*
/
 

 
f
l
a
g
 
=
 
0;

 
  

/
*
 
 
S
p
e
c
i
f
y
 
l
o
w
e
r
 
a
n
d
 
u
p
p
e
r
 
b
o
u
n
d
s
 
f
o
r
 
i
n
i
t
i
a
l
 
s
e
a
r
c
h
 
i
n
t
e
r
v
a
l
 
*
/
 

 
l
b
 
=
 
-
&
u
b
;
 

 
u
b
 
=
 
&
u
b
;
 

  
d
o
 
g
s
s
 
=
 
1 

t
o
 
20

;
 
 
/
*
 
 
O
u
t
e
r
m
o
s
t
 
l
o
o
p
 
f
o
r
 
G
S
S
 
*
/
 

 
 

 
 

/
*
 
 
F
i
n
d
 
m
i
d
p
o
i
n
t
 
o
f
 
c
u
r
r
e
n
t
 
s
e
a
r
c
h
 
i
n
t
e
r
v
a
l
 
*
/
 

 
 

m
i
d
p
o
i
n
t
 
=
 
(
l
b
 
+
 
u
b
)
 
/
 
2;

 
  

 
/
*
 
 
N
o
w
 
f
i
n
d
 
o
p
t
i
m
a
l
l
y
-
w
e
i
g
h
t
e
d
 
o
b
s
e
r
v
e
d
 
a
n
d
 
e
x
p
e
c
t
e
d
 
s
c
o
r
e
s
 
*
/
 

  
 

 
o
b
s
s
c
o
r
e
 
=
 
0;

 
 

 
 

e
x
p
s
c
o
r
e
 
=
 
0;

 
 

 
 

e
x
p
v
a
r
 
=
 
0;

 
 

 
 

m
i
n
s
c
o
r
e
 
=
 
0;

 
  

 
 

t
h
e
t
a
1
 
=
 
m
i
d
p
o
i
n
t
;
 

 
 

 
r
e
s
p
 
=
 
1;
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d
o
 
j
 
=
 
1 

t
o
 
i
c
o
u
n
t
e
r
;
 

  
 

 
 

/
*
 
 
F
i
n
d
 
P
(
t
h
e
t
a
1
 
=
 
m
i
d
p
o
i
n
t
)
 

 
 

 
 
 
 
 
 
 
 
 
T
h
i
s
 
i
s
 
r
e
t
u
r
n
e
d
 
a
s
 
v
a
r
i
a
b
l
e
 
<
x
x
>
 
*
/
 

 
 

 
 

%
di

;
 

  
 

 
 

/
*
 
 
C
o
m
p
u
t
e
 
o
p
t
i
m
a
l
 
s
c
o
r
i
n
g
 
w
e
i
g
h
t
 
*
/
 

 
 

 
 

w
e
i
g
h
t
 
=
 
&
d
*
p
{
j
,
1}

*
(
x
x
 
-
 
p
{
j
,
3}

)
 

 
 

 
 

 
 
 
 
 
 
 
 
 
/
 

 
 

 
 

 
 

 
(
 
(
1 

-
 
p
{
j
,
3}

)
 
*
 
x
x
 
)
;
 

  
 

 
 

e
x
p
s
c
o
r
e
 
=
 
e
x
p
s
c
o
r
e
 
+
 
(
w
e
i
g
h
t
 
*
 
x
x
)
;
 

 
 

 
 

 
 

e
x
p
v
a
r
 
=
 
e
x
p
v
a
r
 
+
 
(
w
e
i
g
h
t
*
*
2 

*
 
x
x
 
*
 
(
1-

x
x
)
 
)
;
 

  
 

 
 

o
b
s
s
c
o
r
e
 
=
 
o
b
s
s
c
o
r
e
 
+
 
(
w
e
i
g
h
t
 
*
 
i
x
(
j
)
)
;
 

  
 

 
 

m
i
n
s
c
o
r
e
 
=
 
m
i
n
s
c
o
r
e
 
+
 
(
w
e
i
g
h
t
 
*
 
p
{
j
,
3}

)
;
 

  
 

 
e
n
d
;
 

  
 

 
/
*
 
 
C
h
e
c
k
 
t
h
a
t
 
o
b
s
e
r
v
e
d
 
s
c
o
r
e
 
i
s
 
n
o
t
 
s
m
a
l
l
e
r
 
t
h
a
n
 

 
 

 
 
 
 
 
m
i
n
i
m
u
m
 
s
c
o
r
e
;
 
i
f
 
i
t
 
i
s
,
 
s
e
t
 
o
b
s
e
r
v
e
d
 
s
c
o
r
e
 

 
 

 
 
 
 
 
t
o
 
m
i
n
i
m
u
m
 
s
c
o
r
e
 
*
/
 

  
 

 
i
f
 
o
b
s
s
c
o
r
e
 
<
 
m
i
n
s
c
o
r
e
 
t
h
e
n
 
d
o
;
 

 
 

 
 

 
 

 
 

 
o
b
s
s
c
o
r
e
 
=
 
m
i
n
s
c
o
r
e
;
 

 
 

 
 

 
 

 
 

e
n
d
;
 

  
 

 
/
*
 
 
C
o
n
d
u
c
t
 
h
y
p
o
t
h
e
s
i
s
 
t
e
s
t
 
*
/
 

 
 

 
z
 
=
 
(
o
b
s
s
c
o
r
e
 
-
 
e
x
p
s
c
o
r
e
)
 
/
 
s
q
r
t
(
e
x
p
v
a
r
)
;
 

  
 

 
/
*
 
 
X
i
a
o
 
r
e
c
o
m
m
e
n
d
s
 
a
b
s
(
z
_
c
r
i
t
i
c
a
l
)
 
=
 
0
.
7
 
*
/
 

  
 

 
i
f
 
z
 
<
 
-
0.

7 
t
h
e
n
 
d
o
;
 

 
 

 
 

/
*
 
 
A
d
j
u
s
t
 
u
p
p
e
r
 
b
o
u
n
d
 
o
f
 
i
n
t
e
r
v
a
l
 
b
y
 
g
o
l
d
e
n
 
r
a
t
i
o
 
*
/
 

 
 

 
 

u
b
 
=
 
l
b
 
+
 
(
(
s
q
r
t
(
5)

 
-
 
1)

/
2)

*
(
u
b
 
-
 
l
b
)
;
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e
n
d
;
 

  
 

 
e
l
s
e
 
i
f
 
z
 
>
 
0.

7 
t
h
e
n
 
d
o
;
 

 
 

 
 

/
*
 
 
A
d
j
u
s
t
 
l
o
w
e
r
 
b
o
u
n
d
 
o
f
 
i
n
t
e
r
v
a
l
 
b
y
 
g
o
l
d
e
n
 
r
a
t
i
o
*
/
 

 
 

 
 

l
b
 
=
 
u
b
 
-
 
(
(
s
q
r
t
(
5)

 
-
 
1)

/
2)

*
(
u
b
 
-
 
l
b
)
;
 

 
 

 
 

e
n
d
;
 

  
 

 
e
l
s
e
 
d
o
;
 

 
 

 
 

/
*
 
 
L
e
a
v
e
 
l
o
o
p
 
*
/
 

 
 

 
 

f
l
a
g
 
=
 
1;

 
 

 
 

 
e
n
d
;
 

  
 

 
i
f
 
f
l
a
g
 
=
 
1 

t
h
e
n
 
l
e
a
v
e
;
 

  
e
n
d
;
 
 
/
*
 
 
O
u
t
e
r
m
o
s
t
 
d
o
-
l
o
o
p
 
*
/
 

  
/
*
 
 
A
s
s
i
g
n
 
t
h
e
t
a
1
 
t
o
 
t
h
t
e
s
t
 
*
/
 

 
t
h
t
e
s
t
 
=
 
t
h
e
t
a
1
;
 

 %m
en

d 
g
s
s
;
 

 %m
ac

ro
 
it

em
re

c;
 

/
*
 
 
T
h
i
s
 
m
a
c
r
o
 
u
p
d
a
t
e
s
 
t
h
e
 
i
t
e
m
 
p
o
o
l
 
w
i
t
h
 
e
x
p
o
s
u
r
e
 
i
n
f
o
r
m
a
t
i
o
n
 

 
 
 
 
f
r
o
m
 
t
h
e
 
C
A
T
 
a
d
m
i
n
i
s
t
r
a
t
i
o
n
.
 

  
I
N
P
U
T
 
D
A
T
A
S
E
T
:
 
 
C
A
T
L
O
O
P
,
 
I
T
E
M
_
P
A
R
_
F
U
L
L
 

 
O
U
T
P
U
T
 
D
A
T
A
S
E
T
:
 
 
E
X
P
O
S
U
R
E
,
 
I
T
E
M
_
P
A
R
_
F
U
L
L
 

 *
/
 

 /
*
 
 
E
x
p
e
r
i
m
e
n
t
a
l
 
 
.
.
.
.
.
.
.
 
a
t
t
e
m
p
t
 
t
o
 
m
a
k
e
 
t
h
i
s
 
s
e
g
m
e
n
t
 
m
o
r
e
 
e
f
f
i
c
i
e
n
t
 
*
/
 

 
/
*
 
 
E
x
t
r
a
c
t
 
e
x
p
o
s
u
r
e
 
i
n
f
o
r
m
a
t
i
o
n
 
f
r
o
m
 
c
a
t
l
o
o
p
 
d
a
t
a
s
e
t
 
f
i
r
s
t
 
*
/
 

 
d
a
t
a
 
e
x
p
o
s
u
r
e
_
i
n
f
o
;
 

 
 

s
e
t
 
c
a
t
l
o
o
p
;
 

 
 

k
e
e
p
 
e
x
p
o
s
e
_
a
1
-
e
x
p
o
s
e
_
a
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
b
i
n
s
)
;
 

 
 

k
e
e
p
 
e
x
p
o
s
e
_
s
1
-
e
x
p
o
s
e
_
s
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
b
i
n
s
)
;
 

 
 

k
e
e
p
 
b
i
n
p
t
1
 
-
 
b
i
n
p
t
&
b
i
n
s
;
 

 
 

k
e
e
p
 
b
i
n
;
 

 
 



 

 

236 

 
r
u
n
;
 

  
/
*
 
 
O
b
t
a
i
n
 
f
i
n
a
l
 
t
a
l
l
y
 
o
f
 
s
e
l
e
c
t
e
d
 
&
 
a
d
m
i
n
i
s
t
e
r
e
d
 
i
t
e
m
s
 
*
/
 

 
d
a
t
a
 
e
x
p
o
s
u
r
e
_
a
;
 

 
 

s
e
t
 
e
x
p
o
s
u
r
e
_
i
n
f
o
;
 

 
 

/
*
s
e
t
 
c
a
t
l
o
o
p
;
*
/
 

 
 

k
e
e
p
 
e
x
p
o
s
e
_
a
1
-
e
x
p
o
s
e
_
a
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
b
i
n
s
)
;
 

 
 

i
f
 
_
n
_
=
&
n
s
u
b
j
;
 
/
*
 
S
a
v
e
 
l
a
s
t
 
o
b
s
e
r
v
a
t
i
o
n
,
 
h
a
s
 
f
i
n
a
l
 
t
a
l
l
y
 
*
/
 

 
r
u
n
;
 

  
/
*
 
 
O
b
t
a
i
n
 
f
i
n
a
l
 
t
a
l
l
y
 
o
f
 
s
e
l
e
c
t
e
d
 
i
t
e
m
s
 
*
/
 

 
d
a
t
a
 
e
x
p
o
s
u
r
e
_
s
;
 

 
 

/
*
 
s
e
t
 
c
a
t
l
o
o
p
;
 
*
/
 

 
 

s
e
t
 
e
x
p
o
s
u
r
e
_
i
n
f
o
;
 

 
 

k
e
e
p
 
e
x
p
o
s
e
_
s
1
-
e
x
p
o
s
e
_
s
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
b
i
n
s
)
;
 

 
 

i
f
 
_
n
_
=
&
n
s
u
b
j
;
 
/
*
 
S
a
v
e
 
l
a
s
t
 
o
b
s
e
r
v
a
t
i
o
n
,
 
h
a
s
 
f
i
n
a
l
 
t
a
l
l
y
 
*
/
 

 
r
u
n
;
 

  
/
*
 
 
C
o
m
p
u
t
e
 
t
a
l
l
y
 
o
f
 
n
u
m
b
e
r
 
o
f
 
s
u
b
j
e
c
t
s
 
w
i
t
h
i
n
 
e
a
c
h
 
a
b
i
l
i
t
y
 

 
 

g
r
o
u
p
 
b
i
n
,
 
a
l
s
o
 
r
e
c
o
r
d
 
a
b
i
l
i
t
y
 
c
u
t
o
f
f
 
p
o
i
n
t
s
 
*
/
 

  
d
a
t
a
 
e
x
p
o
s
u
r
e
_
n
;
 

 
 

/
*
 
s
e
t
 
c
a
t
l
o
o
p
;
 
*
/
 

 
 

s
e
t
 
e
x
p
o
s
u
r
e
_
i
n
f
o
;
 

 
 

k
e
e
p
 
b
i
n
s
i
z
e
1
 
-
 
b
i
n
s
i
z
e
&
b
i
n
s
;
 

 
 

k
e
e
p
 
b
i
n
p
t
1
 
-
 
b
i
n
p
t
&
b
i
n
s
;
 

 
 

a
r
r
a
y
 
b
i
n
s
i
z
e
(
&
b
i
n
s
)
 
b
i
n
s
i
z
e
1
 
-
 
b
i
n
s
i
z
e
&
b
i
n
s
;
 

 
 

a
r
r
a
y
 
b
i
n
p
t
(
&
b
i
n
s
)
 
b
i
n
p
t
1
 
-
 
b
i
n
p
t
&
b
i
n
s
;
 

 
 

r
e
t
a
i
n
 
b
i
n
s
i
z
e
1
 
-
 
b
i
n
s
i
z
e
&
b
i
n
s
 
0;

 
 

 
 

 
 

 
/
*
 
 
V
a
r
i
a
b
l
e
 
b
i
n
 
i
s
 
a
 
p
a
r
t
 
o
f
 
C
A
T
L
O
O
P
 
d
a
t
a
s
e
t
 
*
/
 

 
 

b
i
n
s
i
z
e
(
b
i
n
)
 
=
 
b
i
n
s
i
z
e
(
b
i
n
)
 
+
 
1;

 
  

r
u
n
;
 

  
/
*
 
 
O
b
t
a
i
n
 
f
i
n
a
l
 
t
a
l
l
y
 
o
f
 
n
u
m
b
e
r
 
o
f
 
s
u
b
j
e
c
t
s
 
w
i
t
h
i
n
 
e
a
c
h
 
b
i
n
 
*
/
 

 
d
a
t
a
 
e
x
p
o
s
u
r
e
_
n
;
 

 
 

s
e
t
 
e
x
p
o
s
u
r
e
_
n
;
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a
r
r
a
y
 
b
i
n
s
i
z
e
(
&
b
i
n
s
)
 
b
i
n
s
i
z
e
1
 
-
 
b
i
n
s
i
z
e
&
b
i
n
s
;
 

 
 

k
e
e
p
 
b
i
n
s
i
z
e
1
 
-
 
b
i
n
s
i
z
e
&
b
i
n
s
;
 

 
 

k
e
e
p
 
b
i
n
p
t
1
 
-
 
b
i
n
p
t
&
b
i
n
s
;
 

 
 

i
f
 
_
n
_
 
=
 
&
n
s
u
b
j
;
 

  
 

/
*
 
 
M
u
s
t
 
i
n
s
u
r
e
 
t
h
a
t
 
b
i
n
s
i
z
e
 
d
o
e
s
 
n
o
t
 
e
q
u
a
l
 
z
e
r
o
;
 
t
h
i
s
 
q
u
a
n
t
i
t
y
 

 
 

 
w
i
l
l
 
a
p
p
e
a
r
 
i
n
 
a
 
d
e
n
o
m
i
n
a
t
o
r
 
i
n
 
m
a
c
r
o
 
S
Y
M
P
H
E
T
 
*
/
 

 
 

d
o
 
i
 
=
 
1 

t
o
 
&
b
i
n
s
;
 

 
 

 
i
f
 
b
i
n
s
i
z
e
(
i
)
 
=
 
0 

t
h
e
n
 
d
o
;
 

 
 

 
 

b
i
n
s
i
z
e
(
i
)
 
=
 
1;

 
 

 
 

 
e
n
d
;
 

 
 

e
n
d
;
 

  
r
u
n
;
 

  
/
*
 
 
S
e
l
e
c
t
e
d
 
&
 
a
d
m
i
n
i
s
t
e
r
e
d
 
i
t
e
m
s
 
*
/
 

 
/
*
 
 
C
o
n
v
e
r
t
 
i
t
e
m
 
e
x
p
o
s
u
r
e
 
i
n
f
o
r
m
a
t
i
o
n
,
 
c
u
r
r
e
n
t
l
y
 
a
 
r
o
w
 
v
e
c
t
o
r
,
 
i
n
t
o
 

 
 

a
 
d
a
t
a
s
e
t
 
w
i
t
h
 
&
n
i
t
e
m
s
 
r
o
w
s
 
a
n
d
 
&
b
i
n
s
 
c
o
l
u
m
n
s
 
*
/
 

  
d
a
t
a
 
e
x
p
o
s
u
r
e
_
a
2
 
(
k
e
e
p
 
=
 
e
x
p
o
s
e
_
a
c
1
 
-
 
e
x
p
o
s
e
_
a
c
&
b
i
n
s
)
;
 

 
 

s
e
t
 
e
x
p
o
s
u
r
e
_
a
;
 

 
 

a
r
r
a
y
 
e
x
p
o
s
e
_
a
(
&
n
i
t
e
m
s
,
&
b
i
n
s
)
 
e
x
p
o
s
e
_
a
1
 
-
 
e
x
p
o
s
e
_
a
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
b
i
n
s
)
;
 

 
 

a
r
r
a
y
 
e
x
p
o
s
e
_
a
c
(
&
b
i
n
s
)
 
e
x
p
o
s
e
_
a
c
1
 
-
 
e
x
p
o
s
e
_
a
c
&
b
i
n
s
;
 

 
 

d
o
 
i
=
1 

t
o
 
&
n
i
t
e
m
s
;
 

 
 

 
d
o
 
j
=
1 

t
o
 
&
b
i
n
s
;
 

 
 

 
 

e
x
p
o
s
e
_
a
c
(
j
)
 
=
 
e
x
p
o
s
e
_
a
(
i
,
j
)
;
 

 
 

 
e
n
d
;
 

 
 

 
o
u
t
p
u
t
;
 

 
 

e
n
d
;
 

 
r
u
n
;
 

  
/
*
 
 
S
e
l
e
c
t
e
d
 
(
b
u
t
 
n
o
t
 
n
e
c
e
s
s
a
r
i
l
y
 
a
d
m
i
n
i
s
t
e
r
e
d
)
 
i
t
e
m
s
 
*
/
 

 
/
*
 
 
C
o
n
v
e
r
t
 
i
t
e
m
 
e
x
p
o
s
u
r
e
 
i
n
f
o
r
m
a
t
i
o
n
,
 
c
u
r
r
e
n
t
l
y
 
a
 
r
o
w
 
v
e
c
t
o
r
,
 
i
n
t
o
 

 
 

a
 
d
a
t
a
s
e
t
 
w
i
t
h
 
&
n
i
t
e
m
s
 
r
o
w
s
 
a
n
d
 
&
b
i
n
s
 
c
o
l
u
m
n
s
 
*
/
 

  
d
a
t
a
 
e
x
p
o
s
u
r
e
_
s
2
 
(
k
e
e
p
 
=
 
e
x
p
o
s
e
_
s
c
1
 
-
 
e
x
p
o
s
e
_
s
c
&
b
i
n
s
)
;
 

 
 

s
e
t
 
e
x
p
o
s
u
r
e
_
s
;
 

 
 

a
r
r
a
y
 
e
x
p
o
s
e
_
s
(
&
n
i
t
e
m
s
,
&
b
i
n
s
)
 
e
x
p
o
s
e
_
s
1
 
-
 
e
x
p
o
s
e
_
s
%
e
v
a
l
(
&
n
i
t
e
m
s
 
*
 
&
b
i
n
s
)
;
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a
r
r
a
y
 
e
x
p
o
s
e
_
s
c
(
&
b
i
n
s
)
 
e
x
p
o
s
e
_
s
c
1
 
-
 
e
x
p
o
s
e
_
s
c
&
b
i
n
s
;
 

 
 

d
o
 
i
=
1 

t
o
 
&
n
i
t
e
m
s
;
 

 
 

 
d
o
 
j
=
1 

t
o
 
&
b
i
n
s
;
 

 
 

 
 

e
x
p
o
s
e
_
s
c
(
j
)
 
=
 
e
x
p
o
s
e
_
s
(
i
,
j
)
;
 

 
 

 
e
n
d
;
 

 
 

 
o
u
t
p
u
t
;
 

 
 

e
n
d
;
 

 
r
u
n
;
 

  
/
*
 
 
I
n
c
r
e
a
s
e
 
t
h
e
 
e
x
p
o
s
u
r
e
 
c
o
u
n
t
e
r
s
 
i
n
 
I
T
E
M
_
P
A
R
_
F
U
L
L
 
f
o
r
 
e
a
c
h
 
i
t
e
m
 
*
/
 

  
d
a
t
a
 
i
t
e
m
_
p
a
r
_
f
u
l
l
 
/
*
 
d
r
o
p
 
s
o
m
e
 
v
a
r
s
 
l
a
t
e
r
 
*
/
;
 

 
 

o
n
e
 
=
 
1;

 
 

 
s
e
t
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

 
 

s
e
t
 
e
x
p
o
s
u
r
e
_
n
 
p
o
i
n
t
=
o
n
e
;
 

 
 
 
 
 
m
e
r
g
e
 
e
x
p
o
s
u
r
e
_
a
2
 
e
x
p
o
s
u
r
e
_
s
2
;
 

 
 

a
r
r
a
y
 
e
x
p
o
s
e
_
a
c
(
&
b
i
n
s
)
 
e
x
p
o
s
e
_
a
c
1
 
-
 
e
x
p
o
s
e
_
a
c
&
b
i
n
s
;
 
/
*
 
F
r
o
m
 
C
A
T
L
O
O
P
 
*
/
 

 
 

a
r
r
a
y
 
e
x
p
o
s
e
_
s
c
(
&
b
i
n
s
)
 
e
x
p
o
s
e
_
s
c
1
 
-
 
e
x
p
o
s
e
_
s
c
&
b
i
n
s
;
 
/
*
 
F
r
o
m
 
C
A
T
L
O
O
P
 
*
/
 

 
 

a
r
r
a
y
 
e
x
p
o
s
e
d
_
a
(
&
b
i
n
s
)
 
e
x
p
o
s
e
d
_
a
1
 
-
 
e
x
p
o
s
e
d
_
a
&
b
i
n
s
;
 
/
*
 
F
r
o
m
 
I
T
E
M
_
P
A
R
_
F
U
L
L
 
*
/
 

 
 

a
r
r
a
y
 
e
x
p
o
s
e
d
_
s
(
&
b
i
n
s
)
 
e
x
p
o
s
e
d
_
s
1
 
-
 
e
x
p
o
s
e
d
_
s
&
b
i
n
s
;
 
/
*
 
F
r
o
m
 
I
T
E
M
_
P
A
R
_
F
U
L
L
 
*
/
 

  
 

d
o
 
i
 
=
 
1 

t
o
 
&
b
i
n
s
;
 

 
 

 
e
x
p
o
s
e
d
_
a
(
i
)
 
=
 
e
x
p
o
s
e
d
_
a
(
i
)
 
+
 
e
x
p
o
s
e
_
a
c
(
i
)
;
 

 
 

 
e
x
p
o
s
e
d
_
s
(
i
)
 
=
 
e
x
p
o
s
e
d
_
s
(
i
)
 
+
 
e
x
p
o
s
e
_
s
c
(
i
)
;
 

 
 

e
n
d
;
 

 
r
u
n
;
 

 %m
en

d 
i
t
e
m
r
e
c
;
 

 %m
ac

ro
 
se

tb
in

pt
s;

 
/
*
 
 
G
e
n
e
r
a
t
e
 
a
b
i
l
i
t
y
 
s
c
a
l
e
 
c
u
t
p
o
i
n
t
s
 
f
o
r
 
c
o
n
d
i
t
i
o
n
a
l
 
S
y
m
p
s
o
n
-
H
e
t
t
e
r
 
*
/
 

 d
a
t
a
 
b
i
n
p
t
s
;
 

 
a
r
r
a
y
 
b
i
n
p
t
(
&
b
i
n
s
)
 
b
i
n
p
t
1
 
-
 
b
i
n
p
t
&
b
i
n
s
;
 

 
e
x
p
i
n
c
 
=
 
(
2 

*
 
&
u
b
)
 
/
 
&
b
i
n
s
;
 
/
*
 
C
o
n
s
i
d
e
r
 
r
a
n
g
e
 
+
/
-
 
&
u
b
 
*
/
 

 
d
o
 
i
 
=
 
1 

t
o
 
&
b
i
n
s
;
 

 
 
 

b
i
n
p
t
(
i
)
 
=
 
-
&
u
b
 
+
 
i
*
e
x
p
i
n
c
;
 

 
e
n
d
;
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r
u
n
;
 

 
 
 

 
%m

en
d 

s
e
t
b
i
n
p
t
s
;
 

 %m
ac

ro
 
sy

mp
he

tt
yp

e;
 

/
*
 
 
D
e
t
e
r
m
i
n
e
 
i
f
 
S
y
m
p
s
o
n
-
H
e
t
t
e
r
 
t
e
c
h
n
i
q
u
e
 
w
i
l
l
 
b
e
 
c
o
n
d
i
t
i
o
n
a
l
 

 
o
r
 
u
n
c
o
n
d
i
t
i
o
n
a
l
 
*
/
 

  
%
i
f
 
(
&
c
o
n
d
 
=
 
1)

 
%
t
h
e
n
 
%
d
o
;
 

 
 

/
*
 
 
C
r
e
a
t
e
 
a
 
n
e
a
r
l
y
 
u
n
i
f
o
r
m
 
d
i
s
t
r
i
b
u
t
i
o
n
 
o
f
 
a
b
i
l
i
t
y
.
 
 
U
s
e
 
t
h
e
 

 
 

 
t
r
a
n
s
f
o
r
m
a
t
i
o
n
 
p
r
o
c
e
d
u
r
e
 
i
n
 
%
t
h
e
t
a
g
e
n
 
b
y
 
s
e
t
t
i
n
g
 
t
r
a
n
s
f
o
r
m
a
t
i
o
n
 

 
 

 
p
a
r
a
m
e
t
e
r
s
 
f
o
r
 
a
 
p
l
a
t
y
k
u
r
t
i
c
 
d
i
s
t
r
i
b
u
t
i
o
n
 
o
f
 
k
u
r
t
o
s
i
s
 
=
 
-
1
 
*
/
 

 
 
 
 
 
%
l
e
t
 
t
r
a
n
s
b
 
=
 
1
.
2
2
1
0
;
 

 
 

%
l
e
t
 
t
r
a
n
s
c
 
=
 
0
;
 

 
 

%
l
e
t
 
t
r
a
n
s
d
 
=
 
-
0
.
0
8
0
2
;
 

 
 

%
e
n
d
;
 

  
%
i
f
 
(
&
c
o
n
d
 
=
 
0)

 
%
t
h
e
n
 
%
d
o
;
 

 
 

%
l
e
t
 
b
i
n
s
 
=
 
1
;
 

 
 

%
e
n
d
;
 

 %m
en

d 
s
y
m
p
h
e
t
t
y
p
e
;
 

 %m
ac

ro
 
sy

mp
he

t;
 

/
*
 
 
U
p
d
a
t
e
s
 
t
h
e
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
p
a
r
a
m
e
t
e
r
s
 
a
c
c
o
r
d
i
n
g
 
t
o
 
t
h
e
 
 

 
 
 
 
S
y
m
p
s
o
n
 
&
 
H
e
t
t
e
r
 
t
e
c
h
n
i
q
u
e
 
*
/
 

  
d
a
t
a
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

 
 

t
a
r
g
e
t
 
=
 
&
t
a
r
g
e
t
;
 

 
 

s
e
t
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

 
 

a
r
r
a
y
 
p
r
o
b
_
s
(
&
b
i
n
s
)
 
p
r
o
b
_
s
1
 
-
 
p
r
o
b
_
s
&
b
i
n
s
;
 

 
 

a
r
r
a
y
 
p
r
o
b
_
a
(
&
b
i
n
s
)
 
p
r
o
b
_
a
1
 
-
 
p
r
o
b
_
a
&
b
i
n
s
;
 

 
 

a
r
r
a
y
 
e
x
p
o
s
e
d
_
s
(
&
b
i
n
s
)
 
e
x
p
o
s
e
d
_
s
1
 
-
 
e
x
p
o
s
e
d
_
s
&
b
i
n
s
;
 

 
 

a
r
r
a
y
 
e
x
p
o
s
e
d
_
a
(
&
b
i
n
s
)
 
e
x
p
o
s
e
d
_
a
1
 
-
 
e
x
p
o
s
e
d
_
a
&
b
i
n
s
;
 

 
 

a
r
r
a
y
 
e
x
p
c
o
n
(
&
b
i
n
s
)
 
e
x
p
c
o
n
1
 
-
 
e
x
p
c
o
n
&
b
i
n
s
;
 

 
 

a
r
r
a
y
 
b
i
n
s
i
z
e
(
&
b
i
n
s
)
 
b
i
n
s
i
z
e
1
 
-
 
b
i
n
s
i
z
e
&
b
i
n
s
;
 

  
 

d
o
 
i
 
=
 
1 

t
o
 
&
b
i
n
s
;
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p
r
o
b
_
s
(
i
)
 
=
 
(
e
x
p
o
s
e
d
_
s
(
i
)
 
/
 
b
i
n
s
i
z
e
(
i
)
)
;
 

 
 

 
p
r
o
b
_
a
(
i
)
 
=
 
(
e
x
p
o
s
e
d
_
a
(
i
)
 
/
 
b
i
n
s
i
z
e
(
i
)
)
;
 

 
 

 
i
f
 
p
r
o
b
_
s
(
i
)
 
>
 
t
a
r
g
e
t
 
t
h
e
n
 
d
o
;
 

 
 

 
 

e
x
p
c
o
n
(
i
)
 
=
 
t
a
r
g
e
t
 
/
 
p
r
o
b
_
s
(
i
)
;
 

 
 

 
 

e
n
d
;
 

 
 

 
e
l
s
e
 
d
o
;
 

 
 

 
 

e
x
p
c
o
n
(
i
)
 
=
 
1;

 
 

 
 

 
e
n
d
;
 

 
 

e
n
d
;
 

  
r
u
n
;
 

  %m
en

d 
s
y
m
p
h
e
t
;
 

 %m
ac

ro
 
co

mp
ar

ex
;
 

/
*
 
 
C
o
m
p
a
r
e
s
 
o
b
s
e
r
v
e
d
 
e
x
p
o
s
u
r
e
 
r
a
t
e
s
 
w
i
t
h
 
t
a
r
g
e
t
 
e
x
p
o
s
u
r
e
 
r
a
t
e
s
,
 
a
n
d
 
s
e
t
s
 
a
 
f
l
a
g
 

 
 
 
 
v
a
l
u
e
 
i
n
d
i
c
a
t
i
n
g
 
w
h
e
t
h
e
r
 
a
n
o
t
h
e
r
 
S
y
m
p
s
o
n
-
H
e
t
t
e
r
 
i
t
e
r
a
t
i
o
n
 
i
s
 
r
e
q
u
i
r
e
d
.
 
 
N
o
t
e
 

 
 
 
 
t
h
a
t
 
n
u
m
b
e
r
 
o
f
 
S
-
H
 
i
t
e
r
a
t
i
o
n
s
 
w
i
l
l
 
n
o
t
 
e
x
c
e
e
d
 
t
h
e
 
&
m
a
x
i
t
e
r
 
v
a
l
u
e
 
*
/
 

  
d
a
t
a
 
c
o
m
p
a
r
e
x
;
 

 
 

s
e
t
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

 
 

k
e
e
p
 
p
r
o
b
_
a
1
 
-
 
p
r
o
b
_
a
&
b
i
n
s
;
 
 
/
*
 
 
O
b
s
e
r
v
e
d
 
e
x
p
o
s
u
r
e
 
r
a
t
e
 
*
/
 

 
r
u
n
;
 

  
d
a
t
a
 
c
o
m
p
a
r
e
x
;
 

 
 

s
e
t
 
c
o
m
p
a
r
e
x
;
 

 
 

a
r
r
a
y
 
o
v
e
r
(
&
b
i
n
s
)
 
o
v
e
r
1
 
-
 
o
v
e
r
&
b
i
n
s
;
 
/
*
 
 
C
o
u
n
t
s
 
n
u
m
b
e
r
 
o
f
 
i
t
e
m
s
 
e
x
c
e
e
d
i
n
g
 
t
a
r
g
e
t
e
d
 
e
x
p
o
s
u
r
e
 

r
a
t
e
 
(
+
 
t
o
l
e
r
a
n
c
e
)
 
*
/
 

 
 

a
r
r
a
y
 
p
r
o
b
_
a
(
&
b
i
n
s
)
 
p
r
o
b
_
a
1
 
-
 
p
r
o
b
_
a
&
b
i
n
s
;
 

  
 

r
e
t
a
i
n
 
o
v
e
r
1
 
-
 
o
v
e
r
&
b
i
n
s
 
0;

 
  

 
/
*
 
 
I
d
e
n
t
i
f
y
 
i
t
e
m
s
 
w
h
o
s
e
 
p
r
o
b
a
b
i
l
i
t
y
 
o
f
 
a
d
m
i
n
i
s
t
r
a
t
i
o
n
 
e
x
c
e
e
d
s
 
t
h
e
 

 
 

 
t
a
r
g
e
t
e
d
 
e
x
p
o
s
u
r
e
 
r
a
t
e
 
(
+
 
t
o
l
e
r
a
n
c
e
)
 
*
/
 

 
 

d
o
 
i
=
1 

t
o
 
&
b
i
n
s
;
 

 
 

 
i
f
 
p
r
o
b
_
a
(
i
)
 
>
 
&
t
a
r
g
e
t
*
(
1+

&
t
o
l
e
r
a
n
c
e
)
 
t
h
e
n
 
d
o
;
 

 
 

 
 

o
v
e
r
(
i
)
 
=
 
o
v
e
r
(
i
)
 
+
 
1;
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e
n
d
;
 

 
 

e
n
d
;
 

 
r
u
n
;
 

  
/
*
 
 
O
b
t
a
i
n
 
f
i
n
a
l
 
t
a
l
l
y
 
o
f
 
i
t
e
m
s
 
e
x
c
e
e
d
i
n
g
 
t
a
r
g
e
t
e
d
 
e
x
p
o
s
u
r
e
 
r
a
t
e
,
 
s
e
t
 

 
 

f
l
a
g
 
t
o
 
1
 
i
f
 
a
n
o
t
h
e
r
 
i
t
e
r
a
t
i
o
n
 
i
s
 
r
e
q
u
i
r
e
d
 
*
/
 

 
d
a
t
a
 
c
o
m
p
a
r
e
x
;
 

 
 

s
e
t
 
c
o
m
p
a
r
e
x
;
 

 
 

i
f
 
_
n
_
 
=
 
&
n
i
t
e
m
s
;
 

 
 

a
r
r
a
y
 
o
v
e
r
(
&
b
i
n
s
)
 
o
v
e
r
1
 
-
 
o
v
e
r
&
b
i
n
s
;
 

 
 

s
u
m
 
=
 
0;

 
 

 
d
o
 
i
 
=
 
1 

t
o
 
&
b
i
n
s
;
 

 
 

 
s
u
m
 
=
 
s
u
m
 
+
 
o
v
e
r
(
i
)
;
 

 
 

e
n
d
;
 

 
 

i
f
 
s
u
m
 
>
 
0 

t
h
e
n
 
d
o
;
 

 
 

 
c
a
l
l
 
s
y
m
p
u
t
(
'
f
l
a
g
'
,
1)

;
 

 
 

 
e
n
d
;
 

 
 

e
l
s
e
 
d
o
;
 

 
 

 
c
a
l
l
 
s
y
m
p
u
t
(
'
f
l
a
g
'
,
0)

;
 

 
 

 
e
n
d
;
 

 
r
u
n
;
 

 %m
en

d 
c
o
m
p
a
r
e
x
;
 

 %m
ac

ro
 
ex

pc
on

;
 

  
/
*
 
 
E
x
t
r
a
c
t
 
S
y
m
p
s
o
n
-
H
e
t
t
e
r
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
p
a
r
a
m
e
t
e
r
s
 
f
r
o
m
 
t
h
e
 

 
 
 
 
I
T
E
M
_
P
A
R
_
F
U
L
L
 
d
a
t
a
s
e
t
 
*
/
 

  
d
a
t
a
 
e
x
p
c
o
n
;
 

 
 

s
e
t
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

 
 

k
e
e
p
 
e
x
p
c
o
n
1
 
-
 
e
x
p
c
o
n
&
b
i
n
s
;
 

 
 
 
 
r
u
n
;
 

 
 

 
/
*
 
 
C
o
n
v
e
r
t
 
e
x
p
c
o
n
 
d
a
t
a
s
e
t
 
t
o
 
a
 
c
o
l
u
m
n
 
v
e
c
t
o
r
 
*
/
 

 
d
a
t
a
 
e
x
p
c
o
n
2
;
 

 
 
 
 
 

s
e
t
 
e
x
p
c
o
n
;
 

 
 
 
 

 
 
 
 
a
r
r
a
y
 
y
{
*
}
 
e
x
p
c
o
n
1
-
e
x
p
c
o
n
&
b
i
n
s
;
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k
e
e
p
 
p
;
 

 
 
 
 

 
d
o
 
j
=
1 

t
o
 
&
b
i
n
s
;
 

 
 
 
 
 
 
 

p
=
y
{
j
}
;
 

 
 
 
 
 
 
 

o
u
t
p
u
t
;
 

 
 
 
 

 
e
n
d
;
 

 
r
u
n
;
 

  
/
*
 
 
C
r
e
a
t
e
 
a
 
r
o
w
 
v
e
c
t
o
r
 
w
i
t
h
 
t
h
e
s
e
 
e
x
p
o
s
u
r
e
 
c
o
n
t
r
o
l
 
p
a
r
a
m
e
t
e
r
s
 
a
s
 
e
l
e
m
e
n
t
s
 
*
/
 

 
/
*
 
 
T
h
i
s
 
v
e
c
t
o
r
 
w
i
l
l
 
b
e
 
p
a
s
s
e
d
 
t
o
 
t
h
e
 
C
A
T
L
O
O
P
 
d
a
t
a
s
e
t
 
*
/
 

 
p
r
o
c
 
t
r
a
n
s
p
o
s
e
 
d
a
t
a
=
e
x
p
c
o
n
2
 
o
u
t
=
e
x
p
c
o
n
 
p
r
e
f
i
x
=
e
x
p
c
o
n
;
 

 
 

v
a
r
 
p
;
 

 
r
u
n
;
 

  
/
*
 
 
R
e
s
e
t
 
t
h
e
 
e
x
p
o
s
u
r
e
 
c
o
u
n
t
e
r
s
 
f
o
r
 
t
h
i
s
 
i
t
e
r
a
t
i
o
n
 
*
/
 

 
d
a
t
a
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

 
 

s
e
t
 
i
t
e
m
_
p
a
r
_
f
u
l
l
;
 

 
 

a
r
r
a
y
 
e
x
p
o
s
e
d
_
s
(
&
b
i
n
s
)
 
e
x
p
o
s
e
d
_
s
1
 
-
 
e
x
p
o
s
e
d
_
s
&
b
i
n
s
;
 

 
 

a
r
r
a
y
 
e
x
p
o
s
e
d
_
a
(
&
b
i
n
s
)
 
e
x
p
o
s
e
d
_
a
1
 
-
 
e
x
p
o
s
e
d
_
a
&
b
i
n
s
;
 

 
 

d
o
 
i
=
1 

t
o
 
&
b
i
n
s
;
 

 
 

 
e
x
p
o
s
e
d
_
s
(
i
)
 
=
 
0;

 
 

 
 

e
x
p
o
s
e
d
_
a
(
i
)
 
=
 
0;

 
 

 
e
n
d
;
 

 
r
u
n
;
 

 %m
en

d 
e
x
p
c
o
n
;
 

 %m
ac

ro
 
ic

at
;
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

*
 
 
 
S
U
B
R
O
U
T
I
N
E
 
I
C
A
T
 

 
 

 
 

 
 

 
 

 
 

 
 
 
;
 

*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
;
 

*
 
 
 
I
N
T
E
R
A
C
T
I
V
E
 
C
A
T
 
A
D
M
I
N
I
S
T
R
A
T
I
O
N
 

 
 

 
 

 
 

 
 
 
;
 

 
*
 
 
 
H
i
g
h
e
s
t
-
l
e
v
e
l
 
m
o
d
u
l
e
 
f
o
r
 
e
x
e
c
u
t
i
n
g
 

 
 
 
 
a
n
 
_
i
n
t
e
r
a
c
t
i
v
e
_
 
 
C
A
T
 
a
d
m
i
n
i
s
t
r
a
t
i
o
n
 
;
 

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
;
 

  
%
ig

en
ca

t2
;
 

 
/
*
 
 
S
i
m
u
l
a
t
e
 
e
x
a
m
i
n
e
e
 
r
e
s
p
o
n
s
e
s
 
t
o
 
a
l
l
 
i
t
e
m
s
;
 
C
A
T
 
w
i
l
l
 
s
e
l
e
c
t
 
*
/
 

 
%
qu

ad
;
 

 
 

/
*
 
 
F
i
n
d
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
a
n
d
 
a
s
s
i
g
n
 
p
r
i
o
r
s
 
*
/
 

 
%
qu

ad
gr

id
;
 
 
 
 
 
 
/
*
 
 
F
i
n
e
-
s
c
a
l
e
d
 
q
u
a
d
r
a
t
u
r
e
 
p
o
i
n
t
s
 
*
/
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/
*
 
 
P
r
e
p
a
r
e
 
i
t
e
m
 
s
e
t
s
 
f
o
r
 
t
h
e
 
C
A
T
 
a
d
m
i
n
i
s
t
r
a
t
i
o
n
 
*
/
 

 
/
*
 
O
r
d
e
r
 
o
f
 
i
n
f
o
f
n
 
a
n
d
 
i
t
e
m
p
r
o
c
 
i
m
p
o
r
t
a
n
t
 
h
e
r
e
!
 
*
/
 

/
*
 

%
i
n
f
o
f
n
;
 

*
/
 
 

 
%
it

em
pr

oc
;
 

/
*
 

%
i
n
f
o
r
o
w
;
 

 
*
/
 

  
%
ex

pc
on

;
 

 
 

/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 

/
*
 
 
 
 
 
 
 
 
B
E
G
I
N
 
C
A
T
 
A
D
M
I
N
I
S
T
R
A
T
I
O
N
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*
/
 

/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 

  
%
ca

tl
oo

p;
 

  
d
a
t
a
 
c
a
t
;
 

 
 

s
e
t
 
c
a
t
l
o
o
p
;
 

 
r
u
n
;
 

 %m
en

d 
i
c
a
t
;
 

 %m
ac

ro
 
ex

pc
at

;
 

*
*
*
*
*
*
*
*
*
*
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APPENDIX D 

Exact solution for Fisher interval information (FII) 
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Define the integral for Fisher interval information as � �� ��

y

x
i dI , where � ��iI  is the 

information function for item i, and x and y are points on the ability continuum such that 

x < y. 

To simplify notation, drop the subscript i from the information function.  Then the 

information function is given by 

 � �
� �� �

� � � �� ����

��
��

PP

PI
1

2

 (Eq. 62) 

Now let A = Da, where a is the discrimination parameter, B = b, where b is the difficulty 

parameter, and C = c, where c is the pseudo-guessing parameter.  Thus, the 3P logistic 

model is given by 

 � �
� �� �� �BA

CCP
����

�
���

exp1

1  (Eq. 63) 

Then the exact solution for � �� ��

y

x
i dI  under the 3P logistic model is 

 � � 21 ttdI
y

x
i �����  (Eq. 64) 

where 

� � � � � �� � � � � �� �� �
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1

ln1ln1
1  (Eq. 65) 

and  

� � � � � �� � � � � �� �� �

� �� �AyAB

ByAAyABByAAyABAB
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2  (Eq. 66) 
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