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This study investigated the efficiency of item selection in a computerized adaptive
test. Efficiency was defined in terms of the accumulated test information at an
examinee’s true ability level, with a measure of 100% indicating maximally efficient item
selection. The study employed a simulation methodology to compare the efficiency of
two item selection procedures with five ability estimation procedures for fully-adaptive
tests of 5-, 10-, 15-, and 25-items in length. The two item selection procedures included
maximum Fisher information (FI) and maximum Fisher interval information (FII) item
selection. The five ability estimation procedures included maximum likelihood (ML),
modal a posteriori (MAP), golden section search (GSS), and two new procedures
proposed in this study. These procedures, ML/Alt and MAP/ALlt, adjusted ML or MAP
estimates according to a specific decision rule based on hypothesis-testing.

For the conventional item selection procedure (FI) and ability estimation
procedures (ML and MAP), the best performance was observed for FI with MAP at
middle ability levels, with efficiency attaining or exceeding 90% even for the shortest test

length. In contrast, larger gaps in efficiency were observed for FI with MAP at extreme

v



ability levels, and for FI with ML across all ability levels. Utilizing FII item selection
with ML and MAP narrowed the gaps in the efficiency of item selection at the lowest
ability levels for 5- and 10-item tests. The greatest increase in test efficiency was
observed when the alternative ability estimation procedures (ML/Alt, MAP/Alt, and
GSS) were used. The gains in efficiency were most pronounced for shorter tests, but
were noticeable even for longer tests. Overall, it appears that ability estimation
procedure impacts the efficiency of item selection to a larger extent than item selection

procedure.
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CHAPTER 1

Introduction

Efficiency of item selection in the context of
computerized adaptive testing

Efficiency is often cited as an advantage of computerized adaptive tests (CATs)
over traditional paper-and-pencil tests. Typically, a CAT version of a test requires half as
many items to be administered as its paper-and-pencil counterpart, without compromising
measurement precision (Stocking, Smith & Swanson, 2000). The CAT administers items
targeted to examinee ability, where higher-ability examinees generally receive more
difficult items and lower-ability examinees generally receive less difficult items. Under
the formulation of item response theory (IRT), it is suggested that much is to be gained in
terms of test efficiency by administering items to examinees that are well-targeted to their
ability.

Nevertheless, the efficiency of a CAT at the early stages of test administration has
been a point of contention in the literature. At the early stages of a CAT administration,
provisional ability estimates are typically imprecise (i.e., estimates possess large standard
errors of measurement), inaccurate (i.e., estimates are biased), or both. Because item
selection is dependent on ability estimation, the arguments contend that item selection

based on these early provisional ability estimates is likely to be mismatched with respect



to an examinee’s true ability. Chen, Ankenmann, and Chang (2000) point out that the
inaccuracy of these provisional ability estimates early in CAT administration is “a
persistent problem” and that “the more accurate [the provisional ability estimate] is, the
more appropriate the selected item will be” (p. 241).

The recognition that provisional ability estimates at the early stages of testing are
inaccurate has generated an area of research which seeks to improve the efficiency of a
CAT by means of alternative item selection procedures and alternative ability estimation
procedures. While most commonly, maximum information (or Fisher information) item
selection is used to select items in a CAT, it has been argued that maximum Fisher
information (FI) item selection is inefficient at the early stages of a CAT because it
selects items whose information is at the maximum of an inaccurate or imprecise
provisional ability estimate as opposed to an examinee’s true ability. Thus, a number of
other methods have been proposed which seek either to incorporate the error of ability
estimation into item selection (i.e., methods addressing imprecision), or to use a
likelihood-ratio based method to identify more suitable items across a range of plausible
ability levels (i.e., methods addressing bias). Methods developed under the former
approach include the general weighted information criterion (Veerkamp & Berger, 1997)
which leads to Fisher interval information (FII) and Fisher information weighted by a
posterior distribution (FIP). Methods developed under the latter approach use Kullback-
Leibler (KL) information, which is a global information measure (Chang & Ying, 1996;
Chen, Ankenmann, & Chang, 2000).

Recent studies examining the efficacy of these alternative item selection

procedures suggest that all perform similarly to each other as well as to FI item selection



after ten items have been administered (Chen, Ankenmann, & Chang, 2000; Cheng &
Liou, 2000). Although it is perhaps unlikely that a CAT of 10 or less items would be
administered operationally, the question remains as to whether the efficiency of a CAT
might be improved at the early stages of administration by perhaps another item selection
or ability estimation procedure not yet considered, and that such potential gains in
efficiency obtained early on might translate into more precise measurements after
considerably more items have been administered.

It should be noted that almost all research on improving the efficiency of CAT
item selection has concentrated on alternative item selection procedures. However,
ability estimation plays an equally important role in CAT item selection, as any item
selection procedure must utilize provisional ability estimates. Xiao (1999) demonstrated
that an alternative ability estimation procedure utilizing a golden section search (GSS)
optimization technique was as accurate as the more common expected a posteriori (EAP)
ability estimation procedure in classifying examinees in a computerized adaptive
classification test. Further, the average test lengths under the alternative procedure were
shorter than those under EAP estimation.

In their discussion, Chen, Ankenmann & Chang (2000; p. 253) suggest that
“nothing is to be lost” by incorporating alternative item selection procedures in a CAT.
Given the apparent convergence in performance among the more common FI item
selection and the alternative item selection procedures after approximately 10 items, an
interesting question is, “what is to be gained?” Answering this question requires a
method for evaluating the inefficiency in CAT item selection, thereby suggesting how

much room remains for improvement.



A related issue, not directly addressed in the current literature on CAT item
selection, is the precise meaning of the term “efficiency” and how it should be measured.
In studies by Chang & Ying (1996), Chen, Ankenmann, & Chang (2000), and Cheng &
Liou (2000), it appears that efficiency is defined in terms of the appropriateness of a
selected item with respect to an examinee’s true ability. By this definition, therefore,
efficient item selection is characterized by the selection of items appropriate to an
examinee’s true ability. Nevertheless, all of these studies use as outcome measures
characteristics of the ability estimates (e.g., root-mean-square errors, bias, and standard
errors), as opposed to the characteristics of the selected items themselves.

Davey (2002, personal communication) suggests that a less confounded outcome
measure is accumulated test information at an examinee’s true ability 6. This measure is
calculated on the basis of the items selected for administration and is not directly
influenced by errors in ability estimation.! Through this measure, a precise definition of
efficiency may be obtained, one which follows naturally from the statistical concepts of
efficiency and relative efficiency.

In order to utilize the concept of relative efficiencys, it is useful to consider two
tests, A and B, administered to an examinee possessing a true ability 6. The precision

with which this examinee may be measured by test A is given by the accumulated test
information at the examinee’s true ability 6, or 1\ (0). Likewise, /{(0) indicates the
precision afforded by test B. The relative efficiency of test A over test B, indicated by

RE(4, B|9), is the ratio 7((0)/1."(P). If test A is more efficient than test B (i.c., test A

" There can be no question that the specific items selected by the CAT are influenced by the ability
estimation method; however, this measure is a function only of item parameters and a given value of
ability.



yields more precise measurements at 0), RE (A, B|9) >1. Conversely, if test B is more

efficient, RE(4,BJ)<1.
This definition of relative efficiency may be extended to the CAT context,
yielding an operational definition for the efficiency of a CAT. Suppose that a CAT ofj

items is administered to an examinee possessing true ability 6, and that these items are
drawn from an item bank of finite size. Then the quantity (7)) (0) characterizes the

accumulated test information from these j items at the examinee’s ability level. Now for
any given 0, there exists an optimal set of items, also of size j, such that no other
combination of j items yields a greater measure of accumulated test information. Thus, if
" (9) represents the accumulated test information for this optimal set of items, the
relative efficiency of the set of items selected by the CAT administration over the optimal

setis 1) (0)/1{"(0). Noting, however, that I\"(6) places an upper bound on the
precision with which an examinee with true ability 6 may be measured by a set of j items
drawn from the item bank, it must be the case that 7{).(0)/7{"(8)<1. 1t is this ratio that

operationally defines the efficiency of a CAT in the present context.

The argument presented here for a measure of efficiency parallels that of Spanos’
(1999, p. 609) discussion of relative and full efficiency. He maintains that since relative
efficiency alone is not necessarily useful (e.g., a poor estimator is relatively more
efficient than an even poorer estimator), some fixed point of reference, namely the
Cramer-Rao lower bound for the variance of an estimator, is required. In IRT
applications where ability estimates are obtained by maximum likelihood (ML), the

asymptotic variance of the ML estimator is in fact equal to the Cramer-Rao lower bound,



or 1/17(8), where 1" (0) is the accumulated test information at the true ability 6.

However, the items contributing to 7 (0) in a CAT environment are not fixed, and
hence an additional lower bound—this one resulting from the choice of items—is needed

to define efficiency. It is the quantity 7" (9) described above that sets the lower bound

on the variance for an estimator of 0 (or, an upper bound on the precision of such an

estimator) in the CAT environment. Thus, the ratio 1), (9)/ " (6) is not simply a

measure of relative efficiency, but of efficiency itself, and may be used to define the
efficiency of a CAT. The primary advantage of this definition is that the efficiency of
item selection from different procedures (e.g., alternative item selection procedures or
alternative ability estimation procedures) may be compared to a fixed point of reference,
one which characterizes the most efficient estimator possible.

With a clearly defined measure of CAT efficiency, it is possible to identify any
gaps in the efficiency of item selection. Thus, the question of what is to be gained by
utilizing alternative procedures may be addressed directly, as the difference between the
efficiency measure for a particular procedure and the upper bound on efficiency may be
quantified. It is this difference that indicates exactly how much room for improvement

exists.

Statement of the Problem
The efficiency of CAT item selection is dependent on item selection procedures
as well as ability estimation procedures. Most commonly, maximum Fisher information
(FI) item selection is employed in conjunction with either maximum likelihood (ML) or

modal a posteriori (MAP) ability estimation. Because maximum FI item selection (under



either ML or MAP) has been criticized as being inefficient, the first purpose of this study
is to quantify the efficiency (or, inefficiency) of this most common item selection
procedure. The second purpose of this study is to propose an alternative ability
estimation procedure that addresses potential inefficiencies in CAT item selection, where
this alternative procedure operates concurrently with either ML or MAP estimation and
functions as an adjustment to either of these procedures. The third purpose of this study
is to evaluate the efficiency of CAT item selection given five ability estimation
procedures (i.e., ML, MAP, GSS, the proposed alternative procedure concurrent with
ML, and the proposed alternative procedure concurrent with MAP) and two item

selection procedures (i.e., maximum FI and maximum FII). Efficiency in this context is

defined as above; namely, the ratio 1(7).(6)/7{"(). As this definition is predicated on

evaluating information measures at an examinee’s true ability 6, a simulation
methodology is necessary, one which simulates a CAT administration for the following
configurations: (a) item selection by maximum FI, and ability estimation either by ML,
MAP, GSS, ML concurrent with the proposed alternative procedure, or MAP concurrent
with the proposed alternative procedure; and (b) item selection by maximum FII, and
ability estimation either by ML, MAP, GSS, ML concurrent with the proposed alternative
procedure, or MAP concurrent with the proposed alternative procedure.

Maximum FI item selection is taken here to be the process whereby: (1) an
examinee’s provisional ability estimate 6 ; 1s obtained after the ;™ item has been

administered; and (2) the j+1th item is selected such that it both possesses maximum
Fisher information at the provisional ability estimate and has not already been

administered. Item selection by FII is closely related to maximum FI item selection, but



instead of evaluating item information at a single point (i.e., the provisional ability
estimate), an information index is evaluated instead. This index is obtained by
performing a mathematical integration of the information function associated with an
item along a specified interval of the ability continuum. The item with the greatest value
for the FII index is then selected for administration.

Ability estimation by both Xiao’s (1999) GSS strategy and the proposed

alternative procedure utilize hypothesis-testing. Xiao (1999) obtains provisional ability
estimates 0 by a golden-section search (GSS) strategy; the next item is selected based on
this most current provisional ability estimate. Using GSS, a starting estimate él is
identified as the midpoint of a search interval along the ability continuum; a hypothesis
test is conducted by comparing observed and expected scores given 0 .. If the hypothesis
test results in rejection, then a new search interval is identified, as well as a new estimate

éz . The search strategy continues until the null hypothesis is not rejected. The last

estimate O obtained is then taken as the provisional ability estimate.

The proposed alternative ability estimation procedure operates concurrently with
a conventional ability estimation procedure such as ML and MAP; this alternative
procedure is also based on a series of hypothesis tests. Like Xiao (1999), the alternative
procedure conducts a hypothesis test after the jth item in the test has been administered.
However, the null hypothesis in the procedure is that all j items administered to an
examinee are maximally informative at that examinee’s true ability 0; failure to reject the
null suggests that the ability estimate obtained by ML or MAP should be used for the

lth

subsequent selection of the j+17 item, while rejection of the null suggests a modified

ability estimation procedure.



Two primary research questions thus follow:

1. How might the efficiency of maximum FI item selection under conventional
ability estimation procedures be characterized, especially at the early stages of a CAT
administration? More specific questions subsumed under this primary research question
include: (a) After a fixed number of items have been administered, to what extent does
efficiency of maximum FI item selection under ML or MAP ability estimation vary for
different points along the ability continuum? For example, after j items have been
administered, how does the efficiency of item selection at the middle of the ability
distribution compare with efficiency in the tails? (b) What is the effect of ability
estimation procedure on the efficiency of maximum FI item selection? For example, to
what extent does efficiency vary depending on whether maximum likelihood (ML)
estimation, a classical approach, or modal a posteriori (MAP) estimation, a Bayesian
approach, is chosen?

2. Is it possible to improve upon the efficiency of maximum FI item selection
under conventional ability estimation procedures by utilizing alternative item selection
procedures, alternative ability estimation procedures, or a combination of both? This
question is most relevant in cases where sizeable gaps in the efficiency of maximum FI
item selection in combination with conventional ability estimation procedures (e.g., ML
or MAP) have been identified. In parallel with the first primary research question, it is
also appropriate to consider the following for this second primary research question: (a)
After a fixed number of items have been administered, to what extent do the efficiency
measures for the alternative item selection and ability estimation procedures vary for

different points along the ability continuum? Specifically, how do the alternatives to FI
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item selection with ML or MAP ability estimation compare to one another? (b) How do
these efficiency measures compare with those obtained for maximum FI item selection
with ML or MAP ability estimation? That is, to what extent are the alternative item
selection and ability estimation procedures more (or less) efficient than maximum FI item
selection in conjunction with conventional ability estimation procedures?

The two primary research questions were addressed using a simulation
methodology. The CAT simulations employed here draw on an item bank of 367 pre-
calibrated and dichotomously-scored 3P items from a recently-administered large-scale
CAT assessment of mathematics ability. In the logistic metric where the scaling
parameter D = 1.7, the mean and standard deviation of the discrimination parameters (i.e.,
a parameters) from the 367 items are 0.950 and 0.341, respectively. For the difficulty
parameters (i.e., b parameters), the mean and standard deviation are 0.158 and 1.113,
respectively. For the pseudo-guessing parameters (i.e., ¢ parameters), the mean and
standard deviation are 0.144 and 0.105, respectively. In its operational form, the CAT
administered using this item bank is fixed at a length of 28 items; however, as it was
hypothesized that the greatest variation in CAT efficiency would occur much earlier (e.g.,
at or before the 10™ administered item), the CAT simulations were fixed such that no test
exceeded a length of 25 items.

The four factors in the experimental design were: (1) item selection procedure
(maximum FI or maximum FII item selection); (2) ability estimation procedure (ML,
MAP, GSS, ML concurrent with the proposed alternative procedure, or MAP concurrent
with the proposed alternative procedure); (3) true ability level at discrete points along the

ability continuum (at -2, -1, 0, +1, or +2 logits); and (4) test length (5, 10, 15, or 25
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items). For each of the experimental conditions, 1000 replications were generated. ML
and MAP ability estimation procedures were included for the following reasons: (1) ML
and MAP estimators behave differently, with the classical ML estimators being less
biased than MAP estimators but prone to variability, while the Bayesian MAP estimators
are biased but are less variable; (2) ability estimation by expected a posteriori (EAP),
another popular Bayesian procedure, yields similar point estimates as MAP. The choice
of the five discrete ability points is consistent with previous literature examining item
selection procedures in CAT. Similarly, the CAT item selection literature suggests that
alternative item selection procedures are most effective early in a CAT administration,
with performance gains typically observed before the 10™ administered item.

Efficiency, as defined earlier, is the primary dependent measure. Since analyses
indicate that this measure is highly skewed to the left, the median efficiency is reported as
a measure of central tendency, and the interquartile range (that is, the range in the
efficiency measure between the 25™ and 75™ percentile points) is reported as a measure
of variability. Efficiency at both the 25™ and 75™ percentile points is also provided. In
addition, the mean and standard deviation for the distribution of provisional ability

estimates under each of the experimental conditions are reported.

Significance of the Study
The recognition that provisional ability estimates at the early stages of testing are
prone to error has recently generated an area of research which seeks to improve the
efficiency of a CAT primarily by means of alternative item selection procedures. The

argument for these alternative item selection procedures is that maximum FI item
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selection, the most commonly used item selection procedure, is inefficient at the early
stages of a CAT because it selects items whose information is at the maximum of an
inaccurate or imprecise provisional ability estimate as opposed to an examinee’s true
ability.

What has not yet been fully considered is a method for comparing procedures
against a common metric, such that the degree of efficiency (or inefficiency) in item
selection is readily quantified. An upper bound for the efficiency of CAT item selection
is proposed here; this upper bound makes possible an efficiency measure that is
applicable regardless of the specific choice of item selection or ability estimation
procedure.

Item selection and ability estimation are two necessary ingredients for a CAT.
However, improvements in one area may be offset by weaknesses in the other. The
present study attempts to isolate the effects of item selection on efficiency by utilizing an
outcome measure that is not confounded by ability estimation. In addition, the proposed
upper bound on efficiency is independent of the particular ability estimation employed
and serves as the theoretical limit for measurement precision.

While it has been posited that maximum FI item selection with conventional
ability estimation procedures is inefficient at the early stages of testing, this study
addresses the question, to what extent is maximum FI item selection with these ability
estimation procedures inefficient? As this study is able to assess the gaps in efficiency, it
further addresses the question, what is the utility in employing alternative item selection
or ability estimation procedures? The answers to these questions are likely of interest to

the measurement practitioner who must assemble CATs for large-scale administration. If
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in fact maximum FI item selection with conventional ability estimation procedures is
deemed inefficient under certain of the experimental conditions explored here, alternative
item selection and ability estimation procedures that are relatively easy to implement in

an operational setting are suggested and evaluated.

Limitations of the Study
The primary limitation of this study is that it is, by necessity, a simulation study.

An examinee’s true ability level 6 must be known in advance in order to evaluate the

efficiency measure 7).(6)/1{"(6). Further, controlled comparisons among the item

selection and ability estimation procedures considered here can only be made using a
simulation design.

The items within the pool selected for this simulation study were calibrated from
actual examinee response data and were utilized in an operational CAT administration for
a large-scale assessment of mathematics ability. All items considered in this study are
modeled under the 3-parameter logistic IRT model, and are thus dichotomously-scored.
In addition, the alternative item selection procedure proposed here assumes that only
dichotomously-scored items are being administered, although it should be possible to
generalize this procedure for multiple-category IRT models such as the graded response
model (Samejima, 1969). Thus, the study methodology is limited to dichotomously-
scored items. Further, the results are dependent on the specific item pool selected for the
study, and generalization to other CAT item pools should be approached with caution. It

should be noted, however, that while the item response is indeed simulated in this design,
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the item parameters used for the simulation were calibrated from actual examinee
response data.

The purpose of this study is to quantify the efficiency of two item selection
procedures and five ability estimation procedures under what may be considered
idealized or “best-case” scenarios. The rationale here is to minimize the influence of
extraneous sources of variance on the measurement of CAT efficiency. It follows then,
for example, that the simulations conducted for this study do not utilize any form of item
exposure control. The addition of exposure control would serve only to lower the
measured efficiency of the CAT item selection procedures considered here, which is at
odds with the purpose of the study. Further, non-model-fitting responses or aberrant

response patterns are not considered in this study.



CHAPTER 2

Review of Related Literature

A computerized adaptive test (CAT) is a form of tailored testing, as the goal of a
CAT is to administer items to examinees that are well-targeted to their abilities. In
addition to being a tailored test, a CAT is also a dynamic test, since it is assembled item-
by-item based on the responses it observes from the examinee being tested. Test
assembly in this adaptive framework relies on procedures for estimating examinee ability
and selecting items for administration to that examinee. Both of these procedures must
function in real-time, that is, they must operate concurrently with an examinee taking the
test, as they are responsible for the test’s construction.

In CAT, ability estimation procedures and item selection procedures are
interdependent. Ability estimates serve to select the next item for administration, as the
goal of a CAT is to administer items targeted to an examinee’s ability. In turn, examinee
responses to the administered items are used to estimate an examinee’s ability. If the
administered items are accurately targeted to an examinee’s ability and the IRT model is
appropriate, then greater precision in the measurement of that examinee’s ability will be
obtained. Once an examinee has completed the test, the ability estimation procedure is
also responsible for obtaining a final ability estimate for that examinee, as well as the

associated standard error associated with that estimate.

15
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At present, a number of ability estimation and item selection procedures are
available for use in a CAT. No one single ability estimation procedure or item selection
procedure is generally agreed upon as being superior. How each compares among the
others has been the focus of relatively recent research (e.g., most within the past 10-15
years, though insights by Birnbaum (1968) and Lord & Novick (1968) were voiced
considerably earlier). The aim of this review is to provide a theoretical background for
these procedures, to describe how each is utilized in the CAT environment, and to
evaluate their performance in research studies.

Among the ability estimation procedures, five are considered here: maximum
likelihood (ML), modal a posteriori (MAP), expected a posteriori (EAP), weighted
likelihood estimation (WLE), and golden section search (GSS). Among the item
selection procedures, five are considered here: maximum Fisher information (FI), Fisher
interval information (FII), Fisher information with a posterior weight function (FIP),
Kullback-Leibler (KL) information, and KL information weighted by a posterior density

(KLP).

IRT ability estimation procedures in a computerized adaptive test
A computerized adaptive test (CAT) necessarily rests on procedures for
estimating examinee ability, as a CAT attempts to adapt the delivery of administered
items to the ability of the examinee being tested. In addition to provisional ability
estimates—estimates of ability used to help select the items administered to an

examinee—the CAT must also produce a final ability estimate, which is used to report an
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examinee’s final score. Item response theory (IRT) provides a method for calculating
both provisional and final ability estimates.

In the sections that follow, three aspects of IRT ability estimation in a CAT are
explored: (1) the theoretical development of IRT ability estimation; (2) the
implementation of ability estimation in an operational CAT; and (3) the evaluation of
ability estimation procedures in terms of accuracy and precision of measurement.
Theoretical development

In IRT, it is assumed that person parameters (latent abilities) and item parameters
underly examinee response behavior to an administered item. Response behavior in this

sense is the probability of an examinee with latent ability 6 providing a correct response

to that item, or P(U .= 1|9) for item i. The relationship between 6 and this response

behavior is governed by the item characteristic curve, which is a function described by a
set of parameters. In IRT, these parameters are called item parameters.

An examinee’s true ability 6 cannot be measured directly and so must be
estimated. The estimation utilizes two sets of information: first, the pattern of responses
observed from the examinee; and second, the item parameters from the items
administered to the examinee. If the pattern of observed responses is denoted by

u= {ul,uz,...,uNl } and the item parameters by ® = {0)1,(1)2,...,(1)1\,1 }, where N; indicates
the number of items, then the estimation of 6 focuses on the probability P(6|U = u,(o).
What is necessary in practical problems of estimation is a method for relating this

posterior distribution P(9|U = u,(o) to the likelihood function, denoted by P(U =u G,m).
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A solution to this problem is Bayes’ Theorem (Hambleton & Swaminathan, 1985;

Suen, 1990). Using this theorem, we find that

P(9|U = u,(o)oc P(U =u

0,0)P(0) (Eq. 1[E]

where P(9|U = u,m) 1s the posterior distribution of 0,
P(U = ulp, ) is the likelihood function,
and P(G) is the prior distribution of 6

IRT provides a mechanism for computing the likelihood function P(U =u 6,0)), as will

be shown next. The choice of the prior distribution P(6) will be discussed shortly.
The principle of local independence figures prominently in the calculation of IRT

likelihood functions. Local independence requires that, for a fixed value of 6 and a set of

N/ test items, the joint distribution of P(U =u 9,(0) is equal to the product of the

6,(1)[) foritemsi=1, 2, ..., N;(Lord and Novick, 1968).

marginal probabilities P(U L=,

Thus,

P, =u,,U, =u,,...U, =uy 6,0))=ﬁP(Ui —ul0,0,)  (Eq 2E

i=1

The assumption of local independence greatly simplifies the computation of the
likelihood function and consequently the posterior distribution.
In addition to the likelihood function, Equation 1 requires a prior distribution

P(G) to be specified. The choice of the prior is often left to the researcher. If there is

reasonable evidence to suggest a distributional form for the distribution of ability, then an
informative prior may be used. (Note that this choice is Bayesian in nature.) If the

researcher prefers to make no assumptions on the distribution of ability, then a non-


Alexander Weissman
Bayes

Alexander Weissman
Local_indep


19

informative prior (i.e., a uniform distribution) may be used. (Note that this choice is
classical in nature.)

Once the posterior distribution is computed from the likelihood function and the
prior distribution, ability estimation is possible. Four types of likelihood-based
estimators are discussed here: maximum likelihood (ML), modal a posteriori (MAP),
expected a posteriori (EAP), and Warm’s weighted likelihood estimation (WLE). Note
that the fifth ability estimator discussed here, GSS, does not utilize a likelihood function;
rather, it compares optimally-weighted observed and expected scores under a golden
section search optimization strategy.

In maximum likelihood estimation, the prior distribution P(6) in Equation 1 is

non-informative. Thus, both the maxima of the posterior distribution and the likelihood

function occur at the same value along the ability scale. This value is the maximum

A

likelihood estimate of an examinee’s true ability 0, and is indicated by 6,, . Rather than

maximizing the likelihood function itself to identify 0 . » the logarithm of the likelihood
function is typically used as it simplifies calculations. If this log-likelihood is denoted by
log L, then the maximum likelihood estimate 6, is found by solving for the value of 0

which satisfies the equation

al;’—egL ) (Eq. 3@

Modal a posteriori (MAP) is similar to ML estimation in that the maximum of the
posterior distribution is found to estimate 6. However, in MAP estimation an informative

prior is chosen, often the normal density. The mode of the posterior distribution is then

the estimate 0 wap- 1f the expected value of the posterior distribution is found instead of
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the modal point, then the expected a posteriori (EAP) estimate ) z4p 15 Obtained.

Typically, Gauss-Hermite quadrature is used to find 0 rap » Such that

S X, 1(x, (X, =
EAP — = (Eq. 4)

> L pr(x,)

D>

where X; is one of ¢ quadrature points, W(X}) is a weight associated with the quadrature
point (e.g., corresponding to the normal density prior), and L(X}) is the likelihood
function evaluated at X;.

Although ML estimates are convenient due to their properties of asymptotic
consistency and asymptotic normality, they are biased (Wang & Vispoel, 1998).
Lord (1983) derived an expression for the bias in ML estimates, showing that they are

biased outwards. Warm (1989) mentions that the magnitude of this bias is larger for
negative values of 6,, than for positive values. Warm’s weighted likelihood estimation

(WLE) attempts to correct for this bias in ML estimates up to order n~' by removing this
first-order bias term from the ML estimates. The weighting function employed in
Warm'’s procedure is specified in advance, but makes no assumptions about the
distribution of 6. Rather, it is only a function of the items chosen for the test and so
should not be confused with the informative prior distribution discussed earlier.

If the weighting function in WLE is denoted by W(G), then the weighted

likelihood estimate éWLE is the solution to the equation (Warm, 1989)

dlogL dInw()
) Eq. 5
o 0 ea.s=]
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The weighting function w(e) is a function of test information, a concept to be discussed

shortly.

When response patterns are either completely correct or completely incorrect, ML
ability estimates cannot be determined, whereas estimates from MAP, EAP, and WLE are
available. The problem with ML estimation in such cases lies in the fact that the

likelihood function does not possess a maximum; hence, the limiting solution to

Equation 3 is 6 — —o for completely incorrect response patterns and 0 — +oo for
completely correct patterns. In practice, such estimates are untenable; typically,
examinees with such response patterns are either removed prior to ML estimation and
assigned a score afterwards, or bounds are imposed on the ML estimation algorithm. It is
common to choose 4 as the bounds for the ability scale.

While completely correct or incorrect response patterns may occur relatively
infrequently for a fixed-length linear test, they are certainly guaranteed just after the first
item is administered in a CAT and still remain likely early in a CAT administration. If an
ability estimator with a non-informative prior (such as ML) is chosen for a CAT, it is
desirable to force a variation in item responses as early as possible; otherwise, an ability
estimate will not be available. This problem may be circumvented by using an estimator
such as MAP or EAP.

Unlike ML, MAP, EAP, or WLE ability estimation, Xiao’s (1999) golden section
search (GSS) ability estimation procedure does not utilize a likelihood function to obtain
an ability estimate. Rather, it uses an optimization strategy to search the ability
continuum for an ability estimate consistent with the observed pattern of responses. The

first search interval covers the entire (bounded) range of the ability continuum, typically



22

[-3, +3] or [-4, +4]. If this first search interval is denoted by [a, b], then the midpoint ¢ of
this interval is taken as the first possible estimate of ability. A hypothesis test is
conducted at this point, where the optimally-weighted observed and expected scores,
which are functions of the observed and expected proportions, are compared. If the null
hypothesis is not rejected, then this midpoint c is accepted as the provisional ability
estimate and no further search is executed. On the other hand, if the null hypothesis is

rejected, then a new search section [a’,b'] is identified, such that [a, b] is reduced by the
golden section ratio to obtain the new [a',b']. If the sign of the test statistic is negative

(i.e., observed score is less than the expected score), then the original section is reduced

by the golden section ratio so that ' =a and b'=a + t(b - a), where ¢ is equal to the

golden ratio” («/g — 1)/ 2. If the sign of the test statistic is positive, then b’ =5 and
a'=b—t(b—a). The midpoint ¢’ of this new section is then taken as the next possible

estimate of ability, and another hypothesis test is conducted. This process of hypothesis-
testing followed by interval sectioning continues as long as the null hypothesis is

rejected. Once a failure to reject the null hypothesis is reached, the midpoint of the

section is taken as the provisional ability estimate 0 css - X120 (1999) considers this

estimate to be equivalent to the maximum likelihood estimate 0 ML -

Xiao uses optimal scoring weights (Birnbaum, 1968) to arrive at observed and

expected scores. For any item i, the optimal scoring weight is given by

2 The golden ratio may be found by construction: given a line divided into two segments a and b with

a < b, the ratio of a to b should be equal to the ratio of b to the entire line length @ + b. Let ¢ be the golden
ratio relating segments a and b, such that a = tb. Then by construction tb/b = b/(tb + b), which reduces to
the quadratic equation £ + 7 — 1 = 0. The quadratic equation is satisfied by ¢ = (— 1+4/5 )/ 2 ; the positive

root is taken here.
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P(0)
w(0)=— D) (Eq. 6=)
P@)1-F©)]
Thus, an optimally-weighted observed score for an examinee with responses u; may be

computed as
X=>Wau, (MJEJ

The optimally-weighted expected score for X, given ability 0 is computed as

Elxio]= Y w,R(0) (Eq. 8=

i=1

and the variance by
varlxiol= 3w )i - P.O) (Eq. 9=
i=1

Then the test statistic employed by Xiao is

Z:X—dﬂd
1/Var[X|9] e IOE

Rejection of the null hypothesis occurs when the absolute value of test statistic z
exceeds a critical value z.. Xiao (1999) recommends that a value z, = 0.7 be used, based

on prior studies examining the golden section search strategy. Further, in cases where the

optimally weighted scores given by Equation 7 are less than
Xmin = ZVVici (Eq IIE
i=1

where the ¢; are the pseudo-guessing parameters from the 3P IRT model, the optimally

weighted observed scores X are replaced by X

min *
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Estimating standard errors
In addition to finding a point estimate for 6, it is often desirable to estimate

standard errors of measurement (SE;). IRT provides a method for computing conditional

standard errors of measurement, thus characterizing the varying precision of a test along

the ability scale. For all procedures except EAP, SE; is found by means of the test

information function’. The test information function 7(0)is defined as

1(0) = —E[M} (Eq. 12@

o0’
The asymptotic variance of the ML estimate 0, is then related to the test information

function 7(8) by (Hambleton & Swaminathan, 1985)
var(0,,|0)=[1(0)]" (Eq. 13[Z]
and hence SE b [1 (9)]_% . Further, it is known that 6 w18 asymptotically normally

distributed. For WLE, Warm (1989) notes that the estimate 6 wp Maintains similarities
with the ML estimator, in that éWL » 1s asymptotically normally distributed, with

asymptotic variance equal to the asymptotic variance of 4 w - Thus, SE.  =SE.

0 WLE 0 ML

? Xiao (1999) does not explicitly provide the standard error associated with the GSS point estimate;
however, as the GSS estimator is assumed to be equivalent to the ML estimator, it is likely that the assumed
equivalence carries over to the standard errors as well.
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The standard error of measurement SE; for the Bayes MAP estimate is usually

smaller than that obtained for the ML estimate, and is given by (Wainer & Mislevy4,
1990)
-1
2
Var(d,,.»[0)=| 1(0)- E[M] (Eq. 14)
00°
where p(0) is the prior distribution of 6. For a prior distributed as N(0,1), the term

E(Znne) -y

o0°

The standard error of measurement SE;  for the EAP estimate is computed from

EAP

the posterior distribution instead of from the test information function. As shown by

Wang & Vispoel (1998), the variance of the posterior distribution g() is

Var(9|u) = j@z g(9|u)d6 - (E (6|u))2 (Eq. ISE|

Gauss-Hermite quadrature may be used to approximate this integration. The resulting

expression for the estimated variance is then

Z(Xk _éEAP )ZL(Xk )W(Xk) E
&Z(éw)= Var(oju) =2 (Eq. 16)

> Lx (x,)

q
k=1

where X} is one of g quadrature points, W(X;) is a weight associated with the quadrature

point (e.g., corresponding to the normal density prior), and L(X}) is the likelihood

function evaluated at X;. From Equation 16, the standard error SE, = |67 (é EAP ) .

EAP

* Their equation, as printed in the text, has been corrected here.
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Implementation of ability estimation in CAT

Unlike a conventional fixed-length linear test, where ability estimation occurs
after the examinee has completed the entire test, a CAT estimates an examinee’s ability
in a sequential fashion. The CAT will estimate an examinee’s ability after each item has
been administered; thus, for any given examinee, a CAT will have as many ability
estimates for that examinee as the number of items administered to that examinee.

Some nomenclature is useful for identifying the ability estimates obtained in a
CAT. Suppose that N; items are administered to an examinee by a CAT, and for each of

these items an ability estimate éi where i ={1, 2, ..., N;} is available. Then the estimates

A

) 150, .0 v, are called the provisional ability estimates and the estimate ) v, 1s called
-1 1

the final ability estimate. The provisional ability estimates are used by the CAT to select
the next item for the examinee; the final ability estimate is taken as the best estimate of
that examinee’s ability and is used to report a final score on the test.

Calculation of provisional ability estimates during a CAT administration occurs
each time an examinee responds to an administered item. At the start of a CAT, typically
no information is available about an examinee’s ability since no items have been
administered. However, adaptive tests could conceivably use collateral information to
make a very general classification of an examinee’s proficiency. After the examinee has
responded to the first item, an estimate of ability may be attempted. If the item

parameters for this first item (i = 1) are denoted by ®, and the examinee response by u;,

then an estimate © , may be calculated using Equation 1 and one of the four ability

estimation procedures described here. However, if ML estimation is used, no ability

estimate will be identified since the likelihood function will not possess a maximum.
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Boundary conditions, as described above, may be imposed. For example, if #; = 1, then
) ML|u1 ,0, =+4. If either MAP, EAP, or WLE are used, a bounded ability estimate will

be obtained. In addition, if GSS is used, a bounded ability estimate is always guaranteed,
as GSS is a search strategy employed over a bounded interval.

An item selection algorithm will choose the second item for the examinee based
on the first provisional estimate é1 . After responding to this second item, the examinee’s
response vector is u = {u, u»} and the vector of item parameters ® = {®, ®,}. The
second provisional ability estimate, éz , may then be calculated from the available

information, namely u and ®. Note that if u; = u,, then an ML estimate will still be
unidentified unless boundary conditions are imposed.

As the CAT administration proceeds, provisional ability estimates are updated

with each successive item. After the last item is administered, the ability estimate ) v, 18

computed for the vector of responses u = {ul Uy seenslUy } and item parameters

o= {0) O PPN I } This 0 v, 18 taken as the final ability estimate for the examinee.

Notice that if any ability estimation procedure is used, this final ability estimate will be
identical to the ability estimate obtained for a fixed-length linear test possessing the same
set ofitems i = {1, 2, ..., N;}. This equivalence is due to the estimation procedures’
indifference towards the order in which items are presented. ML, MAP, EAP, and WLE
use the likelihood function shown in Equation 2; in that expression, the order of item
responses is not taken into account. GSS uses optimally weighted observed and expected
scores; again, the order of item responses does not influence the computation of these

SCOrc€s.
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Although the estimation procedures themselves do not take order of item
administration into account, plotting the sequence of provisional ability estimates against
item administration number can be informative, and illustrates some features of ability
estimation in CAT. In Figure 1, a plot of ML, MAP, and EAP provisional ability
estimates versus item administration number for a particular examinee is shown. The
source of this data is from a recent CAT administration of a large-scale assessment of

mathematics ability; this test is a fixed-length CAT with N; = 28.

Comparison of ML, MAP, and EAP ability estimates

Ability estimates

A
.
’
z»

0 5 10 15 20 25 30

Item administration number

—— ML = MAP —~ EAP

Figure 1| = jomparison of ML, MAP, and EAP provisional ability estimates for an
examinee with final ability estimates @ML =-1.53, éMAP =-1.30, and @EAP =-1.33.
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The first feature to note from these figures is that all three estimation procedures
converge to a final ability estimate as the test progresses. From Figure 1, it can be seen
that although the three procedures yield slightly different final ability estimates, they are
rather close to one another. However, the trend in the sequence of provisional ability
estimates from commencement to termination of testing is quite different between the
ML procedure and the MAP and EAP procedures. Notice that the trend for ML estimates
is upward, from a negative bound of -4 to the final estimate of -1.53, while the trend for
the MAP and EAP estimates is downward, from the first provisional estimate of
approximately -0.4 to the final estimate of approximately -1.3. Further, notice that the
first four provisional estimates for ML are all at the negative bound of -4, whereas the
corresponding estimates for MAP and EAP are not all equal. Finally, the variability in
the ML estimates over time is greater than that of the MAP and EAP estimates. It should
also be noted that the standard errors associated with the MAP and EAP estimates will
always be smaller than those associated with the ML estimates.

The differences in the trends between the ML procedure and the MAP and EAP
procedures may be attributed to the presence or absence of an informative prior
distribution in estimating ability. The informative prior used in the MAP and EAP
procedures reduces the variability in provisional ability estimates considerably. Further,
it moves the initial estimates towards the mode of the prior; in this case, the prior is
distributed as N(0,1). Because this examinee incorrectly answered the first four items,
ML estimation must impose a lower bound of -4 on the ability estimates, as a maximum

in the likelihood function is not present even after four items have been administered. In
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contrast, ability estimates are possible in the MAP and EAP procedures after these four
items because of the informative prior.
A comparison of the last few provisional ability estimates and the final ability

estimates across the three procedures shows that they are similar, with final ability
estimates 0,, =-1.53, 0,,,, =-1.30, and 0,,, =-1.33. Although they are similar, they

are not identical, and the slight difference is worthwhile to note. Even at the end of the
test, the influence of the prior distribution remains; the two Bayesian procedures MAP
and EAP yield estimates that are biased inwards towards the mode of the prior
distribution as compared to the maximum likelihood estimate.

It was noted that the final estimate of ability is computed after the last item is
administered in a CAT. How the CAT determines when to terminate testing depends on
a decision rule, often referred to as a stopping criterion. Unlike a conventional fixed-
length linear test, where testing terminates after a fixed number of items have been
administered, CAT has no such restriction. In principle, two subsets of items
administered by a CAT to two different examinees may be of different sizes; that is, the
number Ny, of items administered to one examinee may be larger than, equal to, or
smaller than the number N;, of items administered to a different examinee. Further, the
degree of overlap or number of items in common between the two subsets may vary from
0, 1, ..., min(Ny1, Npo).

Thissen & Mislevy (1990) describe three CAT stopping criteria: (1) terminate
testing after a specific number of items have been administered; (2) terminate testing
when a specific precision in measurement has been reached (e.g., a minimum standard

error of measurement for all examinees); and (3) terminate testing after a specific amount
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of time has elapsed. They note that any one of these criteria may be chosen for a CAT, or
a mixture of these criteria may be employed. For power tests, however, the first two
criteria are most relevant and the advantages and disadvantages of these criteria are
discussed below.

Advantages for the first criterion, terminating testing after a specific number of
items have been administered, include ease of implementation in a CAT algorithm and
better prediction of item usage for items in the pool. The primary disadvantage of this
criterion is that examinees will be measured with differing degrees of precision along the
ability continuum. This disadvantage is of greatest concern for those examinees at the
extremes of the ability scale; it is likely that the first few items selected for these
examinees will not provide much information for estimating their abilities.

Advantages for the second criterion, terminating testing when a specific precision
in measurement has been reached, include the assurance that all examinees will be
measured with the same degree of precision. Where this property is particularly useful is
in statistical analyses on the test data that make assumptions about the homogeneity of
error variances. The disadvantage of this criterion is that by design, tests are of variable
lengths. Predicting how much time is required to complete tests most likely involves
simulating the CAT administration for examinees at different points along the ability
continuum. Further, operational considerations such as the amount of “seat time”
required for examinees to complete the test become more complex with variable length
tests. This consideration is relevant for large-scale testing operations where the use of

test center facilities is charged on a per unit time basis.
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Evaluation of ability estimation procedures

Five ability estimation procedures have been discussed here: ML, MAP, EAP,
WLE, and GSS. In order to evaluate how each performs in a CAT environment, a
simulation methodology is required, since an examinee’s true ability is never known in
advance and so actual test data cannot provide an indication of how well ability is being
estimated. To quantify the degree to which ability is being appropriately measured,

simulation studies typically report one or more of the following: the bias of an ability
estimate O from its true value 0, the standard error SE(é) associated with the ability

estimate, and the root-mean-square error RMSE( ) ). The relationship among these three
quantities is RMSE* = Bias® + SE*.

Currently, there is no one single published article which compares ML, MAP,
EAP, WLE, and GSS in a CAT environment. However, Wang & Vispoel (1998)
compare the ML, MAP, and EAP estimation procedures, and Cheng & Liou (2000)
compare the ML and WLE estimation procedures. Xiao (1999) compares the GSS and
EAP procedures, but in a CAT environment that differs from Wang & Vispoel’s (1998)
and Cheng & Liou’s (2000) studies. That is, Xiao (1999) examines a computerized
adaptive classification test, whereas Wang & Vispoel (1998) and Cheng & Liou (2000)
examine a CAT which provides final ability estimates for examinees, as opposed to one
that assigns them to discrete proficiency categories. Although Warm (1989) compares
the ML, MAP, and WLE procedures, the conditions under which the simulation study
were conducted do not parallel those used in current adaptive testing practice;
specifically, his study did not draw items from a pre-determined item pool, but rather

generated item parameters during the simulation based on initial constraints (e.g., all
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discrimination parameters set to 2.0) and optimal item selection (e.g., item parameters
corresponding to maximum information were generated as needed). Therefore, Warm’s
(1989) study utilized infinite item pools, whereas Wang & Vispoel (1998) and Cheng &
Liou (2000) used finite item pools whose parameters were chosen a priori. Thus, the
studies by Wang & Vispoel (1998), Cheng & Liou (2000), and Xiao (1999) will be
discussed here. However, the discussion will focus primarily on Wang & Vispoel’s
(1998) and Cheng & Liou’s (2000) studies, as the nature of their studies and their
outcome measures are comparable.

Wang & Vispoel (1998) compared the ML, EAP, and MAP estimation procedures
under a number of CAT administration conditions: (a) fixed- vs. variable-length CATs;
(b) ideal vs. realistic item pools; and (c) effect of prior distribution on final ability
estimates for EAP and MAP estimation. The first of these conditions compared ability
estimates from fixed-length CATs (with items varying in number from 10 to 50 in steps
of 10) to those from variable-length CATs (with target reliabilities of 0.80 and 0.90). The
second of these conditions compared estimates across three types of item pools all of size
Npoor = 300: (1) two ideal item pools with difficulty parameters b; distributed uniformly
over an interval [-3.6, 3.6], pseudo-guessing parameters c¢; fixed at 0.15, and average
discrimination parameters @; drawn from a N(1.1, 0.1) distribution for the moderate
discriminating items, or from a N(1.9, 0.1) distribution for the high discriminating items;
and (ii) a realistic item pool with item parameters based on vocabulary items from six
paper-and-pencil forms of the lowa Tests of Educational Development. For the realistic
item pool, average discrimination parameters were moderate and the majority of items

were of middle difficulty. Finally, the third of these conditions used either a fixed prior
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distribution (i.e., N(0,1)) for all examines, or a variable prior distribution depending on
the true ability of the examinee. In the variable prior conditions, the mode of the prior
was chosen so as to be closest to an examinee’s true ability; one of three possible prior

distributions (with modes of -2, 0, or +2) was selected for an examinee.

In terms of the standard error, or SE( 0 ), Wang & Vispoel (1998) found that ML
estimates overall had the highest standard errors, and that these were underestimated by
the test information functions (see Equations 12 and 13) used to calculate the standard
errors for these estimates. The standard errors for ML estimates were greatest at the
extremes of the ability distribution, most likely due to the relative lack of items with
difficulty parameters located at these points. For procedures such as EAP, where

standard errors are based on the posterior distribution and not on the test information

function, the estimated SE( ) ) were consistent with those observed empirically in the

simulation study. The manipulation of prior distribution type (fixed or variable) had little
effect on SE(@ ) for the MAP or EAP procedures.

While the Bayesian procedures performed well in terms of SE( 0 ), the non-
Bayesian ML estimates were the least biased. When using the fixed prior distribution for
the MAP and EAP procedures, ability estimates were biased inwards towards the mode of
the prior. This bias was particularly strong for examinees at the extremes of the ability
continuum. This bias in Bayesian estimates was exacerbated when few items were
available at these extremes (i.e., under the realistic item pool condition); it should be
noted, however, that the ML estimates were also biased at these extreme points, but only
slightly so. Additionally, the bias in ML estimates at these extremes was outward, rather

than inward. Of the Bayesian procedures, EAP showed less bias as compared to MAP.
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However, if a variable selection of prior distribution was employed, the bias in MAP and
EAP estimates was reduced, and quite significantly for the ideal item set conditions.

The focus of Cheng & Liou’s (2000) study was twofold: first, it investigated the
performance of ML and WLE estimation procedures in a CAT; and second, it
investigated the performance of local and global information item selection procedures.
For the purposes of this discussion, only the results pertaining to the ability estimation
procedures will be included. Their study utilized 204 items from a 1992 NAEP Reading
Assessment, where the range in discrimination parameters was 0.452 to 2.502, the range
in difficulty parameters was -2.325 to 3.061, and the range in pseudo-guessing

parameters was 0 to 0.373. The mean of the item parameters was a, = 1.194,
b, =-0.024,and ¢, =0.124. A fixed-length termination rule of 30 items was chosen for

the simulation study.

The major finding from Cheng & Liou’s (2000) study regarding ML and WLE
estimation procedures was that WLE outperformed ML estimation in terms of less bias at
the early stages of testing. However, after approximately 10 items were administered,
both ML and WLE estimates generally possessed the same degree of bias. This result
was anticipated by Wang & Vispoel (1998) when they discussed the bias function for the
ML estimator, derived by Lord (1983). As items are targeted to examinee ability, the
bias in 0,, approaches zero. Since Warm’s WLE corrects for this bias, it is logical that
as the bias approaches zero, the ML estimate will equal the WLE estimate. In fact, this
convergence appears to be taking place in Cheng & Liou’s (2000) study. At the early
stages of testing, items are not well-targeted to examinee ability; thus, the ML estimates

are biased and the WLE estimates, which have been corrected for this bias, were indeed
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found to be less biased than the ML estimates. However, as the CAT proceeds, and items
are more accurately targeted to examinee ability, the WLE and ML estimates become
similar.

If conclusions are to be drawn based on Wang & Vispoel’s (1998) and Cheng &
Liou’s (2000) studies, it seems that the choice of ability estimation procedure must take
into account the researcher’s tolerance for bias versus measurement error. In general, the
Bayesian procedures provide smaller measurement error at the expense of larger bias; the
reverse is true for the non-Bayesian ML and WLE procedures. Although the degree of
bias in the Bayesian approaches may be lessened by employing a variable selection of the
prior distribution, this method rests on the assumption that such a distribution can be
accurately identified for each examinee. Routing tests may provide one possible solution,
but they themselves possess measurement error and could erroneously assign a prior
distribution which might impose an even larger bias on ability estimates.

Xiao (1999) explored the EAP and GSS ability estimation procedures in a
computerized adaptive classification test, or grading test. The outcome measures in
Xiao’s (1999) study differ from those in Wang & Vispoel’s (1998) and Cheng & Liou’s
(2000) studies, and include: (a) the proportion of correct grade assignment decisions; and
(b) average test length. Thus, Xiao’s (1999) study employed variable-length CATs, as
opposed to the fixed-length CATs of Wang & Vispoel (1998) and Cheng & Liou (2000).

Xiao (1999) simulated computerized adaptive grading tests where the item pool
consisted of 200 pre-algebra items from an ACT Mathematics test. The range in
discrimination parameters was 0.472 to 1.756, the range in difficulty parameters was

—1.588 to 1.656, and the range in pseudo-guessing parameters was 0.056 to 0.494. The
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mean of the item parameters was a, = 1.025, Z;l. =0.086, and ¢, =0.172, and the

standard deviations were 0.242, 0.666, and 0.067, respectively. Three specific grading
tests were examined: the first possessed three proficiency levels; the second possessed
five levels; and the third possessed 10 levels. Although each of the grading tests was
variable in length, a maximum test length was specified for each. For the 3-, 5-, and 10-
level tests, the maximum test length was 8, 20, and 20 items, respectively. Examinee
ability was simulated by drawing from a N(0,1) distribution. The item selection method
used for all conditions was maximum FI selection. For each test, 500 examinees were
simulated; however, 10 tests were administered for each ability drawn from the
distribution. Thus, the total number of replications per cell in her design was 5000.

Xiao (1999) found that there was “no general difference among the [ability
estimation procedures] in the proportion of correct classifications” (p. 145). She notes
that EAP estimation led to more correct classifications in the 3-level test; however, that
effect was not observed in the 5- or 10-level tests. For the 5-level tests, approximately
79% of the classifications were correct; for the 10-level tests, approximately 58% of the
classifications were correct. In the case of the 3-level tests, the proportion of correct
classifications for GSS was 83.2%, while it was slightly higher at 85% for EAP. Thus,
the GSS and EAP ability estimation procedures led to similar classification accuracy
across the grading tests, with EAP being more accurate for the 3-level test.

With respect to average test length, a significant effect was observed for ability
estimation procedure, with GSS resulting in slightly shorter tests than EAP in the case of
the 3- and 5-level tests. For the 10-level tests, the stopping rule could not be met before

the maximum number of items (i.e., 20) was reached; thus, no effect of ability estimation
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procedure was observed for the 10-level tests. For the 5-level test, GSS led to an average
test length of 7.36 items, while the average test length for EAP was 7.50. For the 10-
level test, the average test length for GSS was 19.68, whereas it was 19.90 for EAP.
Overall, it appears that GSS is as effective as EAP in classifying examinees in a grading
test, and that some reduction in average test length occurs for the GSS ability estimation
procedure.

Item selection procedures in a computerized adaptive test

In traditional test design, test developers carefully select items for a test form
based on content specifications and psychometric properties. Drafts of these test forms
are reviewed by test developers for quality control; once approved, the forms are ready
for distribution. In a computerized adaptive test (CAT), however, test assembly is
altogether different. Tests are dynamic, in that they are constructed during the
administration of the test itself. Because the goal of a CAT is to tailor the administered
test to examinee ability, tests cannot be assembled in advance. Rather, the test must be
assembled item-by-item in real time.

In the sections that follow, four aspects of item selection procedures in a
computerized adaptive test are explored: (1) an overview of computerized adaptive test
assembly; (2) some item selection procedures available for CAT; (3) operational
constraints imposed on CAT item selection, including content balancing, item exposure,
and locally-dependent items; and (4) an evaluation of item selection procedures.
Overview of CAT assembly

The goal of CAT is to administer items as closely matched to an examinee’s

ability as possible. That is, administered items should be neither too easy nor too
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difficult for any given examinee. One advantage of such an adaptive, or tailored, test is
that it can substantially reduce the number of items needed to achieve a desired level of
measurement precision; often a test may be shortened to one-half its original length
(Stocking, Smith & Swanson, 2000).

Clearly an adaptive test must utilize a mechanism for administering appropriate
items to examinees. In a CAT, all items are drawn from one source, commonly called the
item pool. This item pool contains all items which have been approved for
administration to examinees; however, any given examinee should be administered only a
subset of these items, and these items should be targeted as closely as possible to an
examinee’s ability. Within the item pool is information describing the item response
theory (IRT) parameters for each item, such as item difficulty, discrimination, and
pseudo-guessing parameters.

Item selection algorithms certainly take into account the psychometric properties
of items in order to determine which items are most appropriate for examinees.

However, there are a number of other constraints in item selection that must be
considered. First, like any conventional test which is modeled after a blueprint, content
specifications must be followed. Second, and what has become a challenging problem in
CAT, is item exposure. Because CATs are administered continuously as opposed to
periodically, security issues such as item exposure become a concern (Stocking &
Swanson, 1996). Thus, administering a CAT is not simply a matter of choosing the
optimal item based on psychometric criteria, blueprint specifications, or minimal item
exposure, but a combination of all three constraints. Further, maximizing one or more of

these constraints may come at the expense of minimizing any of the remaining
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constraints. These issues will be explored in greater depth in the third section,
operational constraints in item selection.

Any CAT involves an interaction between item selection and ability estimation.
Items are selected based on provisional ability estimates, and provisional ability estimates
are calculated based on examinee responses to selected items. Although items could be
selected based on the match between provisional ability estimates and item difficulty, it is
more common for items to be selected based on the match between provisional ability
estimates and item information content. These information selection procedures may
further be classified into two categories: those that employ local information, and those
that employ global information. These procedures are described in more detail in the
next section.

A special case of item selection occurs at the very start of the test, when a
provisional ability estimate is not available. Thus, at test commencement, the item
selection procedure must be modified. Thissen & Mislevy (1990) point out that although
no information may be available for a particular examinee at the start of a test, a great
deal of information may exist regarding the distribution of abilities of examinees who
have previously taken the test. In such a situation, then, the mean of this distribution may
be taken as the initial estimate of an examinee’s ability.

Item selection procedures

Citing Davey & Parshall (1995), Stocking & Lewis (1995) maintain that one of
the goals in CAT is “to maximize test efficiency by selecting the most appropriate items
for a test taker” (p. 4). From a psychometric perspective, it may not be immediately clear

what criteria constitute “most appropriate”. Thissen & Mislevy (1990) note that early in
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the development of computerized adaptive testing, it was suggested by Urry (1970) that
the optimal item for selection was the one whose difficulty parameter (i.e., b value) was
closest to an examinee’s provisional ability estimate. They further note that Lord (1977)
suggested a similar procedure.

Currently items are selected not based on their difficulty parameters, but on some
measure of their information. Item information in IRT describes the precision with which
an item can measure an examinee’s ability. Because item information varies as a
function of ability, any given item will be more informative at certain points along the
ability continuum than at others. For a dichotomous item i, this item information
function is given by

_ [pw=1p)
Ii(G)_P.( =1)fi-r(U, =10)| (Eq'”E

where /,(0) is the information provided by the item i at ability 0, P( ;= 1|9) is the

probability of a correct response on item i given ability 0, and P( = 1|9) is the first

derivative 2 (U, =1p0).

66
To describe the precision of an entire test, rather than a single item, the test
information function is used. Conveniently, the test information function is the sum of
the item information functions given in Equation 17; thus,

o[-
11,2,...N(6) ;PI( _1|9)[1 p( _1|e)] (Eq. ISE

where 1, (6) is the test information function for a test consisting of N items. As noted

by van der Linden & Pashley (2000), Birnbaum (1968) suggested that the test
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information function be used as the criterion for fixed-length linear test assembly. If
maximum likelihood (ML) estimation is used to estimate ability, then the asymptotic
variance of the ML estimator is the reciprocal of Equation 18.

van der Linden & Pashley (2000) note that while “no asymptotic motivation
existed” for using information as the item selection criterion (since the number of items
administered in a CAT would likely be well below the number required for asymptotic
results), “the maximum-information criterion was immediately adopted as a popular
choice” (p. 9). This method of maximum information item selection (or maximum Fisher

information item selection) is employed as follows: given a provisional ability estimate

6 for an examinee, select an item J for administration to that examinee where / (é) is

highest at that ) among all other available items in the pool.

This use of Fisher information for item selection is perhaps the most popular. It is
relatively straightforward to apply, and has the additional advantage that items may be
sorted beforehand in what is called an information table (Thissen & Mislevy, 1990). This
information table lists items in order based on information; these lists are further
subdivided according to ability quadrature points. Quadrature points are discrete points
along the ability scale that are used to approximate the ability continuum; they are also

used in EAP ability estimation and typically number between 20 and 30 for a scale
ranging from -4 to +4. Thus, once the CAT has obtained a provisional ability estimate )
for an examinee, the item selection algorithm searches the information table for the entry
whose quadrature point is closest to 0, and chooses the highest ranking item available for

that entry. Since items have been pre-sorted according to an earlier calculation of item

information (e.g., using Equation 17), no additional information calculations are
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necessary during the administration of the test. This method increases the computational
efficiency of a CAT.

Nevertheless, variations on Fisher information item selection (FI) have been
proposed. The argument for these methods is that FI does not take into account the error
associated with the provisional ability estimate 6, which may be important to consider
especially at the start of the CAT. Chen, Ankenmann, & Chang (2000) describe two
variations, Fisher interval information (FII) and Fisher information with a posterior
weight function (FIP), each based on a general weighted information criterion proposed
by Veerkamp & Berger (1997). This general weighted information criterion (GWIC) is

defined for an item j as
GWIC,(0)= [w(0)I,(0)d0 (Eq. 19E

where W(0) is a weight function and /;(0) is the information function for item ;. In FII, it

is proposed that the weight function be uniform over an interval defined in terms of the

expected error associated with the provisional ability estimate 0, such that

w(0)= {1’ Oe (éf ’éu) (Eq. 2OE

0, otherwise

with interval

0,0 )=|0-——— 0 z (E .215
R A e ’

where 7,, . (é) is the test information for the items 1, 2, ..., j-1 already administered,

0 is the provisional ability estimate after j-1 items, and z is a standard normal deviate

specified for a desired degree of confidence. In contrast to FI, where an item is selected
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based on maximum information 7/, (A) at a point 6, FII selects an item based on the

maximum area under the information function with bounds given by (é /> éu )
For Fisher information with a posterior weight function (FIP), the weight function

in Equation 19 is the posterior density of the provisional ability estimate 6, and the
integration is performed over the entire range of the ability continuum. Thus, for FIP,

this integration becomes
FIP©0)= [plOfu,.u...ou,, )1, (0)d0 (Eq. 225

where p(@‘ul,uz, U j_l) is the posterior density for the estimate 6 after administering
j—1 items.

Methods based on Fisher information at a point estimate 6 or an interval about
that estimate may be classified as local information methods. There is an implicit

assumption in these procedures that the provisional estimate 0 is in the neighborhood of

an examinees true ability 6p. Chang & Ying (1996) argue that early in a CAT
administration, when the number of items administered is small, “the estimator [é] may

not be close to 6y, in which case the information inside a small region around [é] would
not be useful.” It turns out that this argument is not new; Lord & Novick (1968, sect.
16.5) described it in terms of an “attenuation paradox”, as pointed out by van der Linden

& Pashley (2000). The problem is that item selection procedures that disregard the
possibility that 0 is not in the neighborhood of 6y will choose optimal items with respect

to the estimate 0 but not with respect to 0y, the quantity of most interest.
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Chang & Ying (1996) propose that a global information measure, rather than a
local one, be used for item selection, especially at the early stages of a CAT. This global
information measure, or Kullback-Leibler (KL) information, does not impose the
restriction that 0 be close to 0y, as in local information methods. Kullback-Leibler (KL)
information is obtained through the Neyman-Pearson likelihood ratio method. Chang &
Ying (1996) note that this method is optimal for testing 6 = 0, versus 6 = 0;, where 0,
and 0; are two points on the ability continuum. Thus, while local information methods
are concerned with the information content of an item at one ability point (and possibly
the error associated with that point, as in the case of FII and FIP), global information
methods are concerned with the information content of an item with respect to two ability
points. Chang & Ying (1996, p. 217) explain that KL information “is a function of two
levels, [0y and 0,]” and that it “represents the discrimination power of the item on the two
levels.” That is, KL information is a multivariate function, whereas local information
(i.e., Fisher information) is a univariate function.

If 0 1s an examinee’s true ability, and 0 is the provisional estimate, then the KL

item information for item j is

o)) =

(Eq. 23)

where the expectation is over the response variable U;. Since the likelihood for a

(dichotomous) item j is given by

Lu,[o)= P Oi- PO (Fq. 24 =]

the KL item information is then
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K, (é,60)= PJ.(E)O)log PJ(GO) + [1 - Pj(eo)]log Pj(eO) (Eq. 2SE|

7,6) 7,)
The properties of the KL information follow. First, it is not symmetric, so
K,(6.0,)= & ,(0,.6). Second, K ,(6,6,)>0. Third, if & =0y, then & (5,0, )=0. KL
information then describes the power of an item j to discriminate between two points on

the ability scale, 0 and 0,. Ifin fact these points are equal, as in the third property, the
item cannot discriminate between two points on the ability scale, since only one point is
represented.

The immediate problem with KL information in a practical testing situation is that
the true ability 0 is unknown. Chang & Ying (1996) propose to integrate this unknown
parameter out to calculate an index. Their procedure builds on the GWIC shown in

Equation 19. The resulting integral is
é+5,1
KLindex,j = J.KJ (Gaghe (Eq 26E|
0-5,

where 0 is the provisional ability estimate, K ; (é,e) is the KL information, and 6, = >

a decreasing function in n, the number of items administered, and z is a normal deviate
selected at the desired level of confidence. Chang & Ying (1996) also propose a
Bayesian information index, similar to the FIP in mathematical form (see Equation 22).
This KL information method with a posterior weight function (abbreviated KLP) is given

by

KLP,,, = ?p(@‘ul,uz,...,uj_l J (6.0} (Eq. 27E
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where p(@‘ul,uz, sl j_l) is the posterior density for the estimate 6 after administering

j—1 items.
Because an examinee’s true ability is likely not to be well estimated at the early
stages of a CAT (i.e., when the number of administered items is small), Chang & Ying

(1996) suggest that global information be used. However, once many items have been

administered and the estimated ability 0 converges to the true ability 0, they suggest
that local information be used. It should be noted that the global information item
selection procedures are the most computationally burdensome of the methods described
so far. Thus, these procedures may have limited applicability to practical testing
situations where items must be selected and administered to examinees in an expedient
manner. How well these methods perform as compared to the local information methods
will be explored in the fifth section, evaluating item selection procedures.
Operational constraints in item selection

An operational CAT places constraints on item selection beyond psychometric
criteria such as item information. Although a CAT should select items that are targeted at
an examinee’s ability, an operational test (adaptive or otherwise) must also conform to
test blueprint specifications. These constraints must then be handled by the item
selection procedure. Now the problem of item selection has become more complicated,
as the next “optimal” item to choose for examinees is not only a function of item
information, but also of blueprint specifications.

Adding further complexity to item selection in an operational CAT is exposure
control. Unlike tests which are administered periodically (e.g., once every four months),

a CAT may be administered on a continuous basis, weekly or even daily. Whereas item



48

pools used for periodic tests may be partially or completely refreshed in time for the next
administration, it is practically infeasible to refresh item pools for CATs in this manner.
Thus, the added convenience of continuous testing afforded by CATs is also its greatest
drawback, in that items may become compromised on time scales that are rather short.

The operational CAT item selection procedure is constrained by at least three
requirements: (1) select the item which is most appropriate for an examinee’s ability; (2)
insure that the entire set of items administered to an examinee is balanced according to
test specifications; and (3) insure that the items administered to an examinee have not
been exposed to other examinees too frequently. Popular techniques for satisfying these
three requirements typically divide the problem into two parts: satisfy (1) and (2)
together, then satisfy (3). Techniques for satisfying item information selection and test
specification balancing include Kingsbury & Zara’s (1991) constrained computerized
adaptive test (CCAT), and Stocking & Swanson’s (1993) and Swanson & Stocking’s
(1993) weighted deviations model (WDM). Techniques for controlling item exposure
include those of McBride & Martin (1983) and Sympson & Hetter (1985).

To insure that test specifications are met in a CAT, Kingsbury & Zara’s (1991)
CCAT employs a strategy of monitoring for each examinee the proportion of items
selected from various content areas. Content balancing is fixed before CAT
administration by assigning targeted content area proportions (e.g., a science test might
require 50% of items from the biological sciences, and 50% from the physical sciences).
Before the next item is selected for an examinee, an accounting of the items already
administered to that examinee is performed and the observed proportions with respect to

content area are calculated. If the proportion for a content area is below its targeted
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proportion, selection of the next item is restricted to the items within that content area.
Maximum item information is used to select the next item from the restricted set.
Stocking & Swanson (1993) and Swanson & Stocking (1993) developed the
weighted deviations model (WDM) to handle practical test assembly constraints
including but not limited to content balancing. As described by Eignor, Stocking, Way,
& Steffen (1993), the philosophy underlying their approach is different from approaches
such as Kingsbury & Zara’s. Regarding WDM, they note, “Thus constraints, including
statistical constraints, are thought of as more like ‘desired properties’ than as true
constraints. This approach recognizes the possibility of constructing a test that may lack
all of the desired properties at the expected levels, but emphasizes the minimization of
aggregate failures” (p. 5). Further, Stocking & Lewis (1998) comment that “in the
WDM, the item pool is ordered by employing a methodology from the decision sciences
that models the behavior of expert test specialists” (p. 59). Thus, the weights in the
WDM refer to the relative importance of test form (or for a CAT, tailored test
administration) attributes as determined by test specialists (Eignor et al., 1993). The goal
of the WDM is then to minimize the weighted deviations from the nominal levels.
Controlling item exposure is more a security concern than a psychometric one.
Nevertheless, it is important because, as Stocking & Lewis (2000) note, item exposure
increases the risk that examinees will obtain “preknowledge” about tests and their
constituent items through the sharing of information (p. 164). Though advantageous
from a security standpoint, controlling item exposure comes at the expense of efficiency,
as it overrides an item selection procedure’s best choice for the next item to administer to

an examinee (Thissen & Mislevy, 1990). As Eignor et al. (1993) note, item exposure
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control forces CAT administrations to be longer, but these “longer tests may be viewed as
a reasonable exchange for greater item and test security” (p. 8).

McBride & Martin (1983) proposed a randomization technique to control item
exposure. The logic behind their technique is that early in the CAT, examinees are not
well differentiated and are likely to receive nearly the same set of items as selected by
maximum information selection. Rather than administering the single best item at these
early stages, a group of appropriate items is created and an item from this group is
selected at random. For example, this group might include the best item, as measured by
maximum item information, as well as a few of the next-best items. The test begins with
an item selected at random from a group of items of size five; the next item is selected
from a group of size four, and the process continues until the fifth item, where the group
is of size one and hence the item with maximum information is selected. From the fifth
item onward, the randomization technique is no longer employed (Thissen & Mislevy,
1990). The primary advantage of McBride & Martin’s technique is that it is rather easy
to employ. The disadvantage, however, is that item exposure is controlled indirectly; that
is, the probability that any given item will be administered is not known in advance
(Stocking & Lewis, 1995).

To control for item exposure more directly, Sympson & Hetter’s (1985) technique
is grounded in a probabilistic framework. Attached to each item is the probability P(4,S),
where S is the event that the item is selected, and A4 is the event that the item is
administered. Thus, the probability P(4,S) that an item is selected and administered is

given by

P(4,5)= P(4S)P(S) (Eq. 28Z]
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where P(S) is the probability that an item is selected (e.g., by maximum information item
selection), and P(A|S) is the probability that an item is administered, given that it is
selected.

To utilize the Sympson & Hetter technique, a desired level of item exposure, say

r, where r € [0,1] is chosen for all items. Then for all items, it is desired that P(4,8)<r.

An item exposure control parameter k is chosen for each item such that k£ = P(A4|S).
Values for k are found through iterative simulations (Stocking & Lewis, 1995, p. 10).
Once the parameters £ have been identified, item exposure control proceeds as follows:
(1) select the next most appropriate item for administration and obtain its exposure
control parameter k; (2) generate a random deviate u from UNIF(0,1); 3)if u <k,
administer the item, otherwise, do not administer the item, remove it from the pool of
potential items for the examinee, and go back to step 1 (Eignor et al., 1993).

The advantage of the Sympson & Hetter technique is that the probabilities of item
exposure are controlled directly; however, it may not be possible to obtain stable
exposure control parameters k for each item through the iterative simulations (Stocking &
Lewis, 1995). Further, these parameters are dependent on the item pool and the manner
in which the test administration simulations are conducted, and hence new simulations
must be conducted when changes are made to the item pool or administration procedures
(Stocking & Lewis, 1998).

In addition to content balancing and item exposure control, operational item
selection procedures must also take into account the possibility that locally-dependent
items may need to be administered. Most commonly, these are items that are grouped

into contextually-related item sets; for example, a passage-based item followed by a
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number of items relating to that passage. One possible solution to overcoming the
dependency among these items is to group these items together into a single unit, then
model the responses to these items as multiple levels of a polytomous IRT model. These
units, sometimes called testlets, would then be administered to an examinee and scored
according to an appropriate polytomous IRT model (Wainer & Mislevy, 1990). For
example, responses to a testlet of four items could be collapsed into one of five score
categories, zero through four, according to the number correct score for all items within
the testlet. Then a polytomous IRT model, such as Samejima’s (1969) graded response
model or Master’s (1982) partial-credit model, may be used to model item responses.
CAT item selection procedures for these testlets would mirror those for dichotomous
items, since information functions may be computed for polytomous items as well as
dichotomous ones.
Evaluation of item selection procedures

Item selection in an operational CAT is a multifaceted process, whereby selection
must take into account statistical criteria (such as item information), test specifications,
and exposure control. Most studies on item selection procedures have focused on one
aspect of this process, holding the others constant or disregarding them altogether.
Studies by Chang & Ying (1996), Chen, Ankenmann, & Chang (2000), and Cheng &
Liou (2000) explore the issue of global versus local information through simulation
studies, but do not include content balancing or exposure control as variables in their
study. Kingsbury & Zara (1991) investigate a procedure for content balancing under
maximum information item selection, but also do not employ exposure control in their

simulations. Operational concerns are the focus of Eignor, Stocking, Way, & Steffen’s
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(1993) study, where content balancing and exposure controls are investigated, but the
maximum information criterion is used for all conditions of the study.

Chang & Ying (1996) proposed a method of global information item selection
using the Kullback-Leibler (KL) information, and compared it with local information, or
Fisher information (FI), item selection procedures. They conducted two simulation
studies, each with different item pools and different test lengths. In the first of their
studies, item parameters a, b, and ¢ for a 3P model were generated from uniform
distributions, such that a ~ UNIF(0.5, 2.5), b ~ UNIF(-3.6, 3.6), and ¢ ~ UNIF(0.0, 0.25).
The size of the pool was 800 items, and a fixed-length CAT of 14 items was
administered. In their second study, the item parameters were obtained from a 1992
NAEP Reading Assessment, with a pool of 254 items. Of these items, 122 were modeled
with a 2P model, and the remainder with a 3P model. Again, a fixed-length CAT was
administered, but with a length of 40 items. Each study simulated responses for 1000
examinees. Both bias and mean-squared-errors (MSE) were examined for the two
studies.

For their first simulation study, Chang & Ying (1996) found that the KL
information method resulted in less bias and smaller MSE than the FI method for
examinees at the lower extremes of ability, 0 = {— 3,-2,—1 .5}. Both KL and FI performed
similarly at ability levels 6 > —1.5. For their second simulation study, they again found

less bias at the lower extremes of ability, 0 = {— 2,—1}, but smaller MSE only for 6 =-2.

When the number of items administered was small, however, KL resulted in smaller

MSE than FI.
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Fan & Hsu (1996) also explored global information item selection procedures, but
their item pool was significantly smaller than that used by Chang & Ying (1996).
Whereas Chang & Ying (1996) used an item pool of size 800 for their first study, and 254
for their second study, Fan & Hsu (1996) limited their item pool size to 100 items. The
results of Fan & Hsu’s (1996) study were not consistent with those observed by Chang &
Ying (1996); that is, there was no difference between KL and FI item selection in terms
of bias and MSE of ability estimates.

Chen, Ankenmann, & Chang (2000) extended Chang & Ying’s (1996) study to
investigate additional local and global information-based item selection procedures.
Whereas Chang & Ying (1996) limited the local information selection method to
maximum Fisher information, and the global information selection method to the
maximum KL information index (as calculated by Equation 26), Chen et al. (2000)
examined Fisher interval information (FIL, see Equation 19), Fisher information with a
posterior weight function (FIP, see Equation 22), and Kullback-Leibler information with
a posterior weight function (KLP, see Equation 27). Reflecting on the findings of Fan &
Hsu’s (1996) study, Chen et al. (2000) posit that the benefits of KL information may be
reduced in cases of smaller item pools; further, they suggest that the item characteristics
themselves may play a role in the utility of KL over FL.

Chen et al. (2000) conducted two simulation studies to investigate the FI, FII, FIP,
KL, and KLP item selection procedures. In their first study, item parameters a, b, and ¢
for a 3P model were generated as a ~ N(1, 0.25), b ~ U(-3.6, 3.6), and ¢ ~ U(0.0, 0.3); the
size of this item pool was 400. The item pool for their second study was identical to the

item pool used for Chang & Ying’s (1996) second study (i.e., the 1992 NAEP Reading
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Assessment items). Both studies simulated responses for 1000 examinees administered a
20-item CAT. Their study examined bias, standard errors, and root-mean-squared errors
(RMSE).

Chen et al. (2000) found that of three research hypotheses, only two were
supported by their study. These two hypotheses were: (1) that early in a CAT
administration, FI would perform best at ability values near 6 = 0; and (2) that as the
number of items administered in the CAT increased, all item selection procedures would
perform similarly. Their hypothesis that FII, FIP, KL, and KLP would perform better
than FI at the early stages of testing for ability values far from 6 = 0, was supported only

at the lower extremes of ability, where 0 = {— 3,—2}. They write, “Differences among

[these methods] with respect to bias, RMSE, and SE...were negligible for tests of more
than 10 items....For tests longer than 10 items, there appeared to be no precision
advantage of one [method] over another” (p. 253).

Cheng & Liou (2000) also investigated KL and FI item selection procedures, and
like Chang & Ying (1996) and Chen et al. (2000), their simulation study used items from
a 1992 NAEP Reading Assessment. However, rather than using all 254 items, they
limited the size of their item pool to 204. Their study simulated responses for 1000
examinees administered a 30-item CAT. Dependent variables in their study included bias
and MSE. Their findings paralleled those of Chang & Ying (1996) and Chen et al.
(2000), in that the KL and FI item selection procedures performed similarly for more than
10 items. Cheng & Liou (2000) also include some measures of processing time; they
note that the more computationally-intensive KL procedure was on average 60 times

slower than the FI procedure.
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Content balancing in the absence of exposure control was investigated by
Kingsbury & Zara (1991), in order to examine their constrained CAT (CCAT) item
selection procedure. Their simulation study included: (a) two examinee groups of size
10,000, where one group was distributed as NV(0, 1) and the other as N(1.5, 1); (b) three
item pools of sizes 100, 300, and 500; and (c) two CAT administrations, unconstrained
(i.e., not content-balanced) and constrained (CCAT). Each CAT administration was
fixed to a length of 48 items, and items were assigned to four content areas as follows:
one-third from content area A, one-third from content area B, one-sixth from content area
C, and one-sixth from content area D. For a desired precision of measurement, they
found that the CCAT required between 5% and 11% more items than an unconstrained
CAT. They note that the cost of content balancing comes at the expense of test length;
i.e., a longer content-balanced CAT is required to achieve the same level of precision as
the corresponding unconstrained CAT.

Satisfying operational constraints was the primary focus of the study by Eignor,
Stocking, Way, & Steffen (1993). They examined CAT versions of five different tests:
the SAT Verbal, SAT Mathematics, GRE Verbal, GRE Quantitative, and GRE
Analytical. Although they utilized simulation techniques to conduct their study, all work
was performed in an operational context; that is, the study was part of Educational
Testing Service’s effort to make available CAT versions of their paper-and-pencil tests.
Their results included not only an evaluation of psychometric, content balancing, and
item exposure criteria, but also a review by test specialists.

Eignor et al. (1993) utilize the weighted deviations model (WDM) for content

balancing in conjunction with FI item selection. For exposure control, they employ a
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count-down randomization technique starting with eight items for the SAT simulations,
and the extended Sympson & Hetter technique for the GRE simulations. (Note that
Stocking (1993) developed the extended Sympson & Hetter technique to work with item
stimulus material, such as passages, as well as the items that follow.) Responses for
between 100 and 200 examinees were generated per ability scale point, which varied
between 9 for the GRE Analytical and 19 for the SAT Verbal.

All of their simulated CATs used a fixed-length stopping rule, though the length
of the CAT depended upon the particular test. Further, Eignor et al. (1993) found that
operational constraints could be satisfied when item pools were approximately 12 times
larger than the length of the CAT. For example, the SAT Verbal simulations were fixed
at 27 items and the SAT Mathematics at 20 items; item pools of size 303 and 235,
respectively, satisfied the constraints. For a 30-item GRE Verbal, a 28-item GRE
Quantitative, and a 35-item GRE Analytical, item pools of size 350, 330, and 449,
respectively, satisfied the constraints.

Eignor et al. (1993) found that all five of the CATs met or exceeded targeted
values for test form reliability. Further, they found that content balancing was for the
most part satisfied, with some violations for those aspects receiving smaller weights in
the WDM. With respect to item selection, it is worth noting that none of the CATs used
all items in the pool. On average, 84% of the items in the pool were administered. Item
exposure rates varied depending on the control methodology. For the SAT simulations,
where the count-down randomization technique was used, the highest exposure rates
were between 0.5 and 0.6. The average exposure rate was approximately 0.11. For the

GRE simulations, where the extended Sympson & Hetter technique was used, the highest
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exposure rates were between 0.2 and 0.3. The average exposure rate was approximately
10%.

Ultimately, CATs should conform to what expert test specialists would require
were they to assemble the tests themselves. Eignor et al. (1993) generated paper-and-
pencil copies of CAT administrations generated by their simulations and submitted them
to test specialists for review. These specialists were not made aware of the constraints
utilized in the simulations, nor were they told the ability levels for which the individual
tests were targeted. After review, they did identify some problems with the CATs, but
these problems arose not from the item selection procedures, but rather from
characteristics of the item pools. For example, they identified problems with those forms
designed for examinees at the extremes of ability. Eignor et al. (1993) attribute this

problem to a lack of items in the pool tailored to such examinees.



CHAPTER 3

Methodology

The following discussion of the methodology employed in this study is organized
into four major sections: (1) the efficiency of item selection in the context of
computerized adaptive testing (CAT); (2) an alternative ability estimation procedure
based on hypothesis-testing; (3) an overview of the experimental design; and (4) the CAT
simulation methods used to carry out the study. Within the second section, a brief review
of related methods, particularly hypothesis-tests based on person-fit statistics, is included

in addition to the mathematical development of the alternative item selection procedure.

Defining the efficiency of item selection in the context of CAT

The evaluation criterion upon which this study relies is a precisely-defined
measure of efficiency. An argument for this definition was provided in the introductory
chapter; the same argument is presented here along with additional points related to the
methodology of the study. The precise definition of efficiency in this context begins with
the statistical concept of relative efficiency, which is then used to define an efficiency
measure for the items selected by a CAT.

To begin, consider two tests, A and B, administered to an examinee possessing a

true ability 6. The precision with which this examinee may be measured by test A is

59
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given by the accumulated test information, as defined in Equation 12 and shown to be

equivalent to the sum of the information provided by each item administered, as given by
Equation 18. The expression /(" (6) may then indicate the accumulated test information
for test A at the examinee’s true ability 0, and similarly 7{" (6) for test B. The relative

efficiency of test A over test B is then

RE(4,B])= 10) (Eq. 29E
1°(6)

If test A is more efficient than test B at true ability 0 (i.e., test A yields more precise

measurements), then RE (A,B|6) >1. Conversely, if test B is more efficient at 6,

RE (A, B|9) <1. Inthe case where both tests are equally efficient at 0, RE (A, B|9) 1S

exactly equal to one.

This definition of relative efficiency may be extended to the CAT context at hand,
yielding an operational definition for the efficiency of a CAT. Suppose now that a CAT
of j items is administered to an examinee possessing true ability 0, and that these items
are drawn from an item bank of finite size. Then the quantity 7). (6) characterizes the
accumulated test information from these j items at the examinee’s ability level. Now for
any given 0, there exists an optimal set of items, also of size j, such that no other
combination of j items yields a greater measure of accumulated test information. Thus, if
1" (8) represents the accumulated test information for this optimal set of items, the

relative efficiency of the set of items selected by the CAT administration over the optimal

set is
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(7))
RE(CAT , optimal|)= 15 (6) (Eq. 3OE|
1" (6)

Noting, however, that /" (9) places an upper bound on the precision with which an
examinee with true ability © may be measured by a set of j items drawn from the item
bank, it must be the case that 7(7,.(0)/7{"(6)<1. It is this ratio that operationally
defines the efficiency of a CAT in the present context.

Spanos (1999, p. 609) maintains that since relative efficiency alone is not
necessarily useful (e.g., a poor estimator is relatively more efficient than an even poorer
estimator), some fixed point of reference, namely the Cramer-Rao lower bound for the

variance of an estimator, is required. In IRT applications where ability estimates are

obtained by maximum likelihood (ML), the asymptotic variance of the ML estimator is in
fact equal to the Cramer-Rao lower bound, or 1/ (9), where 7" (6) is the
accumulated test information at the true ability 6. However, the specific items
contributing to 1" (6) for an individual examinee being administered a CAT are not
fixed, and hence an additional lower bound—this one resulting from the choice of
items—is needed to define efficiency. It is the quantity 7"’ (8) described above that sets
the lower bound on the variance for an estimator of 0 (or, an upper bound on the
precision of such an estimator) in the CAT environment with an item pool of finite size.
Thus, the ratio 72, (8)/ 1" (8) is not simply a measure of relative efficiency, but of

efficiency itself, and may be used to define the efficiency of a CAT. The primary
advantage of this definition is that item selection procedures may all be compared to a

fixed point of reference, one that characterizes the most efficient estimator possible.
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Using the present definition of 7" (6) in an evaluation of item selection
procedures may be somewhat unrealistic, for the simple reason that a CAT must select an
arbitrary starting point for the first item draw. Quite often, the mean of an ability
distribution, either assumed a priori or in fact observed from previous test
administrations, is taken as the initial ability estimate for examinees. If such a method is
utilized, then any subset of items administered to an examinee must necessarily contain
an item drawn based on this starting estimate. Such arbitrariness could conceivably
penalize the efficiency measure, as calculated by Equation 30, for an item selection
procedure.

In order to produce a more appropriate measure, the definition of 7" (9) may be
modified such that this first item is always included in the “optimal” subset, recognizing

that it may or may not be among the most informative items in the pool for an examinee

with true ability 6. For this study, the following (modified) definition of 7{" (9) is used.

Suppose that J items are administered to an examinee, wherej =1, 2, ..., J, and

1,(0) is the item information for item j at ability ©. Then /(" (0) is defined as

10©)-1,0)+31,0) (5. 311

Jj=2

J
where 1,(0) is the information at 6 provided by the first item, and Z[ ; (6), which is the

j=2
sum of the information from the remaining J —1 items, is not exceeded by any other
combination of J —1 items drawn from the item pool. That is, with /, (6) fixed at the
start of the test, no other subset of J —1 items yields a greater measure of accumulated

test information at 6. This modification recognizes that one degree of freedom is lost in
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the item selection process because the first item is arbitrarily drawn. Hence, efficiency in

this study is defined as in Equation 30, but with a modified upper bound on the precision

of measurement 7\ given by Equation 31, such that

. Igh I¢h
Efficiency(CAT|p)= ~T = (Eq. 32

J
L7 1,0)+>.1,(6)
Jj=2

An alternative ability estimation procedure based on hypothesis-testing

Item selection in CAT is influenced by two procedures: item selection and ability
estimation. With respect to item selection, maximum Fisher information (FI) item
selection is the most common; for ability estimation, ML, MAP, and EAP are most
common. The majority of research on improving the efficiency of item selection has
concentrated on item selection procedures, and a number of alternative item selection
procedures have been proposed. Four of these procedures—Fisher interval information
(FI), Fisher information with a posterior weight function (FIP), Kullback-Leibler (KL)
information, and KL information weighted by a posterior density (KLP)—have been
proposed as reviewed in Chapter 2. However, the efficiency of item selection might also
be improved by considering alternative ability estimation procedures. The golden section
search (GSS) strategy, also reviewed in Chapter 2, is one example of an alternative ability
estimation procedure.

Proposed here is a new alternative ability estimation procedure, fundamentally
different from those previously reviewed. The procedure utilizes a hypothesis-testing
approach in conjunction with a conventional ability estimation procedure such as ML or

MAP, whereby a hypothesis test is constructed and a decision rule is followed in order to


Alexander Weissman
Eq_efficiency


64

select the next item for administration. The procedure is developed according to the
following, which are then discussed in turn: (1) statement and interpretation of the null
and alternative hypotheses; (2) derivation of the test statistic; (3) decision rule and
subsequent item selection. In addition, because some aspects of this procedure are
similar to those used in person-fit statistics, a comparison of this procedure with these
methods is provided.

Statement and interpretation of the null and alternative hypotheses

The null hypothesis in this procedure is similar to those used for tests of model fit.
In these tests, a model is proposed and the observed data is compared to what is expected
under the model. If the observed data differ significantly from the model expectations,
then the null hypothesis is rejected. In such a case, the conclusion is typically that the
model does not fit the data. On the other hand, if sufficient evidence does not exist for
rejecting the null hypothesis, the model is said to fit the data”.

Here, the null hypothesis is constructed under strict model assumptions. These
assumptions follow from the IRT model in the case where all items administered to an
examinee are maximally discriminating (i.e., possess maximum information) at that
examinee’s true ability. Such a scenario characterizes ideal item selection in a CAT;
namely, that items administered to an examinee should possess maximum measurement
precision at that examinee’s true ability. Thus, the hypothesis-testing procedure used
here is essentially a test of whether the CAT is operating as intended. In brief, if this null
hypothesis is not rejected, then the decision is to use the most recent provisional ability

estimate obtained by a conventional ability estimation procedure (e.g., ML or MAP) to

’It may be argued that when the null hypothesis is not rejected, this interpretation is improper.
Nevertheless, it is often the only type of evidence available for making decisions about model-data fit.
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select the next item. If evidence warrants its rejection, however, an alternative selection
method is suggested. Thus, the alternative procedure functions concurrently with a
conventional ability estimation procedure such as ML or MAP, and in this sense acts as
an adjustment to the conventional ability estimate when model assumptions do not
conform to the observed data.

The overall rationale for this hypothesis-testing procedure is that when a CAT is
targeting items exactly at an examinee’s true ability, the expected proportion of items
correctly answered is approximately equal to 0.5 in the case of items modeled under the
3P IRT model, and is exactly equal to 0.5 in the case of 1P and 2P items. The presence
of a pseudo-guessing parameter ¢ in the 3P IRT model increases the expected proportion
correct from 0.5 to a higher number, with larger values of ¢ corresponding to higher
expected proportions correct. After an examinee has responded to an administered item,
the hypothesis-testing procedure compares the observed proportion of correct responses
with what would be expected if the CAT was selecting items perfectly targeted to an
examinee’s ability. If the observed proportions correct are less than expected, the
interpretation is that the current ability estimate is too high. Alternatively, if the observed
proportions correct are greater than expected, the interpretation is that the current ability
estimate is too low. Thus, a new adjusted ability estimate may be introduced in order to
compensate for the discrepancy. It should be noted that the expected proportion correct
under this ideal situation may be calculated without knowledge of examinee ability, as
will be discussed shortly.

The assumptions underlying the null hypothesis for this procedure are rooted in

how IRT characterizes item information. Under the 1, 2, and 3-parameter models, the
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probability of correct response P(U ;= 1|6) for a dichotomously-scored item i is modeled

as a monotonically increasing function of 6. However, for each curve suggested by this
function, there exists exactly one point where its first derivative is at a maximum. It is
also at this point where the item possesses maximum information, where information is

given by Equation 17. Thus, if 0 represents the value on the ability scale

max,i
corresponding to this point, then the item possess maximum measurement precision for

an examinee whose own true ability 0 is equal to 0

Now suppose that a set of N items are administered to an examinee with true

ability 0, and impose the restriction that for each item i, 0 = 0. That is, all N items

possess maximum information at the examinee’s true ability 6. (Note, however, that
there is no restriction that all items be equally informative, so it is permissible that

I, (6) #1, (9) for i # j.) Thus, in this situation where all items are ideally suited for this

examinee in terms of measurement precision,

0..,=9

max,1 max,2 == emax,N = e (Eq 33E|
The next relationship links Equation 33 with the statement of the null hypothesis
employed by this procedure. Since there is a probability P(U .= 1|6maxi) associated with

each item 7, an expected proportion correct may be constructed, under the constraints

imposed by Equation 33. This expected proportion correct, or p, is then defined as

ﬁ:P(Ui ~10,..,) =]
— i=1

(Eq. 34)

p
N
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The observed proportion correct, or p, is defined as

S, E]

p="1—, X, ={01} (Eq. 35)

where X; = 0 indicates an incorrect response and X; = 1 indicates a correct response.

The null hypothesis is then that p is sampled from a distribution with mean p.

Thus, a decision not to reject the null hypothesis implies that the observed proportion
correct does not differ from the expected proportion correct p. Because an examinee’s
ability is assumed to be fixed at some true value 0, this decision further suggests that the
relationship in Equation 33 be retained®. In this case, the model would fit the data.
However, if the null hypothesis is rejected, then an alternative hypothesis is
required. Rejection of the null implies that the observed proportion correct is inconsistent
with what would be expected under Equation 33; that is, a discrepancy must therefore

exist between the 0 for the i ={1, 2, ..., N} items administered and that examinee’s

true ability 6. Thus, the model does not fit the data.
Derivation of the test statistic

In order to conduct the necessary hypothesis tests, a test statistic and its
distribution is required. To begin, consider an examinee’s dichotomous response .X; to

item i. Then according to the IRT model, X; ~ BIN(1, p;), such that X; is a Bernoulli

random variable with parameter p;, and the parameter p; = P(X ;= 1|9) for constant 0.

Now assume that a sample of size # is taken, where the X; are independent but not

% If items are perfectly targeted at examinee ability, then Equation 34 follows by deduction. However, the
inductive step is somewhat more involved. Satisfying Equation 34 is a necessary but not sufficient
condition for concluding Equation 33. Caution must be exercised in interpreting model-data fit under
retention of the null hypothesis. Nevertheless, if Equation 34 is not satisfied (i.e., when the null is
rejected), it cannot be the case that Equation 33 is true.
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identically distributed. (Thus, the assumption of local independence is assumed here.)

The proportion correct for X; (or, the mean of the X;) may then be defined as

p=" (Eq. 36)

Now the expectation E[p], denoted by p, is

>, e | >, =
p=E[p]=E = — =—E[ZXZ1=—;E[XI.]=L (Eq. 37)

n n L= n' n
since for X; ~ BIN(1, p)), E[X,]= p,. The variance of p, denoted by Var|p], is

Zn:Xz‘ 1 " | < Zn:PiQ; E
Var|p)=Var| =— :—Var[ZXi}z—ZVar[Xi]:"ﬂ— (Eq. 38)

2 P 2 =
n n =l n- =l n

since the variance of the sum of independent random variables is equal to the sum of their
variances, and Var|[X,|= p,q,, where ¢, =1- p,.

The test statistic is constructed as

7" = ﬂ (Eq 39E|
Var[f)]

where, under the null hypothesis, z" is asymptotically normally distributed with mean 0
and variance 1, thatis, z' —%> N (0,1).

For utilizing this hypothesis-testing procedure in the CAT environment, the
quantities p and Var[ﬁ] from Equations 37 and 38 are calculated based on the items

administered to the examinee, with the assumption under the null hypothesis that all
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items possess maximum information at the examinee’s true ability, as given by

Equation 33. Thus, under the 3P model, the p, for an item i used in these equations are

given by

emax,i )= ci + (l — Ci ) (Eq 4OE|

p; = P(X‘ =1
[1-+ exp(- Da,6,,,, -5,

1

where 0, ; is directly attainable from the item parameters for item i, and is given by

(Hambleton and Swaminathan, 1985)

0 = b; +Lln(%+%1/1+8c[) (Eq4IE|

Da.

and the a;, b;, and ¢; are the discrimination, difficulty, and pseudo-guessing parameters,

respectively, for item 7; D is a scaling constant. Substituting the expression for 6

max,i

from Equation 41 into Equation 40 results in the following simplification for p,

-1

0, )=c, +(1—c, 1y (Eq 42)

l l 1+4/1+8¢;

Using this expression for p,, the necessary quantities E [f)] and Var[f)] may be

D; =P(X.

1

=1

calculated by means of Equations 37 and 38.

Note that under 1P and 2P IRT models, if ¢; = 0, then p; = 0.5. Under the 3P
model, when ¢; > 0, p; > 0.5. As discussed earlier, this is the expected proportion when a
CAT is targeting items at an examinee’s true ability level.

Distribution of the test statistic under the null hypothesis
Under the null hypothesis, it is assumed that all items administered to an

examinee possess maximum information at that examinee’s true ability 6, as given in
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Equation 33. The hypothesis-testing procedure assumes that the distribution of the test
statistic z under the null hypothesis follows a N(0,1) distribution. However, the
assumption that z ~N(0,1) is an asymptotic result, and may not hold for relatively short
tests (i.e., tests less than 30 items in length).

In order to determine to what extent z* follows a N(0,1) distribution under the null
hypothesis, a simulation was conducted. Three levels of ability were chosen such that
0 = {2, 0, +2}, with 1000 replications for each ability. For all items i administered to

examinees, 0 =0, as in Equation 33. The empirical sampling distribution for z was

examined for tests of length 5, 10, 15 and 25. For each combination of examinee true
ability 0 with test length, the mean and standard deviation of the distribution is reported
in Table 1. In addition, the type I error rates corresponding to the nominal a-levels 0.05,
0.10, and 0.20 for a two-tailed test under the N(0,1) distribution are reported in Tables 2
through 4. In the case of the NV(0,1) distribution, the critical z-value for o = 0.05 is
z.=1.960; for o = 0.10, z. = 1.645; and for oo = 0.20, z. = 1.282. Type I error rates were

then computed as the frequency with which |z'| > z. for each condition.



Table 1. Mean and standard deviation of z* under the null hypothesis.
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Mean Standard deviation
True ability 6 Sitems | 10items | 15items | 25items | 5items | 10items | 15 items | 25 items
-2 0.020 0.010 0.020 0.013 0.99 1.01 0.98 1.00
0 0.01 0.0045 | 0.0015 -0.029 1.02 1.03 1.02 0.99
+2 -0.0083 | 0.0045 | 0.0015 0.029 1.00 1.00 1.01 1.02
Table 2. Type I error rates for z', with nominal o = 0.05 (z. = 1.960).
Test length
True ability 6 5 items 10 items 15 items 25 items
-2 0.006 0.049 0.055 0.027
0 0.009 0.059 0.066 0.034
+2 0.009 0.042 0.057 0.041
Table 3. Type I error rates for z', with nominal o = 0.10 (z. = 1.645).
Test length
True ability 0 5 items 10 items 15 items 25 items
-2 0.158 0.101 0.103 0.095
0 0.176 0.115 0.121 0.098
+2 0.162 0.093 0.103 0.108
Table 4. Type I error rates for z', with nominal o = 0.20 (z. = 1.282).
Test length
True ability © 5 items 10 items 15 items 25 items
-2 0.158 0.181 0.179 0.231
0 0.176 0.206 0.207 0.214
+2 0.162 0.197 0.199 0.213
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From Table 1, the means and standard deviations of the empirical sampling
distributions for z* are consistent with a distribution with a mean of 0 and a standard
deviation of 1. The type I error rates shown in Tables 2 through 4 are for the most part
consistent with the nominal type I error rates for a N(0,1) distribution, with the only
major departures occurring for tests of 5 items in length. In the case of the nominal o =
0.05 and a test length of 5 items, the observed type I error rates are substantially less than
expected, whereas for the nominal a = 0.10, the type I error rates are substantially greater
than expected. Note that the observed type I error rates for the nominal o = 0.20 are
identical to those observed for o = 0.10. This equality of type I error rates for different
values of z, is due to the discreteness of the distribution of z" for very short test lengths.
(For a test of 5 items in length, only 6 values of z are possible.) Although the
convergence of z' to N(0,1) is an asymptotic result, it appears that this normal
approximation for z' is accurate for tests of 10 items in length or greater.

Decision rule and subsequent item selection

Equation 39 is used to test the null hypothesis that all items administered to an
examinee are maximally informative at that examinee’s true ability 0. If the absolute
value of the test statistic z_ exceeds a critical value z., then the null hypothesis is rejected.
Otherwise, the null hypothesis is retained. The provisional ability estimate used for
selecting the next item depends on this decision rule.

Null hypothesis not rejected. In instances where the null hypothesis is not

rejected (i.e., z*‘ < z,), there is not sufficient evidence to suggest that items are not

maximally informative at an examinee’s ability 0. The recommendation therefore is that
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the most recently-obtained provisional ability estimate (from ML or MAP, for example)
be used to select the next item.

Null hypothesis rejected. Sufficient evidence warrants the rejection of the null

hypothesis in this case (i.e.,

z*‘ > z,). Selection of the next item based on the most

recently-obtained provisional ability estimate is not recommended, and so an alternative

ability estimate is suggested. A new provisional ability estimate 6", different from that
estimated either by ML or MAP, is thus identified. This estimate is found using the
expected proportion correct p, its confidence limits under the null hypothesis, and the

average item characteristic curve for the administered items. Item selection then

proceeds based on this new provisional estimate 0.
In this case where the null hypothesis is rejected, it is concluded that the sample

proportion correct p is not from a distribution with mean p. Since the hypothesis test is
constructed under the null hypothesis, inference does not extend to the distribution from

which p is sampled. That is, the hypothesis test alone cannot characterize the alternative
mean of £ [ﬁ] However, a conservative estimate of the location of this alternative

distribution is possible. At the very least, the alternative distribution becomes
distinguishable from the null distribution at the decision threshold; that is, at either one of

the confidence limits set for £ [p] Thus, a decision to reject the null hypothesis when

pP<E [p] is equivalent to stating that p lies outside the confidence interval for £ [p],

and specifically, beyond its lower confidence limit of E[p]|-z +/Var[p]. Likewise,

rejection of the null when p > E [p] demands that p must lie beyond the upper

confidence limit E[p]+ z, \/Var[p] .
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It is then reasonable to suppose in this situation that, for p < F [p], the location of
the alternative distribution E[p] is less than or equal to E[p]|- z,+/Var|p], and for
p>E [p] , the location of the distribution of £ [ﬁ] is greater than or equal to

E[p]+ z_Var[p]. Then an approximation to E[p] may be denoted by p°, such that

E[pl+ z.varlp]. 5> E[p]
E[p]-z.\Var[p], b <E[p] (Eq. 43E

where each of the quantities E[p], Var[p], and z. are as defined under the hypothesis-

ﬁ*
ﬁ*

testing procedure.
By itself, the estimate p" is not particularly useful for identifying a new

provisional ability estimate, since it is a proportion, not a value on the ability scale.

However, the average item characteristic curve (ICC) provides a means for relating

proportions to ability values. Through the average ICC, the p~ obtained from the

hypothesis-testing procedure may be converted to a new provisional ability estimate 6"
The use of the average ICC in such a manner is justified under the IRT model, since the
probabilities associated with a correct response for a given item are dependent only on
examinee ability 0.

The average ICC for a group of items is a monotonically increasing function of 6.

Thus, any proportion P(X = 1|9) corresponds to one and only one 6. However, to insure

an inverse transformation of proportions to ability values, it is also necessary to insure
that every element in the range of the proportions can be mapped to elements in the

domain of the ability values. For the 3P IRT model, it is not true in general that for any

pPE [0,1], there exists a 0 (— oo,oo) such that p = P(X = 1|9). For example, if a
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guessing parameter ¢ > 0 is present, then any p < ¢ will not be mapped into the domain of
0. Thus, a uniquely specified inverse transformation of proportions p to ability values 0
does not exist under all circumstances. However, in those cases where the inverse
transformation fails, remedial measures may be taken. The specific procedures for
transforming p" to 0" are considered next.

The average of the ICCs from all administered items, or the average ICC, is
equivalent to the test characteristic curve (TCC) divided by the number of items
administered, since the TCC is the sum of the ICCs for each administered item. Because
an analytical solution is not available to transform p~ to 6 through the average ICC, a
numerical search procedure is required. The procedure uses the method of halving,

where a discrete interval [a,b] is halved at each iteration, producing a midpoint

c=(a+b)/2. The average ICC function P (X = 1|6), defined as

ﬁ:P(XI. =1lo) E]
P(x =1p)==——— (Eq. 44)
N

for items 1, 2, ..., N is then evaluated at 0 = {a,c,b}. If ﬁ 1s within the interval [a,c] ,

that is, when p" < P (X = 1|6 = c), then the interval boundary points are updated to be

[a,c] for the next iteration. Otherwise, p~ is within the interval [c,b] and the interval
boundary points are updated as [c, b]. This method of halving continues until the

maximum number of iterations has been met. For this study, the lower bound on ability
was set at 0 = —4, the upper bound at 6 = +4, and the maximum number of iterations for

the method of halving was set to 15.
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One advantage of this method of halving is that a solution is always guaranteed,

even under anomalous circumstances. For example, if the obtained p is less than the
average ICC function for the lower bound, thatis p* < P (X = 1|9 = —4), the procedure

will return a limiting solution of 6 = —4. These limiting solutions are sufficient for the

CAT algorithms, since finite bounds are placed on the ability continuum in any event.

Once the new provisional ability estimate 6" is obtained, an item selection procedure
uses this new provisional ability estimate to select the next item for administration.
Identifying optimal z. values

In order to use the decision rule discussed in the previous section, the alternative
ability estimation procedure must employ a critical z-value for hypothesis-testing. In
many applications, the critical z-value is set beforehand to correspond to a nominal o-
level, such as z. = 1.96 for o = 0.05, in order to control the Type I error rate. However, in
the context of the alternative ability estimation procedure, a decision to set a to a small
value (such as 5%) translates into infrequent invocation of the procedure, and hence the
hypothesis test may be too conservative. What is required is a method for determining an
optimal value of z. that will allow the alternative procedure to function more frequently
while maximizing correct decisions and minimizing incorrect decisions. That is, when
the procedure is invoked, it should meet or exceed the outcomes (e.g., test efficiency)
obtained by using the conventional ability estimation procedure, and should not perform
less successfully than the conventional procedure.

This value z. was determined empirically as described in Appendix B, with a
summary of the empirical procedure discussed here. Two optimal z. values were

identified; one for ML estimation concurrent with the alternative ability estimation
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procedure (hereunto denoted as ML/Alt), and the other for MAP estimation concurrent
with the alternative ability estimation procedure (hereunto denoted as MAP/ALl).

Optimal z, values were found by conducting simulations under the Alt/ML and

Alt/MAP procedures and examining two measures: (1) the accuracy of the 6" alternative
ability estimates with respect to examinee true ability; and (2) the relative efficiency of
tests administered using the alternative procedures (i.e., Alt/ML or Alt/MAP) as
compared to tests administered using the corresponding conventional procedures (i.e.,
ML or MAP). A range of possible z. values was considered; this range extended from
z.=0.6 to z. = 1.4 in increments of 0.1. Thus, a total of nine possible z. values were
tested. Maximum FI item selection was used for all simulations. The item pool used for
these simulations was the same as that used for the full study.

For a given test value of z. and ability estimation procedure, a simulation was
conducted with 500 replications per true ability level 0 = {-2, -1, 0, 1, 2}, such that the
total number of replications per simulation was 2500. Each simulation used the item

parameters listed in Appendix A, and the maximum test length for each simulation was

25 items. The first set of simulations examined the accuracy of the 0" alternative ability

estimates with respect to examinee true ability. Accuracy in this sense refers to whether

the absolute difference from true ability for the alternative procedure, or ‘é* -0

, 18 less

than the absolute difference for the conventional procedure, or ‘é —0|, where 0 is either a

conventional ML or MAP ability estimate. Note that these accuracy measures may only
be obtained for those situations where the alternative ability estimation procedure is

invoked.
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In Appendix B, the probability that the alternative estimation procedure yields a
more accurate ability estimate than the conventional estimate, given that the procedure is
invoked, is denoted by P(acc|invoked). (Note that this measure is collected over all true
ability levels 0, and so is not conditional on ability.) For a given test value of z. and
ability estimation procedure (Alt/ML or AIt/MAP), this accuracy measure P(acc|invoked)
is provided for each item administration number i = {1, 2, ..., 25}. On the basis of these
accuracy measures, it was concluded that for the Alt/ML procedure, z. should be no less
than 0.9; for the AIt/MAP procedure, z. should be no less than 1.1. (See Appendix B for
more detail.) Because larger values of z. necessarily restrict the number of times the
alternative procedure is invoked, smaller z. values that lead to reasonable accuracy
measures are preferred.

Further evidence for selecting an optimal z. value was obtained from the second
outcome measure, the relative efficiency of tests administered using the alternative
procedures (i.e., Alt/ML or Alt/MAP) as compared to tests administered using the
corresponding conventional procedures (i.e., ML or MAP). If the alternative ability
estimation procedure is more efficient than the conventional estimation procedure,
relative efficiency measures should be greater than 1; conversely, if the alternative
procedure is less efficient, the measures will be less than 1. As with the accuracy
measures, potential z. values ranged from 0.6 to 1.4 in steps of 0.1. Simulations were
conducted for 2500 examinees (500 per true ability level) and for tests of length 5, 10, 15,

and 25 items. Relative efficiency at true ability © was computed as the ratio of test

information at i = {5, 10, 15, 25} items under the alternative procedure, or / E;TL)T (6), to the

test information at i items under the conventional procedure, or / (CTO)NV (9) Thus,
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simulations under ML/Alt and ML were used to identify the optimal z. for the Alt/ML
procedure; likewise, simulations under MAP/Alt and MAP were used to identify the
optimal z, for the AIt/MAP procedure. According to the relative efficiency measures, it
was concluded that the optimal z. value for Alt/ML was 0.9; for the Alt/MAP procedure,
the optimal z. value was 1.3. (See Appendix B for more detail.)

Analysis of the accuracy measures for the two procedures suggests than the
optimal z. value for Alt/ML is no less than 0.9, and no less than 1.1 for AIt/MAP, with
smaller values of z. preferred as long as accuracy is maintained. Analysis of the relative
efficiency measures converges with the analysis of the accuracy measures, with a
recommendation of z. = 0.9 for the Alt/ML procedure and z. = 1.3 for the AIt/MAP
procedure. Thus, for this study, z. = 0.9 will be used for the hypothesis tests in the
Alt/ML procedure, and z. = 1.3 for the hypothesis tests in the AIt/MAP procedure.
Related methods

The hypothesis-testing approach has been adopted by researchers examining
related problems in measurement and testing, especially those exploring person-fit
statistics. In particular, the test statistic utilized in the proposed alternative item selection
procedure bears some resemblance to those developed for person-fit statistics, such as
Trabin & Weiss’ (1983) person response function (PRF) chi-square statistic, Tatsuoka’s
(1984) standardized extended caution index (ECI4,), and Drasgow, Levine, & Williams’
(1985) standardized likelihood-based statistic /..

Although a brief review of these studies is to follow, it is important at this stage to
reiterate the theoretical assumptions underlying the hypothesis-testing procedure used

here. These assumptions clearly distinguish the interpretation of the hypothesis tests in
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the present study from those in the related literature. First, and most importantly, all
hypothesis tests in the related studies are dependent on ability estimates’, whereas the
hypothesis tests employed here require no ability estimates in order to function. This
lack of dependence is a direct consequence of the formulation of the null hypothesis in
this study. The null hypothesis is stated under the assumption of an ideally-functioning
CAT, the behavior of which is wholly predicted by the IRT model in a special case where
measures of ability need not be known. That is, if a CAT is administering items targeted
at an examinee’s ability, then it must be the case that each item obtains maximum
information at that examinee’s ability. The expected proportion correct for each of these
items, given the assumption of perfect targeting, is thus obtainable from the item
parameters alone. The hypothesis-testing procedure used here then compares the
observed proportion correct to the expected proportion correct, and a decision rule is
followed. At no point is an estimate of examinee ability employed in the hypothesis-
testing procedure.

The hypothesis-testing procedures considered next, all drawn from the related
literature, utilize estimates of ability. The similarities of the test statistics employed in
these studies to the test statistic used here are worthwhile to examine from a
mathematical standpoint; however, it must be stressed that the assumptions underlying
each of these procedures are not identical. Statistics developed for person-fit, as outlined
by Nering & Meijer (1998) and Nering (1997), are considered next.

Person-fit statistics. The motivation for person-fit statistics is “to identify

response patterns that are incongruent with the underlying test model” (Nering, 1997).

" Typically, ability estimates are used. However, in simulation studies the true parameters 6 may be
examined. Nevertheless, some measure of ability is required for the computation of these statistics.
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To this end, a number of person-fit statistics have been developed. Of the three
considered here, the earliest proposed was Trabin & Weiss’ (1983) person response
function chi-square statistic, followed by Tatsuoka’s (1984) extended caution index
(ECI4z), and finally Drasgow et al.’s (1985) /, statistic.

Trabin & Weiss (1983) propose a chi-square statistic to test the fit of what they
refer to as the person response function (PRF) to the data. Their chi-square test is
formulated in a similar manner as those used to assess model-data fit for logistic
regression applications: (1) items are ordered according to their difficulty parameters; (2)

G strata of items are formed, where each of the g =1,2,..., G strata contain K items,

with K constant across strata; (3) chi-square terms are computed for the difference

K
between the observed number correct in each stratum Z X, and the expected number
k=1

K ~ ~
correct Z P, (9), where 0 is an ability estimate; and (4) the sum of these chi-square
k=1

terms is taken over all G strata. Under the null hypothesis, where it is assumed that the
PRF is consistent with the underlying IRT model, the final statistic is distributed as ¥~
with G-2 degrees of freedom in the case of dichotomous item responses. The Trabin &
Weiss y° statistic is then defined as
2 G
>x,-380) | Z0-x)-20-26)
k k k

oy [k - n - (Eq. 45)
CE seb) >-r.) ‘*

k

which, when simplified, yields
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E]

(Eq.46)

This procedure assumes that for any stratum g, the expected proportions correct P, (A)

should be similar across the K items within that stratum. With this assumption, it can be

shown that the y° statistic is equivalent to a sum of squared random normal variables zz,

G
such that ¢ = Z z; , with z, given by

g=1

If P, (é) ~ p for all k, then Equation 47 reduces to the familiar expression

p-p
p(1-p)
k

Zg=

X

where p =%

k

E]

(Eq.47)

(Eq[]

. This equation bears resemblance to the test statistic z employed in

the alternative item selection procedure (see Equation 39). However, the z* statistic does

not assume that the expected proportions P, (é) be nearly equivalent over all items k.

G
To show that > = Z z; , begin with the g" term in Equation 46, and simplify

g=1

notation by letting the observed number of correct responses z X, be denoted by O,
k
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and the expected number of correct responses z P, (é) be denoted by E,. Then the g"
k

term in Equation 46 becomes

2 2

o,-5} [5.-0)
E, k-E,

2

which may be expressed as
,_le-£Jo, -] +£,[E,-0,]

’ E(k-E,)

This expression simplifies to
(Eq.

2

Ho, ~£.f
kE, - E;

Now, if the same substitution of O, and E, is applied to Equation 47, the following is

obtained

O _E
— k k —
ZZ’ B E, E, B E, E;
i Kk
k k
After squaring Equation 50,
ZZZk%(Og_Eg)Z _k(Og_Eg)z (Eq%
* |E, E 2 '
o S kEg —Eg
KK

Both Equations 49 and 51 are thus shown equivalent, therefore 3> =» X2 =>"z2.
g g

Although a mathematical relationship between the Trabin & Weiss ¥ statistic

and the z" statistic used in the alternative item selection procedure has been shown, there
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are clear differences. First, computation of the y° test statistic requires a partitioning of

administered items into relatively homogeneous subsets, while the z-test in Equation 39
does not. However, even if partitioning were performed, Equation 39 accounts for
variation in the expected proportions correct differently than the partitioned z, statistic of
Equation 47. In the case of Equation 47, the standard error of the expected proportions is

computed as a function of the mean proportion, such that the standard error is taken as

1/@ for k items. For Equation 39, the standard error is ,IW , where p, isthe

expected proportion correct for item £.

The next two person-fit statistics considered are Tatsuoka’s (1984) extended
caution index (ECI4,) and Drasgow et al.’s (1985) /. index. Both indices rely on the
normal distribution for hypothesis testing; in this way, they are similar to the test statistic
used in the present study. Tatsuoka’s ECI4, index is quite similar to the Z statistic of

Equation 39, and would in fact be identical (within a change of sign) if the weights
W, = (p P = %z )4 k) in the ECI4, index were not present. The ECI4. index is defined as

Zn:pka _Zn:Xka E
k=1

ECl4, == (Eq. 52)

{gpk(l—pkﬁff}”z

where p, =P, (é) is the expected proportion correct for item £, X; is the observed

response for item &, and W is the weight for item £ as defined previously. Note that if

the weights were not present, the index would equal the negative of ', since
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zpk_sz 2.0 2. X T 2.D P E
k=1 k=1 _

— k=1 k=1 — k=1 — _Z* (Eq 53)

Ena-n)] [eEnton] [rEne-m]

Once the ECI4, index for a person’s response pattern is obtained, it may be compared to
the standard normal distribution. Those indices lying in the rejection region of the N(0,1)
distribution suggest that the IRT model is not consistent with the person’s response
pattern.

Like Tatsuoka’s ECI4,, Drasgow et al.’s (1985) I, index is also compared to the
standard normal distribution; however, the construction of the index is based on observed
and expected likelihood functions rather than on observed and expected proportions

correct. In this way, [, is formulated quite differently than Trabin & Weiss’ %>,

Tatsuoka’s ECI4., and the z-statistic employed in the present study. Drasgow et al.

define the /, statistic as

I = L~ Elhy] (Eq. 54@

Jarll,]

where the observed likelihood function /; is given by
=3 u,nP0)+ (-, )nft - 20 (Eq. 5502
i=1
for observed dichotomous response u, = {0,1}. The expected value El[/,] is given by

Ell,]= Zg(é)lne(é)+ [1 —B.(é)]ln[l —E.(é)] (Eq. 56E|
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and the variance Varll, ] by

Varll,]= iP,-(éIl—P,-(é) In [AQL (Eq. 57)E

Experimental design

The four factors in the experimental design were: (1) item selection procedure
(maximum FT item selection or maximum FII item selection); (2) ability estimation
procedure (ML, MAP, GSS, ML/Alt, or MAP/Alt); (3) true ability level at discrete points
along the ability continuum (6 = {— 2,—1,0,+1,+2}); and (4) test length (5, 10, 15, or 25
items). The experimental design was a fully-crossed 2x5x5x4 design, with two levels
for item selection procedure, five levels for ability estimation procedure, five levels for
examinee true ability, and four levels for test length. (Note that by this design all tests in
the study are of fixed length.) For each of the experimental conditions, 1000 replications
were generated. That is, simulated response patterns for 1000 subjects were generated
for each cell in the design.

Efficiency, as defined by Equation 32, was the primary dependent measure. Since
this measure is rather highly skewed to the left, the median efficiency was reported as a
measure of central tendency. The interquartile range (that is, the range in the efficiency
measure between the 25™ and 75" percentile points) was reported as a measure of
variability. In addition, efficiency measures at the 25™ and 75™ percentile points were
reported in order to make more detailed comparisons of efficiency across the
experimental conditions possible. An example of the distribution of the efficiency

measures for a CAT administered to 500 examinees with 6 = 0 using maximum FI item
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selection and ML ability estimation is shown in Figure 2. The distribution of efficiency

is provided for tests of length 5, 10, 15, and 25 items.
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Figure 2. Distribution of efficiency measures for tests of length 5, 10, 15, and 25 items;
N =500 examinees with 0 = 0, maximum FI item selection, ML ability estimation.
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The efficiency measures were calculated according to the accumulated

information terms in Equation 32, where

(1) (T)
! ]CAT

Eﬁ”zciency(CAT|6)= AT — ]
17 1,(0)+Y.1,(0)
=

The numerator of this expression is the accumulated information at examinee true 0 from
a CAT administration with item selection by FI or FII and ability estimation by ML,
MAP, GSS, ML/Alt, or MAP/AIt. The denominator of this expression is accumulated

test information from the optimal subset of items, as defined by Equation 31. To obtain
the quantity /", one CAT administration was conducted for each of the test length

manipulations in the experimental design, where items were selected according to

examinee true 0, as opposed to the ability estimates obtained from ML, MAP, GSS,
ML/AIlt, or MAP/Alt. One administration is sufficient to obtain /" since both true
ability 0 and its corresponding /(" are constants.

Computation of the median efficiency, as well as the efficiency at the 25" and 75™
percentile points, follows from Equation 32 and uses the corresponding /() measures at

each percentile point. Thus, the efficiency measure at the pth percentile point is defined

as

P, [Eﬁiciency(CA T |9)] = M (Eq.

)
]0
where Pp( ) indicates the value of the measure at the pth percentile. In this manner, the

interquartile range (IQR) may be defined as
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I

Although the efficiency measures are of primary interest in this study, as a ratio of
information measures they cannot, by themselves, indicate the magnitude of accumulated
test information. Thus, alongside each set of summary statistics for the efficiency
measure (i.e., median, IQR, and 25™ and 75" percentile points), the quantity 7" is
provided. Hence, any efficiency measure may be converted to an information measure
through 7{".

In addition to the efficiency measures, the mean and standard deviation of the
distribution of provisional ability estimates 6 for the examinees within each cell in the
design will be computed. Note that for ability estimation by ML/Alt or MAP/ALt, two
ability estimates are possible: one from the conventional procedure (ML or MAP), the
other from the alternative procedure. The particular estimate (i.e., conventional or
alternative) that is used to select the next item is recorded as the provisional ability
estimate O for an examinee when ML/Alt or MAP/At is employed as the ability

estimation procedure.

The layout of the experimental design is illustrated in Table 5.
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Table 5. Layout of experimental design.

Ability Test length True ability 6

It lecti L o
e selection estimation (in items) -2 | -1 | 0 | +1 | +2

ML 5,10, 15,25
ML/Alt | 5,10,15,25
Maximum FI MAP 5,10, 15, 25
MAP/ALt | 5,10, 15,25

GSS 5,10, 15,25

ML 5,10, 15,25
ML/Alt 5,10, 15,25
Maximum FII MAP 5,10, 15,25
MAP/Alt | 5,10, 15, 25

GSS 5,10, 15,25

e Efficiency at 25", 50" (median), 75™ percentiles,
Dependent measures provided: IQR
e  Mean and S.D. of provisional ability estimates

To perform the CAT simulations required for the study, an item bank of 367 pre-
calibrated and dichotomously-scored 3P items from a recently-administered large-scale
CAT assessment of mathematics ability was used. In the logistic metric where the
scaling parameter D = 1.7, the mean and standard deviation of the discrimination
parameters (i.e., a parameters) from the 367 items are 0.950 and 0.341, respectively. For
the difficulty parameters (i.e., b parameters), the mean and standard deviation are 0.158
and 1.113, respectively. For the pseudo-guessing parameters (i.e., ¢ parameters), the
mean and standard deviation are 0.144 and 0.105, respectively. In its operational form,
the CAT administered using this item bank is fixed at a length of 28 items; however, as it
was hypothesized that the greatest variation in CAT efficiency would occur much earlier
(e.g., at or before the 10™ administered item), the CAT simulations were fixed such that
no test exceeded a length of 25 items. The item parameters from this pool of 367 items

may be found in Appendix A.
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CAT simulation method

Central to this study is a method for simulating a CAT administration. Simulation
is necessary to conduct the study since the efficiency measure as defined in Equation 32
requires an examinee’s true ability level 0 to be known in advance. Further, controlled
comparisons between the efficiency of maximum FI item selection and the proposed
alternative item selection procedure can only be made using a simulation design.

Simulated CAT administrations were generated using the program SImCAT, a
multi-purpose CAT simulation program written in the SAS language (SAS Institute,
2000). This program was designed to handle all manipulations in the experimental
design (i.e., those corresponding to the item selection procedure, ability estimation
procedure, test length, and true ability at discrete points), as well as to provide the
accumulated test information measures used to calculate efficiency.

As simulation techniques may vary from program to program, a brief review of
the general operating characteristics of SImCAT is worthwhile. First, pseudo-random
numbers used by the program are generated from a starting seed value, which is pre-
loaded into the program from a user-specified file before any response vectors are
generated. That is, the sequence of pseudo-random numbers used to generate item
responses is reproducible, as the seed value is fixed as opposed to being dynamic (as
would be the case if the internal clock value was used to generate the random number
seed). Second, SIMCAT generates item responses for all items in the item pool prior to
CAT administration, even if those items are not selected by the CAT algorithm for

administration to the examinee. All examinee responses are generated according to the
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3P IRT model, with the following rule applied for determining whether a 0 (incorrect
response) or 1 (correct response) should be assigned. Given an examinee with true

ability 6 and an item i with parameter vector o, = {a,,b,,c, }, the probability of correct

0,0, ); if a random UNIF(0,1) deviate r, is obtained where

response is given by R.(U =1

1 < Pi(Ul. = 19,0)[), then the observed response X, =1, otherwise X, =0.

Ability estimation in SImCAT for both MAP and ML estimation is by Newton-
Raphson, with Fisher scoring used for the second derivative of the log-likelihood

function. In cases where the second derivative is not negative definite, a grid search for

the maximum of the likelihood function is performed to obtain the ability estimate 6.
For MAP ability estimation, the informative prior is assigned to be N(0,1). The
asymptotic variance of the ML estimates is computed according to Equation 13; for MAP

estimates, Equation 14 is used. All CAT simulations begin with an initial estimate of

examinee ability 6 =0, and so for any given item selection procedure, all examinees
receive the same first item. Thus, the modification to the efficiency measure as shown in
Equation 31 is appropriate.

For maximum FI item selection, SIMCAT searches the item pool for the next
available item whose information is maximum at the provisional ability estimate 0.
SimCAT evaluates the information function for all potential items i in the pool at 0, as
opposed to using an information lookup table. Thus, SImCAT evaluates /, (é) for all i
and selects the item whose /, (é) is maximum. Once an item has been administered, it
may no longer be considered for subsequent administration. For maximum FII item

selection, a 95% modified confidence interval about 0 is generated (as suggested by
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Chen, Ankenmann & Chang, 2000; p. 248), such that the lower bound 6; and upper

bound 0, are given by

0,=0-—20 g, =420 (Eq.E

u

\/;+1 \/;+1

where 7 is the number of items administered. The FII for an item i is defined as

FI1,(0) = e]l,. (0)d0 (Eq. 6IE

SimCAT uses the exact solution for the integral given by Equation 61. Because the
solution is rather lengthys, it is provided in Appendix D.

The ability scale used in the simulations imposes a negative bound at —4 and a
positive bound at +4. These bounds are utilized both by the information table and the
ability estimation routines. In cases where ML estimates are undefined (i.e., a response
pattern of all 0’s or all 1’s), the lower bound (for a vector of all incorrect responses) or
upper bound (for a vector of all correct responses) on the ability scale is taken as the

estimate.
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CHAPTER 4

Results

This chapter presents the results of the study discussed in the methodology
section. Recall that the four factors in the experimental design were: (1) item selection
procedure (maximum FI item selection or maximum FII item selection); (2) ability
estimation procedure (ML, ML/Alt, MAP, MAP/Alt, or GSS); (3) true ability level at
discrete points along the ability continuum (6 = {— 2,—1,0,+1,+2}); and (4) test length (5,
10, 15, or 25 items). For each of the experimental conditions, 1000 replications were
generated using a simulation methodology.

The primary dependent measure in the study was efficiency, as defined by
Equation 32. To facilitate the reporting of the results, the proportions calculated by
Equation 32 were converted to percentages; these percentages are given in the tables and
figures that follow. Results are summarized in terms of median efficiency, the
interquartile range of efficiency, and the 25™ and 75™ percentile points of efficiency for
each of the experimental conditions. Efficiency measures may be converted to

information measures using Equation 32 and the accumulated test information measures
IS (9) provided for an optimal subset of items given true ability and test length. In

addition, the means and standard deviations of the provisional ability estimates are

provided.
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In order to facilitate the comparisons across the experimental conditions as
indicated by the research questions, the results are presented both in tabular and graphical
format and organized in the following manner. First, results from item selection under
maximum Fisher information (FI) are tabled separately from those obtained under
maximum Fisher interval information (FII). Within a level of item selection procedure,
three tables are provided for each combination of ability estimation procedure x true
ability level x test length: (1) medians and interquartile ranges (IQRs) of the efficiency
measure; (2) 25" and 75" percentile points of the efficiency measure; and (3) means and
standard deviations of the provisional ability estimates. A supplementary table provides

the accumulated test information measures 1" (0) for true ability level x test length.

Graphical presentation of the results is also first categorized according to item
selection procedure (i.e., maximum FI or maximum FII). However, results are further
subdivided according to test length (i.e., 5, 10, 15, or 25 items). Thus, each figure
presents dependent measures for each combination of ability estimation procedure x true
ability level for the specified levels of item selection procedure and test length. The

dependent measures displayed graphically are median efficiency and efficiency IQR.

Analysis of efficiency measures
Maximum FI item selection
The efficiency measures from maximum FI item selection are summarized in
Tables 6 and 7. Both tables summarize the efficiency measures for the experimental
conditions of ability estimation procedure x test length x true ability level. Table 6

provides the medians and interquartile ranges (IQRs) of the efficiency measures, and



Table 7 provides the 25™ and 75™ percentile points of the efficiency measures. As

discussed in the methodology section, the efficiency measure is skewed to the left; thus,

medians are reported as a measure of central tendency and IQRs as a measure of

variability. All efficiency measures are by definition bounded below by 0% and above

by 100%. Table 8 provides the accumulated test information measures 7"’ (8) for an

optimal subset of items; this supplementary information may be used for converting the

efficiency measures to accumulated test information measures.

Table 6. Medians and IQRs of the efficiency measure under maximum FI item selection.

Median efficiency

Efficiency interquartile range (IQR)

Ability Test
estimation | length | =2 6=-1 6=0 06=1 6=2 [6=2 6=-1 6=0 0=1 0=2
ML 5 53.0 732 542 448 61.6 | 443 12.1 293 454 17.1
10 81.8 839 719 70.1 80.7 | 188 189 29.0 351 133
15 93.0 87.1 80.1 803 909 | 9.1 159 218 220 7.1
25 96.7 927 895 893 958 | 55 96 122 11.6 32
ML/Alt 5 100.0 943 633 83.0 939 | 185 78 267 400 164
10 99.5 91.8 81.1 862 100.0 | 11.7 16.5 27.0 30.6 13.8
15 99.9 928 874 892 995 | 40 143 214 206 5.0
25 99.0 96.1 937 945 99.6 | 2.2 84 126 112 22
MAP 5 31.0 914 885 959 236|492 196 156 236 0.0
10 732 942 91.7 925 643 | 29.1 202 149 13.6 136
15 87.1 929 932 946 854 | 184 160 124 11.0 9.1
25 90.8 96.1 97.1 96.7 939 | 8.1 9.1 59 74 31
MAP/Alt 5 79.7 902 885 90.6 54.6 | 225 149 213 222 0.0
10 81.8 923 91.7 903 745 | 21.8 192 145 17.1 19.6
15 914 928 93.0 92.8 833 | 19.1 147 122 139 102
25 943 962 965 955 948 | 87 78 6.7 83 3.2
GSS 5 96.1 86.5 73.6 8.1 811 | 17.0 209 198 31.7 29
10 909 8385 78.1 836 876 | 157 11.8 259 31.1 123
15 962 893 844 878 957 | 72 122 202 184 63
25 974 948 912 941 983 | 56 97 121 101 29
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Table 7. Efficiency measures at the 25" and 75" percentile points under maximum FI
item selection.

Ability level
0=-2 0=-1 6=0 6=1 6=2
Ability Test

estimation | length | Pas Py P Py Ps Pys Pys Ps Pys Ps
ML 5 36.8 81.0 | 69.7 81.8 | 354 64.8 | 334 78.8 | 47.7 64.8
10 72.5 913 | 70.7 89.5 | 502 79.1 | 495 846 | 734 86.6

15 87.8 969 | 77.6 934 | 648 86.6 | 679 899 | 87.0 94.0

25 934 989 | 86.6 963 | 814 93.6 | 81.9 935 | 93.7 97.0

ML/Alt 5 81.5 100.0 | 88.3 96.1 | 449 71.6 | 46.8 86.8 | 80.3 96.8
10 88.3 100.0 | 81.1 97.6 | 583 853 | 63.7 943 | 862 100.0

15 959 999 | 84.1 984 | 71.0 925 | 752 958 | 949 999

25 96.7 99.0 | 90.2 98.7 | 843 969 | 87.2 98.5 | 97.8 100.0

MAP 5 8.1 573 | 775 97.1 | 772 929 | 76.4 100.0 | 23.6 23.6
10 527 818 | 775 97.7 | 81.4 962 | 833 969 | 592 728

15 73.0 914 | 82.6 98.7 | 854 978 | 86.9 98.0 | 782 873

25 86.3 944 | 89.8 989 | 929 988 | 915 988 | 91.3 944

MAP/Alt 5 573 797 | 775 924 | 71,6 929 | 684 90.6 | 54.6 54.6
10 688 90.6 | 77.5 96.7 | 79.2 937 | 774 945 | 632 828

15 76.4 955 | 834 98.1 | 854 97.6 | 835 974 | 81.7 918

25 88.7 974 | 91.1 989 | 92.1 98.8 |90.5 988 | 922 954

GSS 5 79.7 96.7 | 67.0 879 | 63.3 83.1 | 51.3 83.0 | 783 8I.1
10 839 99.6 | 823 940 | 624 883 | 61.5 925 | 824 94.7

15 91.2 984 | 83.8 96.0 | 71.1 914 | 757 94.1 | 91.9 982

25 934 989 | 882 979 | 84.0 96.1 | 87.1 97.2 | 96.1 99.1

Table 8. Accumulated test information measures 7."(8) for an optimal subset of items

under maximum FI item selection.

15" (0)
Test
length | 6=-2 0=-1 6=0 0= 06=2
5 2351 2817 5282 6461 6.379
10 | 4.697 5478 9.571 12.859 12.237
15 6.457 7.862 13.126 18.558 16.495
25 9.351 11.85 18.581 28.149 23.562
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Comparison of the efficiency measures is facilitated by Figures 3 through 10. For
each level of test length (5, 10, 15, or 25 items), two figures are provided: the first
reports the median efficiency, and the second the efficiency interquartile range. True
ability level is categorized by the cluster of five bars within an ability estimation
procedure; the bars correspond to 6 = {—2, -1, 0, 1, 2} from left to right.

Test length of 5 items. Median efficiency measures and interquartile ranges
(IQRs) of the efficiency measures for tests of 5 items in length are displayed in Figures 3
and 4. With respect to median efficiency for the conventional ability estimation
procedures (ML and MAP), maximum FI item selection performed differently across the
range of ability levels depending on whether ML or MAP estimation was used. MAP
was clearly superior to ML for 6 = {—1, 0, 1}; however, ML was more efficient than
MAP at the extreme ability levels 6 = {—2, 2}. MAP achieved a median efficiency
exceeding 88% for 6 = {—1, 0, 1}, but performed poorly at the extremes, with median
efficiencies of 31% and 24% at 6 = {2, 2}, respectively. Although ML did not suffer
the dramatic drop in efficiency at the extremes, it was less efficient than MAP at the
middle of the ability continuum, having achieved a maximum median efficiency of 73%
at © = —1 and minimum median efficiency of 45% at @ = 1. Median efficiencies for ML
at 0 = {2, 2} were 53% and 62%, respectively, and were higher than those observed for

MAP.
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Figure 3. Median efficiency measures under maximum FI item selection for a test of
5 items.
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Figure 4. IQRs of the efficiency measure under maximum FI item selection for a test of
5 items. (Note: At 0 = 2, the IQRs for MAP and MAP/Alt are equal to zero.)
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At this test length, the alternative ability estimation procedures performed better
overall than the conventional ability estimation procedures. Median efficiencies for ML
concurrent with the alternative ability estimation procedure (ML/Alt) were greater than
the corresponding measures observed for conventional ML, and strongly so for 6 = {2,
—1, 1, 2}. For these ability levels, ML/Alt achieved a maximum median efficiency of
100% at 6 = —2 and a minimum median efficiency of 63% at 6 = 0. For MAP concurrent
with the alternative ability estimation procedure (MAP/Alt), the median efficiency
measures were comparable to those observed for conventional MAP at 6 = {—1, 0, 1}, but
median efficiency at the extremes was higher, at 80% and 55% for 6 = {2, 2},
respectively. GSS performed similarly to ML/Alt, with slightly lower median efficiency
measures than ML/Alt at © = {2, —1, 1, 2}, but with a higher median efficiency measure
of 74% at 6 = 0.

Variability in the efficiency measures for the conventional ability estimation
procedures, as indicated by IQR, was less for MAP than ML except at 6 = {2, —1}. At
0 > —1, the IQRs for MAP were at least 10% less than the respective IQRs for ML, with
the IQR for MAP at 6 = 2 dropping to zero. For ML and 6 > —1, efficiency was least
variable at © = 2 and most variable at 6 = 1; the respective IQRs at these points were 17%
and 45%. At 0 =—1, the IQR for MAP was higher than for ML, at 20% versus 12%. At
the lowest extreme of ability, 0 = —2, the IQR of efficiency for both ML and MAP was
approximately 44% and 49%, respectively. If the 25" and 75™ percentile points are
considered at this ability level, then ML efficiency ranged from 37% to 81%, while MAP
efficiency ranged from 8% to 57%. At the other extreme of ability, 6 = 2, ML also

outperformed MAP, even though the IQR for MAP was 0%. The range in ML efficiency
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at 0 = 2 was 48% to 65%, while it was constant at 24% for MAP. For the middle range
of ability, —2 <0 <2, MAP clearly outperformed ML.

It was observed that the alternative ability estimation procedures achieved higher
median efficiencies than the conventional ability estimation procedures. In general, the
efficiency measures from the alternative procedures were also no more variable, and in a
number of cases less variable, than the conventional procedures. Reduction in variability
was rather dramatic for ML/Alt and MAP/Alt at 6 = —2; for ML/Alt, the IQR was 19% in
contrast to 44% for ML. Likewise, for MAP/AIt the IQR was 23%, in contrast to 49%
for MAP. At 6 =2, the IQR for MAP/Alt was equal to zero, a result also observed for
conventional MAP. Variability in GSS was similar to that observed for MAP/Alt at
0 = {2, 0, 2}, but with somewhat higher IQRs of 21% and 32% at ©6 = {1, 1},
respectively.

Test length of 10 items. Median efficiency measures and IQRs of the efficiency
measures for tests of 10 items in length are displayed in Figures 5 and 6. As observed for
tests of 5 items in length, the conventional ability estimation procedures (ML and MAP)
performed differently across the range of ability levels in terms of median efficiency.
Again, MAP was superior to ML for 6 = {—1, 0, 1} and ML was more efficient than
MAP at the extreme ability levels 6 = {2, 2}. MAP achieved a median efficiency at or
above 92% for 6 = {—1, 0, 1}, but continued to lag in performance at the extremes, with

median efficiencies of 73% and 64% at 0 = {2, 2}, respectively.
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Maximum FIl selection, 10 items
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Figure 5. Median efficiency measures under maximum FI item selection for a test of
10 items.
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Figure 6. IQRs of the efficiency measure under maximum FI item selection for a test of
10 items.
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Nevertheless, the gap in median performance for MAP between the middle ability
levels and those at the extremes narrowed from approximately 60% for 5-item tests to
approximately 25% for 10-item tests. ML remained less efficient than MAP at the
middle of the ability continuum, having achieved a maximum median efficiency of 84%
at 0 = —1 and minimum median efficiency of 70% at 6 = 1. The median efficiency
measures for ML at 6 = {—2, 2} were again higher than those for MAP, at approximately
81% for these two extreme ability levels.

Like the 5-item tests, the alternative ability estimation procedures performed
better overall than the conventional ability estimation procedures for 10-item tests.
Median efficiencies for ML/Alt were greater than the corresponding measures observed
for conventional ML, with gains of approximately 10% for middle ability levels and 20%
for the extreme ability levels. ML/Alt achieved maximum median efficiencies of 100%
at 0 = {—2, 2}, and a minimum median efficiency of 81% at 6 = 0. For MAP/ALlt, the
median efficiency measures were comparable to those observed for conventional MAP at
0 ={—1, 0, 1}, but median efficiency at the extremes was approximately 10% higher, at
82% and 75% for 6 = {—2, 2}, respectively. GSS performed similarly to ML/Alt at
0 ={—1, 0, 1}, but with approximately 10% lower median efficiency measures than
ML/Alt at © = {2, 2}. Median efficiency measures for GSS at 6 = {2, 2} were 91%
and 88%, respectively.

Unlike the 5-item tests, variability in the efficiency measures for the conventional
ability estimation procedures for tests 10 items in length was substantially less for MAP
than ML only at 0 =0 and 6 = 1. At ability levels 6 = {0, 1}, the IQRs for MAP were

15% and 14%, respectively, whereas for ML they were 29% and 35%, respectively. For
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each ability level 0 = {—1, 2}, the IQRs for the ML and MAP procedures were nearly
identical. For 6 =—2, variability in the efficiency measure was less for ML than for
MAP, with the respective IQRs being 19% and 29%. If the 25™ and 75™ percentile points
are considered at this ability level, then ML efficiency ranged from 73% to 92%, while
MAP efficiency ranged from 53% to 82%. At the other extreme of ability, 6 =2, ML
also outperformed MAP. The range in ML efficiency at 6 = 2 was 73% to 87%, while it
was 59% to 73% for MAP. For the middle range of ability, —2 <6 <2, MAP clearly
outperformed ML.

Variability measures for the alternative procedures were somewhat different in the
case of 10-item tests as compared to 5-item tests. Whereas IQRs were much lower at
0 = —2 for the alternative procedures than for the conventional procedures on 5-item tests,
the reduction in variability was only about 7% for 10-item tests. At 6 = -2, the IQR for
ML/Alt was 12%, in contrast to 19% for ML. For MAP/Alt, the IQR was 22%, whereas
for MAP it was 29%. For ability levels 6 > —2, IQRs for ML/Alt were slightly smaller
than those for ML; for MAP/ALL, this slight reduction in variability over the conventional
procedure was only true for 6 = {—1, 0}. For 6 = {1, 2}, the IQRs for MAP/Alt were
actually 4% and 6% higher, respectively. The pattern of IQRs for GSS closely mirrored
that of ML/Alt, with nearly identical IQRs for 6 > —1, a slightly higher IQR at 6 = -2,
and a slightly lower IQR at 6 =—1.

Test length of 15 items. Median efficiency measures and IQRs of the efficiency
measures for tests of 15 items in length are displayed in Figures 7 and 8. By this test
length, all five ability estimation procedures met or exceeded a median efficiency of 80%

across all levels of ability. Further, within each of the conventional ML and MAP
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procedures, the gaps between maximum and minimum median efficiency measures have
narrowed to approximately 10%. For ML, a minimum median efficiency of 80% was
obtained at © = {0, 1}, and a maximum median efficiency of 93% was obtained at 6 = 2.
For MAP, a minimum median efficiency of 85% was obtained at 6 = 2, and a maximum
median efficiency of 95% was obtained at 6 = 1.

The previous lag in performance observed for MAP at the extremes of ability was
nearly absent at 15 items, with only a 5% difference in median efficiency at 6 = {2, 2}
between ML and MAP. However, MAP remained superior to ML for 6 = {—1, 0, 1},
with a 5% difference in median efficiency between the two procedures at 6 = —1, and
approximately 14% difference at 6 = {0, 1}.

Median efficiency measures from the ML/Alt and MAP/Alt procedures remained
higher for the most part than those observed from the respective conventional procedures.
ML/AIt achieved greater median efficiency across all ability levels, having maintained a
median efficiency of 100% for 6 = {—2, 2} and median efficiency measures that exceeded
87% elsewhere. Median efficiencies for ML/Alt at © = {2, —1, 0} were approximately
6% higher than the respective measures for ML; at 8 > 0, the respective measures were
approximately 9% higher. MAP/Alt benefited also at these extreme ability levels, though
only by about 4% over MAP. Median efficiencies for MAP/Alt were comparable to
those observed for MAP for 6 = {—1, 0}, and were slightly less for 6 = 1. Median
efficiency measures from GSS were similar to ML/ALlt, but were approximately 3% less

overall.



Figure 7. Median efficiency measures under maximum FI item selection for a test of
15 items.
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Figure 8. IQRs of the efficiency measure under maximum FI item selection for a test of

15 items.
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As observed for the 10-item tests, variability in the efficiency measures for the
conventional ability estimation procedures for tests 15 items in length was again less for
MAP than ML only at © = 0 and 6 = 1. At these ability levels 6 = {0, 1}, the IQRs for
MAP were 12% and 11%, respectively, whereas for ML they were 22% at both ability
levels. For ability levels 6 = {—1, 2}, the IQRs for the ML and MAP procedures were
nearly identical. For 6 = —2, variability in the efficiency measure was less for ML than
for MAP, with the respective IQRs being 9% and 18%. If the 25™ and 75" percentile
points are considered at this ability level, then ML efficiency ranged from 88% to 97%,
while MAP efficiency ranged from 73% to 91%. At the other extreme of ability, 6 = 2,
ML also outperformed MAP. The range in ML efficiency at 6 = 2 was 8§7% to 94%,
while it was 78% to 87% for MAP. For the middle ability levels 6 = {0, 1}, MAP clearly
outperformed ML, while at © = —1, the range in ML efficiency was comparable to the
range in MAP efficiency.

Variability measures for the ML/Alt and MAP/Alt procedures were comparable to
their respective conventional procedures for tests of 15 items in length. While the
difference in the variability of efficiency measures between the alternative and
conventional procedures for 10-item tests was about 7%, for the 15-item tests the overall
difference was negligible. The largest observed difference was 5% at 6 = —2 for the
ML/AIlt procedure, where the IQR was 4% as opposed to 9% for ML. Remaining
differences between the alternative and conventional IQRs did not exceed 2%. The
pattern of IQRs for GSS again closely mirrored that of ML/Alt, with nearly identical

IQRs for 6 > —1, a slightly higher IQR at 6 = -2, and a slightly lower IQR at 6 = —1.
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Test length of 25 items. Median efficiency measures and IQRs of the efficiency
measures for tests of 25 items in length are displayed in Figures 9 and 10. By this test
length, all five ability estimation procedures met or exceeded a median efficiency of 89%
across all levels of ability. Further, results at this test length paralleled those observed for
the 15-item tests, although median efficiencies were higher overall. Within each of the
conventional ML and MAP procedures, the gaps between maximum and minimum
median efficiency measures were approximately 7%. For ML, a minimum median
efficiency of 89% was obtained at 6 = {0, 1}, and a maximum median efficiency of 97%
was obtained at 6 = —2. For MAP, a minimum median efficiency of 91% was obtained at
0 = 2, and a maximum median efficiency of 97% was obtained at 6 = {0, 1}.

Although the pattern of greater performance of MAP at middle ability levels and
ML at extreme ability levels in terms of median efficiency measures remained for 25-
item tests, the differences in performance were small. The median efficiency for ML at
0 = —2 was only 6% higher than the corresponding measure for MAP; likewise, ML
efficiency was only 2% higher than MAP at 6 = 2. For middle ability levels, the gap
between MAP and ML performance narrowed considerably, with MAP having

outperformed ML by approximately 7% at 6 = {0, 1}, and 4% at 6 = —2.



Figure 9. Median efficiency measures under maximum FI item selection for a test of

25 items.
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IQRs of the efficiency measure under maximum FI item selection for a test of
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As observed previously, median efficiency measures from the ML/Alt and
MAP/AIlt procedures remained higher for the most part than those observed from the
respective conventional procedures. However, like the 15-item tests the gains in median
efficiency at 25 items were much smaller as compared to those observed for 5- and 10-
item tests. ML/AIlt again achieved greater median efficiency across all ability levels, with
measures of 99% and 100% for 6 = {2, 2}, and measures exceeding 94% elsewhere.
MAP/ALt benefited only by about 4% over MAP at 6 = —2, and elsewhere the measures
were comparable, even at 0 = 2. Median efficiency measures from GSS were similar to
ML/ALlt, but were approximately 2% less at 6 = {—2, —1, 0} and nearly identical at 6 > 0.

Like the 10- and 15-item tests, variability in the efficiency measures for the
conventional ability estimation procedures for tests 25 items in length was again less for
MAP than ML only at 6 =0 and 6 = 1. At these ability levels 6 = {0, 1}, the IQRs for
MAP were 6% and 7%, respectively, whereas for ML they were 12% at both ability
levels. For ability levels 6 = {—1, 2}, the IQRs for the ML and MAP procedures were
nearly identical. For 6 = —2, variability in the efficiency measure was slightly less for
ML than for MAP, with the respective IQRs being 6% and 8%. If the 25™ and 75"
percentile points are considered, ML outperformed MAP only at 6 = —2, where the range
in the ML efficiency measures was 93% to 99%, whereas it was 86% to 94% for MAP.
For middle ability levels, MAP outperformed ML only at © = {0, 1}. The range for MAP
at © = 0 was 93% to 99%, and for ML the range was 81% to 94%; at © = 1, the range for
MAP was 92% to 98%, and for ML it was 82% to 94%.

Variability measures for the ML/Alt and MAP/Alt procedures were comparable to

their respective conventional procedures for tests of 25 items in length, a result also seen
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for the 15-item tests. The largest observed difference was 3% at 6 = —2 for the ML/Alt
procedure, where the IQR was 2% as opposed to 5% for ML. Remaining differences
between the alternative and conventional IQRs were negligible. The pattern of IQRs for
GSS again closely mirrored that of ML/Alt, with nearly identical IQRs for 6 > —1, and
slightly higher IQRs at 6 = {2, —1}.
Maximum FII item selection

The efficiency measures from maximum FII item selection are summarized in
Tables 9 and 10. Table 9 provides the medians and IQRs of the efficiency measures, and

Table 10 provides the 25™ and 75" percentile points of the efficiency measures. Table 11
provides the accumulated test information measures /{"’(8) for an optimal subset of

items; this supplementary information may be used for converting the efficiency
measures to accumulated test information measures.

Table 12 shows the difference in the median efficiency measures and the
efficiency IQRs between maximum FI and maximum FII item selection. That is,
Table 12 gives the arithmetic difference of Table 6 (maximum FI selection) from Table 9
(maximum FII selection). Those differences greater than 5% or less than —5% are
considered relevant and are highlighted in the table. Notice that for tests of 15 and 25
items in length, item selection by maximum FII yielded similar (and in many cases nearly
identical) median efficiency measures and efficiency IQRs as item selection by maximum
FI. Because the efficiency measures under maximum FII and maximum FI item selection
were so similar for these test lengths, discussion of the results will be limited to the

shorter test lengths of 5 and 10 items.
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Table 9. Medians and IQRs of the efficiency measure under maximum FII item
selection.

Median efficiency Efficiency interquartile range (IQR)
Ability Test
estimation | length | =2 6=-1 6=0 06=1 6=2 [6=2 6=-1 6=0 0=1 0=2

ML 5 82.8 745 542 457 654 | 499 10.8 293 463 34
10 89.7 857 721 724 833 | 179 149 28.0 267 139
15 96.2 882 809 804 923 88 149 195 198 5.8
25 98.0 939 892 904 965 5.5 92 11.0 104 2.9

ML/ALt 5 100.0 899 71.6 827 84.8| 202 132 171 215 152
10 99.3 923 816 873 969 | 123 16.0 24.0 243 163
15 99.9 923 872 90.6 987 50 140 203 149 6.9
25 99.0 962 93.1 951 98.6 52 8.8 10.7 9.6 2.6

MAP 5 428 93.0 90.8 924 321|492 199 156 179 0.0
10 79.1 91.1 920 912 702 | 293 19.6 128 11.2 9.9
15 89.8 921 935 947 859 | 189 153 11.1 9.9 7.0
25 912 958 96.7 97.0 938 9.1 8.5 59 6.5 32

MAP/Alt 5 79.7 8.5 908 924 5777 225 129 213 226 0.0
10 819 90.6 91.7 89.7 713 | 277 189 148 11.5 185
15 914 922 932 931 87.7| 22.1 144 11.7 108 9.7
25 943 959 963 963 943 | 12.1 8.1 6.4 7.3 43

GSS 5 96.1 &80 732 8.7 716 17.0 212 198 215 26.8
10 943 863 781 877 899 | 157 145 269 261 152
15 96.2 89.8 854 889 963 53 119 223 165 6.4
25 974 945 914 946 98.6 5.5 8.8 11.8 9.7 2.5
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Table 10. Efficiency measures at the 25™ and 75" percentile points under maximum FII
item selection.

Ability level
6=-2 0=-1 06=0 6=1 6=2
Ability Test
estimation | length | Pas Ps P Ps Pss Ps Psys Py Psys Pys

ML 5 36.8 86.6 | 72.5 833 | 354 648 | 34.1 804 | 650 684
10 76.1 94.1 | 749 89.7| 50.6 785 | 56.0 82.7| 73.8° 87.7

15 89.0 978 | 785 934 | 67.7 872 | 69.7 894 | 88.8 94.6

25 934 989 | 873 964 | 824 935|832 936 945 974

ML/Alt 5 79.7 100.0 | 85.6 988 | 56.1 732 | 63.2 84.7| 84.8 100.0
10 873 996 | 81.0 970 | 624 864 | 684 927 | 837 100.0

15 949 999 | 838 978 | 72.8 93.0| 80.7 956 | 93.6 100.5

25 93.8 990 | 89.9 98.6| 857 964 | 892 988 | 972 99.8

MAP 5 81 573 | 789 988 | 77.2 929 | 779 959 | 32.1 321
10 524 81.7| 775 97.1 | 809 93.7| 84.3 955 | 632 73.1

15 726 914 | 824 978 | 872 982 | 87.6 975 | 822 89.2

25 85.8 949 | 89.7 983 | 928 98.7| 924 990 | 914 946

MAP/Alt 5 573 797 | 789 918 | 71.6 929 | 698 924 | 577 57.7
10 629 906 | 77.2 96.1 | 789 937 | 83.0 945 | 643 82.8

15 733 955| 834 978 | 8.0 97.7| 8.6 974 | 822 919

25 853 974 902 983 | 922 985 | 91.6 989 | 914 957

GSS 5 79.7 96.7| 682 895| 633 831 | 632 84.7| 71.6 984
10 839 996 | 79.6 940 | 614 883 | 67.1 932 | 81.0 96.2

15 927 980 | 839 958 | 70.0 923 | 774 93.8| 923 98.7

25 935 989 | 889 977 | 84.0 958 | 83.1 97.8| 963 98.8

Table 11. Accumulated test information measures 7.’ (6) for an optimal subset of items
under maximum FII item selection.

1" (6)
Test
length | 6=-2 0=-1 06=0 0=1 0=2
5 2351 2768 5282 6333 6.043
10 4.697 5478 9.571 12.836 12.237
15 6.457 7.862 13.039 18.558 16.398
25 9351 11.843 18.569 28.12 23.527
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Table 12. Differences in medians and IQRs of the efficiency measure between maximum
FII and maximum FI item selection.

Difference in median efficiency, Difference in efficiency IQR,
Ability Test Max FII — Max FI Max FII — Max FI

estimation | length [ 6=2 6=-1 6=0 0=1 0=2 [6=2 0=1 06=0 6=1 0=2

ML 5 29.8 1.3 0 0.9 3.8 5.6 -1.3 0 0.9 -13.7
10 7.9 1.8 0.2 23 26 | -09 -4 -1 -8.4 0.6
15 3.2 1.1 0.8 0.1 14 | -03 -1 -2.3 -2.2 -1.3
25 1.3 1.2 -03 1.1 0.7 0 04  -12 -1.2 -0.3

ML/Alt 5 0 44 83 -03 91 1.7 5.4 96 -185 -12
10 -0.2 0.5 0.5 1.1 -3.1 0.6 -0.5 -3 -6.3 2.5
15 0 -0.5  -0.2 1.4 -08 1 -0.3 -1.1 -5.7 1.9
25 0 0.1 -0.6 0.6 -1 3 0.4 -1.9 -1.6 0.4

MAP 5 11.8 1.6 2.3 3.5 85 0 0.3 0 -5.7 0

10 5.9 3.1 03  -13 59 0.2 -0.6 2.1 -2.4 -3.7
15 2.7 -0.8 03 0.1 0.5 0.5 -0.7 -1.3 -1.1 -2.1

25 0.4 -03 -04 03 -0.1 1 -0.6 0 -0.9 0.1
MAP/Alt 5 0 -0.7 23 1.8 3.1 0 -2 0 0.4 0
10 0.1 -1.7 0 06 32| 59 -0.3 0.3 -5.6 -1.1
15 0 -0.6 0.2 03 -0.6 3 -0.3 -0.5 -3.1 -0.5
25 0 -03 -02 08 -05 | 34 0.3 -0.3 -1 1.1
GSS 5 0 1.5 -04 1.6 -9.5 0 0.3 0 -10.2 239
10 34 -2.2 0 4.1 23 0 2.7 1 -5 2.9
15 0 0.5 1 1.1 06 [ -19 -03 2.1 -1.9 0.1

25 0 -0.3 0.2 0.5 03 [ -0.1 -09  -03 -0.4 -0.4




116

For each test length of 5 and 10 items, the following discussion begins with a
comparison of the ability estimation procedures within maximum FII item selection, then
makes comparisons between maximum FI and maximum FII item selection.

Test length of 5 items. Median efficiency measures and IQRs of the efficiency
measures for tests of 5 items in length under maximum FII item selection are displayed in
Figures 11 and 12. MAP was superior to ML for 6 = {—1, 0, 1}; however, ML was more
efficient than MAP at the extreme ability levels 6 = {2, 2}. MAP achieved a median
efficiency exceeding 90% for 6 = {—1, 0, 1}, but performed poorly at the extremes, with
median efficiencies of 43% and 32% at 6 = {2, 2}, respectively. ML was less efficient
than MAP at the middle of the ability continuum, having achieved a maximum median
efficiency of 75% at © = —1 and minimum median efficiency of 46% at 6 = 1. Median
efficiencies for ML at 6 = {2, 2} were 82% and 65%, respectively, and were higher than
those observed for MAP.

The alternative ability estimation procedures performed better overall than the
conventional ability estimation procedures for 5-item tests under maximum FII item
selection. Median efficiencies for ML/Alt were greater than the corresponding measures
observed for conventional ML across all ability levels. ML/Alt achieved a maximum
median efficiency of 100% at 6 = —2 and a minimum median efficiency of 72% at 6 = 0.
For MAP/Alt, the median efficiency measures were comparable to those observed for
conventional MAP at 6 = {—1, 0, 1}, but median efficiency at the extremes was higher, at
80% and 58% for 6 = {—2, 2}, respectively. GSS performed similarly to ML/Alt for
0 <2; however, at 0 = 2 the median efficiency of GSS was lower at 72%, as opposed to

85% for ML/ALL.
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Figure 11. Median efficiency measures under maximum FII item selection for a test of

5 items.
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Figure 12. 1QRs of the efficiency measure under maximum FII item selection for a test

of 5 items. (Note: At 0 =2, the IQRs for MAP and MAP/Alt are equal to zero.)
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For the conventional ability estimation procedures, the IQRs were smaller overall
for MAP than ML, except at 6 = {—2, —1}. For MAP and 6 > —1, efficiency was least
variable at © = 2 and most variable at 6 = 1; the respective IQRs were 0% and 15%. For
ML and 0 > —1, efficiency was also least variable at 6 = 2 and most variable at © = 1; the
respective IQRs were 3% and 46%. At 6 =—1, the IQR for MAP was higher than the
IQR for ML, at 20% versus 11%. At the lowest extreme of ability, 6 = —2, the IQRs of
efficiency for ML and MAP were 50% and 49%, respectively. If the 25" and 75™
percentile points are considered at this ability level, then ML efficiency ranged from 37%
to 87%, while MAP efficiency ranged from 8% to 57%. At the other extreme of ability,
0 =2, ML also outperformed MAP, even though the IQR for MAP was 0%. The range in
ML efficiency at 8 = 2 was 65% to 68%, while it was constant at 32% for MAP. For the
middle range of ability, —2 <06 <2, MAP outperformed ML.

Variability in the efficiency measures from the alternative procedures was either
comparable to or less than that observed for the conventional procedures. Reduction in
variability was rather dramatic for ML/Alt and MAP/Alt at 6 = —2; for ML/Alt, the IQR
was 20% in contrast to 50% for ML. Likewise, for MAP/Alt the IQR was 23%, in
contrast to 49% for MAP. At 6 =2, the IQR for MAP/AIt was equal to zero, a result also
observed for conventional MAP. Variability in GSS was similar to that observed for
MAP/ALlt at ability levels 6 = {2, 0, 1}. However, at 6 = —1 the IQR was higher at 22%
as opposed to 13% for MAP. GSS was much more variable at 6 =2, with an IQR of
27%.

For certain combinations of ability estimation procedure with true ability level,

the efficiency measures under maximum FII were different than the corresponding
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measures under maximum FI selection. Examining first the conventional procedures,
both ML and MAP benefited from maximum FII over maximum FI at the extreme ability
levels 0 = {-2, 2}. Under maximum FI, the median efficiency measures at 6 = -2 for
ML and MAP were 53% and 31%, respectively. Under maximum FII, the corresponding
measures were 83% and 43%, respectively. Although the median efficiency measures
were higher under FII selection, the measures at the 25" and 75™ percentile points were
approximately equal. For ML estimation under FII at © = —2, the measures at these
percentile points were 37% and 87%, respectively; under FI, the measures were 37% and
81%, respectively. For MAP estimation under both FII and FI at 6 = —2, the range in
efficiency was from 8% to 57%.

At the other extreme 0 = 2, under maximum FI the median efficiency measure for
MAP was 23%, whereas under maximum FII it was 32%. For ML, the median efficiency
measure was nearly equivalent under FI and FII, at 62% and 65%, respectively.
Efficiency at the 25™ and 75™ percentile points for ML estimation under FII were higher
at 65% and 68%, as opposed to 48% to 65% under FI. For MAP estimation under both
FII and FI, the IQR was equal to zero.

The alternative estimation procedures did not uniformly benefit from maximum
FII selection, however. While the median efficiency of ML/Alt was 9% higher (72% vs.
63%) at 6 = 0 under FII than under FI, it was 9% lower (85% vs. 94%) at 6 = 2. GSS
also suffered at © = 2 under FII, with a median efficiency 9% lower (72% vs. 81%) than
that under FI. Efficiency measures from the MAP/Alt procedure remained essentially

unchanged under FII or FI selection.
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The variability in efficiency for ML/Alt was reduced under FII at 6 = {0, 1}.
Efficiency measures at the 25™ and 75™ percentile points for ML/Alt under FIl at 6 =0
were 56% and 73%, respectively; under FI, they were 45% and 72%, respectively. At
0 = 1, the corresponding efficiency measures for ML/Alt under FII were 63% and 85%,
respectively; under FI, they were 47% and 87%, respectively. Variability was also
reduced for GSS at 6 = 1 under FII, with the efficiency measures at the 25™ and 75"
percentile points being 63% and 85%, respectively; under FI, they were 51% and 83%,
respectively. However, GSS not only suffered a reduction in median efficiency at 0 = 2
under FII, but also an increase in variability. Under maximum FI selection at this ability
level, the measures were 78% and 81% at the two percentile points; under maximum FII
selection, they were 71% and 98%. Oddly, the efficiency measure for GSS at 6 = 2 under
FII was right-skewed. (The 25" and 50" percentile points were equal in this case.)

Test length of 10 items. Median efficiency measures and IQRs of the efficiency
measures for tests of 10 items in length under maximum FII item selection are displayed
in Figures 13 and 14. As observed for tests of 5 items in length, the conventional ability
estimation procedures (ML and MAP) performed differently across the range of ability
levels in terms of median efficiency. Again, MAP was superior to ML for 6 = {-1, 0, 1}
and ML was more efficient than MAP at the extreme ability levels 6 = {-2,2}. MAP
achieved a median efficiency at or above 91% for 6 = {—1, 0, 1}, but continued to lag in
performance at the extremes, with median efficiencies of 79% and 70% at 6 = {2, 2},
respectively.

The gap in median performance for MAP between the middle ability levels and

those at the extremes narrowed from approximately 60% for 5-item tests to
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approximately 22% for 10-item tests. ML remained less efficient than MAP at the
middle of the ability continuum, having achieved a maximum median efficiency of 86%
at 0 = —1 and minimum median efficiency of 72% at 6 = 0. The median efficiency
measures for ML at 6 = {—2, 2} were again higher than those for MAP, at 90% and 83%,

respectively.
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Figure 13. Median efficiency measures under maximum FII item selection for a test of
10 items.
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Like the 5-item tests, the alternative ability estimation procedures performed
better overall than the conventional ability estimation procedures for 10-item tests.
Median efficiencies for ML/Alt were greater than the corresponding measures observed
for conventional ML, with gains of approximately 10% across all ability levels. ML/Alt
achieved a maximum median efficiency of 99% at 6 = —2, and a minimum median
efficiency of 82% at 6 = 0. For MAP/Alt, the median efficiency measures were
comparable to those observed for conventional MAP across all ability levels. GSS
performed similarly to ML/Alt at © = {2, 0, 1}, but with approximately 6% lower
median efficiency measures than ML/Alt at 6 = {—1, 2}.

Unlike the 5-item tests, variability in the efficiency measures for the conventional
ability estimation procedures for tests 10 items in length was substantially less for MAP
than ML only at © =0 and 6 = 1. At ability levels 6 = {0, 1}, the IQRs for MAP were
13% and 11%, respectively, whereas for ML they were 28% and 27%, respectively. At
ability level 6 = —1, MAP was more variable than ML, with IQRs of 20% and 15%,
respectively. At the extreme ability levels 6 = {2, 2}, MAP was more variable than ML
at 0 = —2, and less variable than ML at 6 = 2. IQRs at 6 = —2 for MAP and ML were
29% and 18%, respectively; at 0 = 2, they were 10% and 14%, respectively.

If the 25™ and 75™ percentile points are considered at 6 = —2, then ML efficiency
ranged from 76% to 94%, while MAP efficiency ranged from 52% to 82%. At the other
extreme of ability, 6 = 2, ML also outperformed MAP. The range in ML efficiency at
0 =2 was 74% to 88%, while it was 63% to 73% for MAP. For the middle range of

ability, —2 <0 < 2, MAP outperformed ML.
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Variability measures for the alternative procedures were somewhat different in the
case of 10-item tests as compared to 5-item tests. Whereas IQRs were much lower at
0 = —2 for the alternative procedures than for the conventional procedures on 5-item tests,
the reduction in variability was only about 6% for 10-item tests and only for ML/Alt. At
0 = -2, the IQR for ML/Alt was 12%, in contrast to 18% for ML. For ability levels
0 > 0, IQRs for ML/Alt were slightly smaller than those for ML. For MAP/Alt,
variability was essentially unchanged at 6 = {—1, 0, 1}; at 0 = 2, the IQR for MAP/Alt
was actually 9% higher. The pattern of IQRs for GSS closely mirrored that of ML/Alt,
with nearly identical IQRs for 6 > —1, a slightly higher IQR at 6 = —2, and a slightly
lower IQR at 6 =—1.

As observed for the 5-item tests, for certain combinations of ability estimation
procedure with true ability level, the efficiency measures under maximum FII were
different than the corresponding measures under maximum FI selection for tests of 10
items in length. For the conventional procedures, ML benefited from maximum FII over
maximum FI item selection at 6 = {—2, 1} and MAP benefited at both extreme ability
levels 6 = {2, 2}. Under maximum FI, the median efficiency measures at 6 = -2 for
ML and MAP were 82% and 73%, respectively. Under maximum FII, the corresponding
measures were 90% and 79%, respectively. Although the median efficiency measures
were higher under FII selection, the measures at the 25" and 75" percentile points were
approximately equal. For ML estimation under FII at 6 = —2, the measures at these
percentile points were 76% and 94%, respectively; under FI, the measures were 73% and
91%, respectively. For MAP estimation under both FII and FI at 6 = —2, the range in

efficiency was from 52% to 82%.
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At the other extreme 0 = 2, under maximum FI the median efficiency measure for
MAP was 64%, whereas under maximum FII it was 70%. For MAP under maximum FI
at © = 2, the efficiency measures at the 25™ and 75" percentile points were 59% and 73%,
respectively; under FII, they were 63% and 73%, respectively. While the median
efficiency of ML at 6 = 1 was similar under FI and FII, the variability was less under FII,
with an IQR of 35% under FI and 27% under FII.

All three alternative ability estimation procedures appeared to benefit from
maximum FII item selection in terms of reduced variability at ability level 6 =1,
although median efficiency measures remained essentially unchanged. The efficiency
measures at the 25" to the 75™ percentile points for ML/Alt at © = 1 under maximum FI
were 64% and 94%, respectively; under maximum FII they were 68% to 93%,
respectively. Likewise, for MAP/Alt under maximum FI, the corresponding measures
were 77% and 95%, respectively; under maximum FII, they were 83% to 95%,
respectively. For GSS under maximum FI, the corresponding measures were 62% and
93%, respectively; under maximum FII, they were 67% and 93%, respectively.

However, at ability level 6 = —2, variability in the efficiency measures for MAP/Alt
actually increased under maximum FII item selection. In this case, efficiency measures
at the 25" and 75" percentile points under maximum FI were 68% and 91%, respectively,
while under maximum FII they were 63% and 91%, respectively.

Test lengths of 15 and 25 items. As discussed earlier, the efficiency measures at
these tests lengths under maximum FI and maximum FII item selection were very similar.
Thus, the discussion of results under maximum FI selection suffices for maximum FII

selection for 15- and 25-item tests. However, figures for the median efficiency and



efficiency IQRs are provided for these test lengths. Figures 15 and 16 display these
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measures for 15-item tests; Figures 17 and 18 display these measures for 25-item tests.

Maximum Fll selection, 15 items
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Figure 15. Median efficiency measures under maximum FII item selection for a test of

15 items.
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Figure 17. Median efficiency measures under maximum FII item selection for a test of

25 items.
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Provisional ability estimates
Summary information for provisional ability estimates at each level of ability
estimation procedure x test length x true ability level is provided in Tables 13 and 14 for
item selection under maximum FI, and in Tables 15 and 16 for item selection under
maximum FII. Means and medians of the provisional ability estimates are provided in

Tables 13 and 15; mean-squared errors and standard deviations are provided in Tables 14

and 16.

Table 13. Means and medians of provisional ability estimates under maximum FI item

selection.
Mean O Median O
Ability Test
estimation | length | 6=-2  06=-1 6=0 06=1 60=2 | 6=2 6=-1 6=0 06=1 0=2

ML 5 -2.060 -1.025 0.142 1.130 2.098 | -2.047 -1.214 0.115 1.054 2.014
10 -2.012 -0.988  0.058 1.059 2.040 | -2.002 -1.003 0.077 1.048 1.985

15 -2.002  -0.989 0.032 1.034 2.022 | -2.002 -0.994 0.030 1.024 2.006

25 -2.010 -1.003 0.010 1.015 2.004 | -2.009 -1.005 0.011 1.012 1.997

ML/Alt 5 -1.607 -0.927 0.105 1.008 1.900 | -1.744 -1.044  0.050 1.063 2.085
10 -1.683 -0.901 0.133 1.009 1.902 | -1.794 -0.972 0.079 1.007 2.004

15 -1.636 -0.881 0.144 1.014 1917 | -1.814 -0.975 0.083 1.023 1.978

25 -1.588 -0.869 0.148 1.015 1.855 | -1.728 -0.957 0.100 1.003 1.900

MAP 5 -1.202  -0.745 0.036 0.882 1.509 | -1.161 -0.634 0.029 0.875 1.580
10 -1.543 -0.837 0.027 0.936 1.821 | -1.587 -0.876  0.036  0.935 1.769

15 -1.682 -0.883 0.015 0.955 1.889 | -1.694 -0.885 0.008 0.964 1.881

25 -1.791 -0.928 0.006 0.967 1.922 | -1.803 -0.917 -0.004 0.970 1.913

MAP/Alt 5 -1.548 -0.846 0.028 0911 1.665 | -1.738 -0.705 0.029 0.849 1.429
10 -1.638 -0.857 0.026 0.944 1.807 | -1.781 -0.851 0.043 0.935 1.753

15 -1.633 -0.876 0.021 0.959 1.889 | -1.809 -0.886 0.016 0.964 1.912

25 -1.694 -0.917 0.014 0.972 1.884 | -1.778 -0.923 0.009 0.975 1.927

GSS 5 -2.015 -1.033 0.058 1.015 2.086 | -2.472 -1.167 0.000 0.807 2.249
10 -1.961 -1.026 0.010 1.008 2.000 | -1.889 -1.167  0.000 1.029 1.889

15 -1.969 -1.010 0.018 1.004 2.024 | -1.889 -1.167  0.000 1.167 1.889

25 -1.988 -1.002 0.003 1.001 2.006 | -1.889 -1.167 0.000 1.029 1.889
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Table 14. Mean-squared errors and standard deviations of provisional ability estimates
under maximum FI item selection.

MSE (49 — 49)2 SD. 0
Ability Test
estimation | length | 6=-2  6=-1 0=0 6=1 60=2 | 6=2 0=-1 0=0 6=1 0=2

ML 5 1.010 0.713 0.615 0.419 0.398 | 1.003 0.844 0.771 0.634 0.623
10 0.456 0.293 0.206 0.146 0.177 | 0.675 0.541 0.450 0.378 0.419

15 0.258 0.172 0.119 0.080 0.090 | 0.508 0.415 0.343 0.281 0.300

25 0.139 0.095 0.067 0.046 0.048 | 0.373 0.309 0.258 0.214 0.218

ML/Alt 5 0.436 0.441 0.404 0.285 0.137 | 0.531 0.660 0.627 0.534 0.356
10 0.310 0.317 0.212 0.125 0.080 | 0.458 0.554 0.441 0353 0.265

15 0.292 0.275 0.164 0.074 0.054 | 0.400 0.511 0.378 0.271 0.217

25 0.302 0.241 0.130 0.042 0.041 | 0.364 0.473 0.329 0.205 0.140

MAP 5 0.847 0.251 0.172 0.156 0.281 | 0.458 0.431 0.413 0.377 0.200
10 0.395 0.170 0.108 0.087 0.112 | 0.431 0.379 0.328 0.288 0.282

15 0.249 0.122 0.079 0.064 0.075 | 0.384 0.329 0.281 0.248 0.251

25 0.133 0.077 0.053 0.041 0.046 | 0.299 0.268 0.230 0.200 0.201

MAP/Alt 5 0.572 0.358 0.189 0.184 0.250 | 0.606 0.578 0.434 0.420 0.371
10 0.350 0.193 0.112 0.092 0.105 | 0.468 0.415 0.334 0.298 0.260

15 0.262 0.137 0.083 0.065 0.062 | 0.357 0.349 0.288 0.251 0.222

25 0.166 0.095 0.056 0.042 0.035 | 0.269 0.297 0.237 0.203 0.146

GSS 5 0.762 0.517 0.446 0.285 0.306 | 0.873 0.718 0.665 0.534 0.546
10 0.348 0.252 0.206 0.133 0.144 | 0.589 0.501 0.454 0.364 0.379

15 0.242 0.182 0.134 0.086 0.097 | 0.491 0426 0365 0.293 0.311

25 0.165 0.112 0.083 0.052 0.055 | 0.406 0.335 0.288 0.229 0.235
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Table 15. Means and medians of provisional ability estimates under maximum FII item

selection.
Mean 0 Median 0
Ability Test
estimation | length | 6=-2 06=-1 6=0 6=1 60=2 | 6=2 6=1 6=0 0=1 =2
ML 5 -2.017 -0.987 0.151 1.117  2.095 | -1.912 -1.214 0.115 1.054 2.014
10 -2.006 -0.980 0.050 1.049 2.037 | -2.002 -0.984 0.046 1.036 1.961
15 -2.000 -0.992 0.031 1.032 2.023 | -1.994 -0.993 0.027 1.029 1.997
25 -2.009 -1.006 0.013 1.012 2.004 | -2.006 -1.005 0.015 1.012 1.997
ML/Alt 5 -1.600 -0.921 0.091 1.004 1.897 | -1.729 -1.044  0.105 0.908 1.932
10 -1.653 -0.899 0.115 1.01 1.905 | -1.771 -0.975 0.083  0.993 1.957
15 -1.625 -0.878 0.128 1.015 1.918 | -1.760 -0.963  0.091 1.016 1.967
25 -1.572  -0.862 0.148 1.011 1.837 | -1.728 -0.954 0.110 1.005 1.862
MAP 5 -1.202 -0.743  0.035 0.872 1.553 | -1.167 -0.832 0.035 0.875 1.655
10 -1.550 -0.838 0.025 0.939 1.826 | -1.572 -0.857 0.021 0.928 1.827
15 -1.683 -0.885 0.016 0.950 1.888 | -1.691 -0.899 0.013 0.956 1.883
25 -1.789 -0.928 0.009  0.965 1.924 | -1.797 -0.920  0.003 0.965 1.915
MAP/AIt 5 -1.523 -0.838 0.033 00915 1.666 | -1.738 -0.705 0.035 0.849 1.429
10 -1.619 -0.855 0.022 0.941 1.805 | -1.883 -0.824  0.022  0.935 1.791
15 -1.616 -0.876 0.023  0.954 1.884 | -1.809 -0.894 0.019 0.956 1.918
25 -1.678 -0.917 0.018 0.969 1.871 | -1.778 -0.929  0.014 0.970 1.927
GSS 5 -2.018 -1.039 0.060 1.026  2.079 | -2.472 -1.167 0.000 0.807 1.889
10 -1.943  -1.028 0.024 1.008 2.004 | -1.889 -1.167  0.000 1.167 1.889
15 -1.972 -1.015 0.017 1.007 2.021 | -1.889 -1.167  0.000 1.029 1.889
25 -1.986 -1.005 0.010 1.007 2.002 | -1.889 -1.167  0.000 1.029 1.889
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Table 16. Mean-squared errors and standard deviations of provisional ability estimates
under maximum FII item selection.

MSE (49 — 49)2 S.D. 6
Ability Test
estimation | length | 0=-2 6=-1 =0 ©0=1 =2 | 6=2 ©6=1 ©6=0 6=l 0=2
ML 5 0.924 0.645 0.591 0.398 0.390 | 0.961 0.803 0.754 0.620 0.617
10 0.437 0257 0204 0.135 0.151 | 0.661 0.507 0.449 0.364 0.387
15 0252 0.162 0.120 0.079 0.087 | 0.502 0.402 0.345 0.280 0.294
25 0.133  0.097 0.066 0.046 0.046 | 0.365 0.311 0.257 0.213 0.215
ML/Alt 5 0.437 0.426 0372 0.255 0.131 | 0.526 0.648 0.603 0.505 0.347
10 0.320 0299 0.196 0.112 0.070 | 0.447 0.537 0.427 0.334 0.246
15 0.300 0.274 0.143 0.070 0.047 | 0.399 0.509 0.356 0.265 0.201
25 0.318 0.251 0.121 0.042 0.040 | 0.367 0.482 0.314 0.204 0.118
MAP 5 0.854 0.248 0.161 0.147 0.253 | 0.466 0.427 0.400 0.361 0.231
10 0.393 0.164 0.108 0.083 0.112 | 0.437 0.371 0.328 0.282 0.285
15 0246  0.121 0.079 0.061 0.073 | 0.381 0.329 0.280 0.242 0.245
25 0.133  0.076 0.054 0.040 0.047 | 0.298 0.266 0.232 0.198 0.204
MAP/Alt 5 0.626 0351 0.183 0.179 0.248 | 0.631 0.570 0.427 0.414 0.369
10 0.384 0.187 0.113 0.089 0.105 | 0.489 0.407 0.336 0.292 0.259
15 0.287 0.134 0.080 0.062 0.058 | 0.374 0.344 0.282 0.244 0.212
25 0.183 0.096 0.056 0.041 0.035 | 0.282 0.298 0.236 0.200 0.136
GSS 5 0.745 0.506 0.442 0.292 0.249 | 0.863 0.710 0.662 0.540 0.493
10 0.344 0245 0.194 0.138 0.135 | 0.584 0.494 0.440 0.371 0.367
15 0.237 0.174 0.140 0.086 0.091 | 0.486 0.417 0.374 0.293 0.301
25 0.167 0.111 0.082 0.052 0.052 | 0.409 0.333 0.286 0.228 0.229

For a given level of ability estimation procedure x test length, mean provisional

ability estimates under maximum FI and maximum FII item selection are comparable; the

same holds true for the standard deviations of the provisional ability estimates. With

respect to the mean provisional ability estimates, those from the ML and GSS ability

estimation procedures appear to be the least biased for all test lengths. Estimates

showing the largest amount of bias are MAP, followed by MAP/Alt and ML/Alt. The

inward bias of the MAP estimates may be attributed to the N(0,1) prior. Because the

distributions of provisional ability estimates from the ML/Alt and MAP/Alt estimation
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procedures are right-skewed, the means of these distributions should be interpreted with
caution as measures of central tendency. Median measures for these distributions are
provided to illustrate this effect; note that the bias is typically less pronounced for the
medians of the distributions from ML/Alt and MAP/Alt.

The standard deviation of the provisional ability estimates is generally smallest
for MAP estimates, as the presence of an informative prior increases the precision of
these estimates. For tests 5 items in length, the ML provisional estimates are the most
variable among all the ability estimation procedures, although the GSS procedure is only
slightly less variable. ML/ALlt estimates are considerably less variable than ML estimates
at the extreme ability levels 6 = {-2, 2}. MAP/AIlt estimates are generally more variable
than the respective MAP estimates for test lengths of 5 and 10 items. Again, it should be
noted that the distributions of ability estimates from the ML/Alt and MAP/Alt procedures
are right-skewed, and so the standard deviation of these estimates may not accurately
characterize the variability in estimates.

In addition to the standard deviation of the provisional ability estimates, the
mean-squared errors of the provisional ability estimates are also provided. As observed
for the standard deviation of these estimates, for a given level of ability estimation
procedure x test length, the mean squared errors under maximum FI and maximum FII
item selection are comparable. For the shorter test lengths (5 or 10 items), the mean-

squared errors are smallest for MAP and MAP/ALt.



CHAPTER 5

Summary and Conclusions

Summary

Efficiency is often cited as an advantage of computerized adaptive tests (CATs)
over traditional paper-and-pencil tests. The goal of a CAT is to administer items targeted
to examinee ability, where higher-ability examinees generally receive more difficult
items and lower-ability examinees generally receive less difficult items. Nevertheless,
item selection in a CAT at the early stages of test administration has been criticized as
being inefficient, as provisional ability estimates are typically imprecise, inaccurate, or
both. The argument contends that because item selection is dependent on ability
estimation, item selection based on these early provisional ability estimates is likely to be
mismatched with respect to an examinee’s true ability.

The efficiency of CAT item selection is dependent on item selection procedures
as well as ability estimation procedures. Most commonly, maximum Fisher information
(FI) item selection is employed in conjunction with either maximum likelihood (ML) or
modal a posteriori (MAP) ability estimation. Because maximum FI item selection (under
either ML or MAP) has been criticized as being inefficient, the first purpose of this study
was to quantify the efficiency (or, inefficiency) of this most common item selection
procedure. The second purpose of this study was to propose an alternative ability

estimation procedure that addresses potential inefficiencies in CAT item selection, where
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this alternative procedure operates concurrently with either ML or MAP estimation and
functions as an adjustment to either of these procedures. The third purpose of this study
was to evaluate the efficiency of CAT item selection given five ability estimation
procedures (i.e., ML, ML/Alt, MAP, MAP/Alt, and GSS, where ML/Alt uses the
alternative procedure concurrently with ML estimation, MAP/Alt uses the alternative
procedure concurrently with MAP estimation, and GSS is a golden section search
strategy), with two item selection procedures (i.e., maximum FI and maximum Fisher
interval information, or FII).

Further, this study utilized a precise definition for an efficiency measure. The
primary advantage of this definition was that the efficiency of item selection from
different procedures (e.g., alternative item selection procedures or alternative ability
estimation procedures) could be compared to a fixed point of reference, one which
characterizes the most efficient estimator possible.

Two primary research questions were thus investigated in this study:

1. How might the efficiency of maximum FI item selection under conventional
ability estimation procedures be characterized, especially at the early stages of a CAT
administration? More specific questions include: (a) After a fixed number of items have
been administered, to what extent does efficiency of maximum FI item selection under
ML or MAP ability estimation vary for different points along the ability continuum? (b)
What is the effect of ability estimation procedure on the efficiency of maximum FI item
selection?

2. Is it possible to improve upon the efficiency of maximum FI item selection
under conventional ability estimation procedures by utilizing alternative item selection

procedures, alternative ability estimation procedures, or a combination of both? More
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specific questions include: (a) After a fixed number of items have been administered, to
what extent do the efficiency measures for the alternative item selection and ability
estimation procedures vary for different points along the ability continuum? Specifically,
how do the alternatives to FI item selection with ML or MAP ability estimation compare
to one another? (b) How do these efficiency measures compare with those obtained for
maximum FI item selection with ML or MAP ability estimation? That is, to what extent
are the alternative item selection and ability estimation procedures more (or less) efficient
than maximum FI item selection in conjunction with conventional ability estimation
procedures?

The two primary research questions were addressed using a simulation
methodology. The CAT simulations employed here draw on an item bank of 367 pre-
calibrated and dichotomously-scored 3P items from a recently-administered large-scale
CAT assessment of mathematics ability. In its operational form, the CAT administered
using this item bank is fixed at a length of 28 items; however, as it was hypothesized that
the greatest variation in CAT efficiency would occur much earlier (e.g., at or before the
10"™ administered item), the CAT simulations were fixed such that no test exceeded a
length of 25 items.

The four factors in the experimental design were: (1) item selection procedure
(maximum FI or maximum FII item selection); (2) ability estimation procedure (ML,
ML/Alt, MAP, MAP/Alt, and GSS); (3) true ability level at discrete points along the
ability continuum (at -2, -1, 0, +1, or +2 logits); and (4) test length (5, 10, 15, or 25
items). For each of the experimental conditions, 1000 replications were generated.

Efficiency was the primary dependent measure. Since this measure is highly skewed to
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the left, the median efficiency was reported as a measure of central tendency, and the
interquartile range was reported as a measure of variability.

With respect to the first research question, sizeable differences in efficiency were
found between ML and MAP ability estimation under maximum FI item selection for
shorter tests (5 or 10 items) across true ability levels. At the middle of the ability
distribution, MAP was more efficient; at the extremes of the ability distribution; ML was
more efficient. For longer tests (15 or 25 items), these differences remained but became
far less profound.

With respect to the second research question, increased test efficiency was
obtained using alternative ability estimation procedures (ML/Alt, MAP/Alt, and GSS) in
conjunction with maximum FI item selection. The gains in efficiency were most
pronounced for shorter tests, but were noticeable even for longer tests. Conventional
ability estimation procedures (ML and MAP) benefited from the alternative item
selection procedure (maximum FII selection) at the extremes of the ability distribution for
shorter tests, but efficiency measures as compared to maximum FI selection were
essentially unchanged for longer tests. Mixed results occurred when maximum FII
selection was combined with the alternative ability estimation procedures. However, as
observed for the conventional ability estimation procedures under maximum FII

selection, there was no change in efficiency for longer test lengths.

Findings and Conclusions
The efficiency measure 77).(0)/ 1" (8) used in this study plays an important role

in the interpretation of the results. Comparisons across procedures certainly could have
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been made if relative efficiency measures 1" (0)/ 1" (0) for two procedures 4 and B
were used instead. However, by utilizing 7 " (9), the upper bound on the precision with

which an examinee with true ability 6 may be measured, both relative and absolute
comparisons become possible. Thus, not only can two procedures be characterized in
terms of how much more efficient one is than the other, but also in terms of how efficient
each one is with respect to the maximum efficiency attainable.

The first purpose of this study was to quantify the efficiency of the most common
item selection procedure, maximum FI item selection, in conjunction with ML and MAP
ability estimation procedures. From a relative efficiency standpoint, it was found that
MAP was more efficient than ML at the middle ability levels 6 = {—1, 0, 1}, and less
efficient than ML at the extreme ability levels 6 = {2, 2} for all tests lengths (5, 10, 15,
and 25 items), although these differences became smaller as test length increased.
However, the quantification of efficiency indicates how well, in terms of optimal
performance, the procedures are operating. While ML was indeed more efficient than
MAP at the extreme ability levels, median efficiencies at these ability levels did not
exceed 62% for 5 items, and did not exceed 82% for 10 items. In contrast, at the middle
ability levels where MAP was more efficient, MAP efficiencies exceeded 88% for 5
items, and 91% for 10 items. Thus, one finding here is that little room for improvement
exists for maximum FI item selection with MAP ability estimation at middle ability
levels, as it attained nearly 90% or greater efficiency even for the shortest test length.
Where room for improvement does exist is for ML ability estimation, across all levels of
ability, and for MAP at the extremes. For both of these cases, the largest gaps in

performance occurred for the shorter test lengths.
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Maximum FII item selection was proposed to address the imprecision in ability
estimation at the early stages of a CAT. Some of the results from maximum FII item
selection in conjunction with ML and MAP estimation from this study are consistent with
prior research; e.g., Chen, Ankenmann, & Chang (2000). Although Chen et al.’s (2000)
dependent measures were different from those utilized here (bias, standard error, and
RMSE of ability estimates versus efficiency measures) and ability estimation procedure
was different (EAP versus ML and MAP), they also found that maximum FII item
selection performed better than maximum FI item selection at the lower extreme of
ability (8 = —2) for tests 10 items in length or shorter. However, in the present study it
was found that in addition to increased efficiency at the lower extreme of ability, FII item
selection benefited MAP estimation (but not ML) at the higher extreme of ability (0 = 2),
for the 5- and 10-item tests.

As mentioned, the room for improvement in efficiency exists for ML ability
estimation, across all levels of ability, and for MAP at the extremes. In addition, the
largest gaps in performance occurred for the shorter test lengths. Maximum FII item
selection filled in some of these gaps, raising median efficiency measures in the case of
MAP by about 10% for 5-item tests, and 6% for 10-item tests. The greatest increase in
median efficiency under maximum FII selection was observed for ML at the lowest
ability level, with an increase of 30% over maximum FI selection at 5 items.

In general, the alternative procedures ML/Alt and MAP/ALlt helped fill the gaps in
the efficiency of the conventional ML and MAP procedures under maximum FI item
selection, without negatively impacting them in cases where performance was already
high. The alternative ability estimation procedures yielded higher median efficiency

measures while simultaneously maintaining or decreasing variability in those measures.
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The improvement in efficiency was greater than that observed for ML and MAP under
maximum FII selection, and occurred across more ability levels. For instance, ML
estimation only benefited from maximum FII selection at © = —2, whereas efficiency
measures for ML/Alt were higher for all ability levels. Further, while maximum FII
selection did augment the median efficiency of 5- and 10-item tests at 6 = —2 for ML
estimation under maximum FI selection by 30% and 8%, respectively, ML/Alt saw a
corresponding increase of 47% and 20%, respectively, under maximum FI selection.

Both ML/Alt and MAP/Alt were new methods proposed in this study. However,
the third ability estimation procedure, GSS, had been previously investigated by
Xiao (1999). Xiao (1999) states that the ability estimate from the GSS procedure is
equivalent to the ML estimate; however, a comparison of the results from the ML and
GSS procedures in this study suggests that they are not. Were the estimates the same, the
expectation would be that the efficiency measures from ML and GSS would also be the
same, or at least very similar. However, the median efficiency measures from GSS are
always higher than those from ML, and the differences are most pronounced for shorter
test lengths. Interestingly, results from the GSS procedure closely parallel those not from
ML, but from ML/Alt. This correspondence may result from the fact that GSS, like
ML/ALL, utilizes hypothesis-testing and an interval search strategy.

When maximum FII item selection was combined with the alternative ability
estimation procedures, the results were mixed for 5- and 10-item tests, and were
essentially unchanged for longer test lengths. Two median efficiency measures were
lower under maximum FII item selection for 5-item tests; they occurred for ML/Alt and

GSS at 6 =2. One measure was higher, also for ML/Alt but at 6 = 0. No clear pattern
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for the change in variability measures was observed. In the nine cases where differences
in variability were detected, three were increases.

Overall, it appears that ability estimation procedure impacts the efficiency of item
selection to a larger extent than item selection procedure. The effect of alternative ability
estimation procedures (ML/Alt, MAP/Alt, and GSS) on test efficiency was greater than
the effect of the alternative item selection procedure (FII). Thus, incorporating ability
estimation error into item selection procedures (as is the case with alternative item
selection procedures such as FII) may be less effective at increasing test efficiency than

utilizing alternative ability estimation procedures.

Implications for Further Study

There are two major areas where the present study could be extended: (1)
investigations relating to the robustness of item selection under more realistic testing
conditions; and (2) the formulation of the alternative ability estimation procedure. With
respect to the first area, it should be noted that the present study investigated CAT item
selection in a highly idealized case, where all item responses were simulated according to
a unidimensional IRT model. However, actual test data is almost always
multidimensional, containing more noise than is generated by unidimensional 3P
simulations. An important extension to the study would be to simulate examinee
response data under a more realistic model, such as a multidimensional IRT model, but
administer a unidimensional CAT. Thus, while the items within the CAT pool would be
unidimensional, examinee responses would contain extraneous sources of variance. The
performance of the ability estimation and item selection procedures under these more

realistic conditions could then be examined, and the more robust procedures identified.
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In addition, the efficiency of item selection could be investigated in the more
realistic situation where item exposure control is utilized. Item exposure control
necessarily reduces test efficiency, because the “best” item selected by the CAT
algorithm cannot always be administered. The efficiency measure can indicate to what
extent efficiency is lowered from its optimal values (i.e., efficiency when no item
exposure control is operating).

The second area for further research concerns the formulation of the alternative
ability estimation procedure. The procedure itself contains two components: a
hypothesis test and a search procedure. Currently, the hypothesis test compares expected
and observed proportions correct, and the decision rule is based on a critical z-value z..
The optimal z. values were found empirically in this study; future research could
investigate whether these z. values remain constant or vary under different conditions,
such as for different item pool sizes and different characteristics of the items in the pool.
This research might also yield clues for an analytic solution to finding optimal z. values.
In addition, while the current hypothesis test compares expected and observed
proportions correct, expected and observed likelihood functions could be compared
instead, in a similar manner as Drasgow, Levine, & Williams’ (1985) standardized
likelihood-based statistic /..

The second component to the alternative estimation procedure is the search for a
new ability estimate. The current procedure utilizes the average ICC for the set of items
already administered to find this new ability estimate, but other possibilities exist. For
example, the average ICC is essentially a test score where item probabilities are all
weighted equally. Another scoring convention, where the weights are not all constant,

might be applied. Such a technique was utilized in the GSS procedure, where optimal



141

scoring weights were applied to examinees’ response vectors. Further, if a test statistic
similar to /, is used for hypothesis-testing, then it may become possible to use likelihood
functions to search for the new ability estimate, as opposed to average ICCs or related

score functions.
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Item parameters from CAT pool
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Table 17. Item parameters from CAT pool
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Item
number a b c
1 1.688 0.783 0.261
2 0.953 -0.016 0.125
3 0.675 -1.117 0.000
4 0.924 -0.440 0.128
5 0.872 -0.452 0.151
6 0.798 0.257 0.083
7 0.727 -1.415 0.000
8 0.926 -1.860 0.132
9 0.843 1.098 0.166
10 1.528 1.322 0.231
11 0.811 -1.047 0.174
12 0.749 0.383 0.065
13 0.907 1.424 0.076
14 0.855 -1.700 0.000
15 0.770 0.647 0.129
16 1.009 -0.106 0.342
17 0.611 -2.844 0.110
18 0.984 0.505 0.105
19 0.586 0.057 0.000
20 0.880 0.433 0.060
21 0.632 -0.891 0.000
22 1.144 -0.719 0.254
23 1.001 1.572 0.086
24 0.605 -2.273 0.123
25 1.246 0.850 0.244
26 0.944 1.938 0.127
27 1.449 1.144 0.167
28 1.106 0.199 0.227
29 0.810 -1.683 0.000
30 0.891 0.001 0.054
31 0.921 0.448 0.082
32 0.723 -1.903 0.101
33 0.646 0.571 0.073
34 1.290 -0.344 0.077
35 1.937 1.988 0.150
36 1.121 -0.446 0.196
37 0.588 -1.275 0.096
38 0.506 0.028 0.000
39 1.175 2.049 0.131
40 0.706 -1.027 0.070
41 1.156 1.178 0.339
42 1.599 1.243 0.235
43 0.700 -0.504 0.000
44 1.530 0.300 0.103
45 0.907 -0.205 0.052
46 1.124 1.922 0.148
47 1.341 0.342 0.110
48 1.595 1.039 0.142

Item
number a b c
49 0.834 -0.349 0.069
50 1.041 -0.124 0.209
51 1.302 -0.211 0.074
52 1.088 -0.048 0.328
53 1.194 0.829 0.018
54 0.673 -1.049 0.089
55 1.926 1.156 0.203
56 1.541 0.800 0.116
57 0.658 -2.103 0.036
58 1.947 0.497 0.239
59 1.812 1.469 0.122
60 0.864 1.183 0.112
61 1.935 0.872 0.247
62 0.702 -0.365 0.000
63 1.352 1.862 0.195
64 0.923 -2.054 0.134
65 0.831 -0.388 0.016
66 1.353 -0.329 0.241
67 1.508 2.202 0.059
68 0.667 -0.878 0.000
69 1.760 1.956 0.192
70 0.642 0.168 0.034
71 0.854 -0.520 0.000
72 1.926 1.341 0.282
73 1.265 1.200 0.159
74 1.206 1.012 0.098
75 1.274 -0.804 0.193
76 1.425 0.902 0.123
77 1.695 1.710 0.209
78 1.129 0.426 0.159
79 1.444 2.105 0.147
80 0.950 0.563 0.000
81 1.486 0.503 0.279
82 1.361 0.888 0.133
83 1.197 0.943 0.119
84 1.361 1.331 0.080
85 1.407 1.282 0.101
86 0.914 -0.113 0.128
87 0.979 0.353 0.079
88 1.003 -0.014 0.113
89 1.037 -0.644 0.187
90 0.969 -1.445 0.000
91 0.663 -1.288 0.095
92 0.889 0.344 0.103
93 0.730 0.158 0.000
94 1.930 0.926 0.316
95 1.233 0.355 0.104
96 0.961 0.311 0.102
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Item
number a b c

97 1.648 0.963 0.223
98 1.282 0.905 0.106
99 1.775 0.617 0.108
100 1.387 -0.093 0.216
101 1.026 -0.259 0.225
102 0.886 -0.987 0.000
103 0.931 -0.721 0.067
104 0.645 -0.423 0.124
105 1.624 1.606 0.164
106 0.478 -2.054 0.095
107 0.977 0.026 0.156
108 0.465 -0.210 0.142
109 0.756 -0.912 0.181
110 0.476 -0.255 0.050
111 0.498 -0.980 0.072
112 1.124 0.540 0.108
113 1.229 1.607 0.047
114 1.509 1.692 0.075
115 1.050 0.209 0.141
116 0.951 2.054 0.098
117 1.090 1.850 0.229
118 0.697 -1.836 0.101
119 0.771 2.743 0.058
120 0.677 -1.219 0.000
121 0.700 0.104 0.000
122 0.600 -0.483 0.000
123 0.838 -0.212 0.123
124 0.868 0.286 0.026
125 0.654 -0.817 0.000
126 0.530 -1.529 0.123
127 0.842 0.282 0.102
128 0.909 -1.375 0.023
129 0.718 0.316 0.094
130 0.798 0.756 0.150
131 0.662 -1.200 0.031
132 0.951 -1.767 0.023
133 0.963 0.995 0.029
134 0.989 0.745 0.264
135 0.631 -0.013 0.077
136 0.591 -2.069 0.133
137 1.888 1.280 0.183
138 1.159 0.392 0.288
139 0.730 -0.753 0.056
140 1.105 0.004 0.115
141 0.740 -1.217 0.000
142 0.812 0.353 0.333
143 1.376 0.043 0.197
144 0.675 0.012 0.074

Item
number a b c

145 1.063 -0.160 0.404
146 1.011 1.676 0.269
147 0.569 -0.774 0.004
148 0.900 -0.628 0.335
149 1.529 1.211 0.175
150 0.654 -1.206 0.142
151 1.006 -0.404 0.197
152 0.787 -0.961 0.120
153 0.700 -0.684 0.069
154 0.874 -1.549 0.000
155 0.624 -0.538 0.249
156 1.139 -0.734 0.202
157 1.004 -1.031 0.305
158 1.008 1.376 0.172
159 1.004 -1.668 0.000
160 1.356 0.582 0.337
161 0.988 -1.208 0.347
162 1.110 1.122 0.118
163 0.669 -2.519 0.133
164 0.860 0.314 0.156
165 0.936 0.672 0.037
166 0.793 -0.817 0.198
167 1.213 -0.762 0.226
168 1.127 0.430 0.359
169 1.029 0.650 0.123
170 1.253 1.817 0.091
171 1.009 -0.193 0.253
172 1.410 0.579 0.318
173 0.806 -1.838 0.000
174 0.943 0.146 0.259
175 0.917 0.241 0.077
176 1.184 1.341 0.192
177 1.775 2.018 0.218
178 0.906 -0.639 0.000
179 0.937 0.053 0.216
180 0.784 -1.696 0.133
181 1.260 1.923 0.362
182 0.588 -0.783 0.088
183 1.168 0.927 0.171
184 1.114 0.564 0.234
185 0.652 0.150 0.041
186 0.767 -0.493 0.267
187 0.836 -0.305 0.042
188 0.912 -0.873 0.391
189 1.044 0.858 0.036
190 1.327 0.550 0.327
191 0.848 -0.213 0.083
192 1.083 1.052 0.288
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193 1.584 0.731 0.172
194 0.633 -0.967 0.000
195 1.353 0.787 0.306
196 1.335 1.383 0.132
197 1.097 -0.410 0.436
198 1.440 0.580 0.330
199 1.390 0.228 0.473
200 0.504 -0.530 0.000
201 0.634 -1.293 0.120
202 0.709 -0.140 0.032
203 0.891 -1.080 0.336
204 0.991 0.850 0.034
205 0.578 -0.785 0.010
206 1.377 0.099 0.204
207 0.887 -1.221 0.231
208 1.092 1.422 0.063
209 1.396 -0.075 0.157
210 1.091 0.372 0.315
211 1.120 0.286 0.292
212 0.883 -0.451 0.294
213 0.563 -0.823 0.133
214 0.939 0.042 0.294
215 1.060 1.131 0.029
216 1.102 0.754 0.283
217 0.715 -0.078 0.000
218 0.572 -1.186 0.000
219 0.692 -0.957 0.000
220 0.868 -0.176 0.104
221 0.710 -1.470 0.001
222 0.843 0.054 0.045
223 1.143 0.375 0.174
224 1.035 0.676 0.096
225 1.279 1.308 0.216
226 1.309 1.272 0.144
227 1.244 1.594 0.128
228 0.917 0.851 0.119
229 0.942 0.006 0.130
230 0.652 -0.665 0.000
231 0.937 0.437 0.142
232 1.036 0.084 0.214
233 0.718 -0.668 0.000
234 1.085 0.812 0.062
235 0.873 0.016 0.110
236 0.986 -0.157 0.226
237 1.264 0.651 0.155
238 1.114 0.925 0.188
239 0.671 -0.209 0.039
240 1.345 1.581 0.212

Item
number a b c

241 0.752 -0.547 0.000
242 1.127 1.604 0.109
243 1.392 -0.041 0.334
244 1.891 0.783 0.386
245 1.197 0.939 0.143
246 0.797 0.279 0.115
247 1.170 0.764 0.141
248 1.846 0.159 0.415
249 1.018 0.315 0.172
250 1.325 0.687 0.214
251 1.343 1.406 0.331
252 0.920 1.988 0.181
253 0.845 0.518 0.048
254 1.186 -0.023 0.280
255 0.775 0.626 0.127
256 1.095 1.638 0.278
257 1.181 0.792 0.222
258 1.342 -0.140 0.361
259 1.780 1.418 0.296
260 0.880 0.546 0.242
261 0.441 0.384 0.000
262 0.707 1.340 0.212
263 0.636 -0.227 0.383
264 0.727 1.520 0.063
265 0.627 1.126 0.037
266 0.448 -0.181 0.000
267 0.701 1.182 0.170
268 1.007 1.666 0.130
269 0.537 -1.889 0.119
270 0.541 -2.393 0.119
271 1.322 -0.046 0.025
272 0.661 -1.747 0.142
273 0.693 -2.455 0.110
274 0.941 0.902 0.163
275 0.621 0.406 0.221
276 1.133 0.593 0.074
277 0.861 -0.932 0.050
278 0.536 -0.998 0.000
279 0.695 1.404 0.227
280 0.451 -1.597 0.136
281 0.487 -1.868 0.136
282 0.582 1.023 0.202
283 0.941 1.329 0.262
284 0.627 -1.215 0.120
285 0.479 -0.396 0.120
286 0.496 0.010 0.000
287 1.079 1.034 0.116
288 0.670 -0.509 0.205
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337 0.575 0.099 0.083
338 0.709 0.446 0.245
339 0.872 2.333 0.017
340 0.734 2.459 0.090
341 0.595 1.869 0.206
342 0.531 1.567 0.302
343 0.652 -0.274 0.000
344 0.588 -0.224 0.000
345 0.672 0.915 0.178
346 0.423 -2.794 0.134
347 0.601 -2.548 0.134
348 0.537 0.682 0.000
349 0.569 0.358 0.279
350 1.306 1.439 0.409
351 0.565 -0.107 0.099
352 0.556 0.359 0.175
353 0.410 -0.168 0.000
354 0.510 -2.375 0.123
355 0.742 0.733 0.182
356 0.651 -1.610 0.000
357 0.529 0.633 0.250
358 0.617 -0.658 0.500
359 1.050 1.099 0.388
360 1.158 1.763 0.197
361 0.772 0.425 0.125
362 0.536 0.486 0.245
363 1.195 1.607 0.221
364 0.895 0.406 0.158
365 1.125 0.817 0.104
366 0.986 0.789 0.254
367 1.180 1.018 0.117

Item
number a b c

289 0.573 -1.098 0.133
290 0.875 0.955 0.184
291 0.440 2.007 0.006
292 0.717 -1.470 0.115
293 1.309 1.097 0.106
294 0.449 -0.541 0.139
295 0.409 -1.488 0.139
296 0.710 0.259 0.282
297 0.593 -0.813 0.139
298 0.414 -2.427 0.139
299 1.035 1.018 0.181
300 0.591 1.090 0.109
301 0.545 1.571 0.138
302 0.962 1.308 0.030
303 0.737 -1.995 0.101
304 0.706 0.049 0.101
305 1.121 1.172 0.301
306 1.053 1.446 0.291
307 0.835 1.221 0.029
308 0.590 -0.164 0.000
309 1.322 1.567 0.212
310 1.181 1.432 0.058
311 1.127 1.453 0.233
312 1.345 1.150 0.142
313 0.603 0.821 0.263
314 0.711 -0.200 0.308
315 0.547 0.695 0.029
316 0.987 1.359 0.429
317 0.545 1.163 0.142
318 1.058 1.425 0.153
319 0.735 -2.083 0.133
320 0.740 0.640 0.000
321 0.628 -0.594 0.133
322 0.445 -3.375 0.137
323 0.569 -1.032 0.137
324 0.525 0.058 0.137
325 0.767 0.010 0.147
326 0.624 0.237 0.039
327 0.728 1.178 0.084
328 0.804 -0.528 0.143
329 0.616 -0.298 0.000
330 0.634 -0.496 0.000
331 0.757 1.163 0.184
332 1.096 0.844 0.153
333 0.552 0.439 0.148
334 1.454 0.682 0.123
335 0.598 1.470 0.023
336 0.816 1.940 0.257




APPENDIX B

Identifying optimal z. values

147



148

The alternative ability estimation procedure utilizes hypothesis-testing, and by
necessity requires a critical z-value in order to determine whether the null hypothesis
should be retained or rejected. Although the choice of z. is arbitrary, it stands to reason
that some z. values will lead to more correct decisions—that is, to use the alternative
ability estimate when it is more accurate than the conventional ability estimate—than
other values of z.. Further, because ability estimates under ML are characteristically
different than those obtained under MAP, it is also possible that the better-functioning z.
values found for the alternative ability estimation procedure concurrent with ML (or,
Alt/ML) may be different than those for the alternative ability estimation procedure
concurrent with MAP (AIt/MAP). It is then desirable to find the best-functioning, or
“optimal” z. values for the Alt/ML and Alt/MAP procedures. The following provides the
empirical basis for which the optimal z. values were obtained in this study.

This appendix is divided into two sections, with each section further divided into
two subsections. The first section discusses how the optimal z. value was obtained for
ability estimation by Alt/ML; the second section discusses how the optimal z. value was
obtained for Alt/MAP. Within each of these sections, two outcome measures are
examined: the first is an accuracy measure, and the second is a relative efficiency
measure. The two measures are used to provide convergent evidence for the selection of
optimal z. values. A discussion of the two measures follows.

Accuracy measures

Both of the alternative ability estimation procedures are invoked when a decision
to reject the null hypothesis is obtained. Thus, the frequency with which the alternative
procedures are invoked may be calculated; in addition, the conditional probability that the

alternative procedure is more accurate than the conventional procedure, given that the
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alternative procedure is invoked, may be calculated. To determine whether the

alternative procedure is more accurate than the conventional procedure, the absolute

difference ‘é* - 6‘ for the alternative ability estimate is compared to the absolute
difference ‘é - 9‘ for the conventional (ML or MAP) ability estimate 0, where 0

indicates true ability level. If ‘é* - e‘ < ‘é 0

, then the alternative procedure is said to be

more accurate than the conventional procedure. If n,.. represents the number of times the
alternative procedure is more accurate, and n;,, represents the number of times the
alternative procedure is invoked, then the conditional probability P(accurate|invoked), or
P(acc|invoked) is equal to nyc./niy,. If ny,, examinees are considered, then the probability
that the alternative procedure is invoked for these examinees is P(invoked), and is equal
tO i/ Moy

Simulations were conducted where 500 examinee responses were simulated per
ability level 0 = {-2, -1, 0, 1, 2} for tests of 25 items in length. A simulation was defined
by specific choice of ability estimation procedure (Alt/ML or AIt/MAP) and specific
choice of z. value. The z. values tested ranged from 0.6 to 1.4 in increments of 0.1; thus,
nine z. values were considered per ability estimation procedure. Maximum FI item
selection was used for all simulations. The conditional probability P(acclinvoked) was
calculated for each test length i, where i = {1, 2, ..., 25}. Because it was desired to
calculate the accuracy of the alternative procedure for all ability levels simultaneously,
P(acc|invoked) was not further conditioned on examinee true ability.
Relative efficiency measures

Further evidence for selecting an optimal z. value was obtained from the second

outcome measure, the relative efficiency of tests administered using the alternative
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procedures (i.e., Alt/ML or Alt/MAP) as compared to tests administered using the
corresponding conventional procedures (i.e., ML or MAP). If the alternative ability
estimation procedure is more efficient than the conventional estimation procedure,
relative efficiency measures should be greater than 1; conversely, if the alternative
procedure is less efficient, the measures will be less than 1. Proper selection of z. should
minimize relative efficiency measures that are less than 1 and maximize those measures
that are greater than 1. If it is found that this minimization-maximization is impossible,
then the use of the alternative ability estimation procedure is not warranted, as it will
cause more “harm” than item selection based on conventional ability estimates, and
further will not increase efficiency.

As with the accuracy measures, potential z. values ranged from 0.6 to 1.4 in steps
of 0.1. Simulations were conducted for 2500 examinees (500 per true ability level) and
for tests of length 5, 10, 15, and 25 items. Maximum FI item selection was used for all

simulations. Relative efficiency at true ability 6 was computed as the ratio of test

information at i = {5, 10, 15, 25} items under the alternative procedure, or / ;?T (6), to the

test information at i items under the conventional procedure, or / g))NV (). Thus,

simulations under ML/Alt and ML were used to identify the optimal z. for the Alt/ML
procedure; likewise, simulations under MAP/Alt and MAP were used to identify the
optimal z. for the Alt/MAP procedure.
Optimal z. for the Alt/ML procedure

As discussed, two outcomes measures were analyzed in order to determine the

optimal z. value under Alt/ML ability estimation. The first of these is the accuracy
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measure P(acc|invoked); the second is the relative efficiency measure. The analysis of
the accuracy measures is considered first.

Figures 19 and 20 illustrate the accuracy measures for the range of z. values
tested; i.e., 0.6 to 1.4 in increments of 0.1. The accuracy measures are plotted against
item administration number. For the group of z. values shown in Figure 19, the accuracy
measures are not constant; rather, they decrease with increasing item administration
number. Such a trend is undesirable and therefore these z. values (0.6, 0.7, and 0.8) are

labeled as “unstable.”

P(acc|invoked)

0 5 10 15 20 25

Item administration number

—4—2c=06 —8—2z2c=0.7 —a—2zc=038

Figure 19. Accuracy measures for Alt/ML ability estimation; unstable set of z. values.
The sequence of accuracy measures observed for the z. values in Figure 20 are
different from those observed for the unstable z. values in Figure 19. Most notably, the
accuracy measures in Figure 20 stabilize with increasing item administration number.
That is, the accuracy measures for this set of z. values do not decline with increasing test
length as they do in Figure 19 (although a slight drop in accuracy is observed for z. = 0.9

for tests longer than 21 items). Thus, these z. values are labeled as “stable.”
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P(acc|invoked)

0 5 10 15 20 25

Item administration number

‘—O—zc=0.9 —®720=10 —A—2zc=11—6—2c=12 —%—2c=13 —8—zc =14

Figure 20. Accuracy measures for Alt/ML ability estimation; stable set of z. values.
From Figure 20, it appears that higher z. values are associated with greater
accuracy measures in the long run. Unfortunately, higher z. values necessarily limit the
number of times the alternative procedure may be invoked. The probability that the
alternative procedure is invoked decreases with increasing z., as shown in Figures 21and
22. Whereas the procedure is invoked more frequently for smaller values of z, the
accuracy measures suffer. Thus, these z. values 0.6, 0.7, and 0.8 are too liberal. On the

other hand, for z_, > 0.9, the accuracy measures stabilize, although higher z. values are

associated with more conservative tests. Ideally, the optimal z. value should lead to
stable accuracy measures and lead to as many invocations as possible. Based on this
criterion, the optimal z, value for Alt/ML should be no less than (and preferable equal to)

0.9.
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P(invoked)

10 15 20 25

o
[8)]

Item administration number

——2c=06 —8—zc=0.7 ——2zc=0.8

Figure 21. Probability of alternative procedure invocation concurrent with ML
estimation; unstable set of z. values.

P(invoked)

10 15 20 25

0 5

Item administration number

——2c=09 —®—2zc=10 —4A—2z2c=11—6—2c=12 —%—2c=13 ——2zc=14

Figure 22. Probability of alternative procedure invocation concurrent with ML
estimation; stable set of z. values.
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Additional evidence for the optimal selection of z. for the Alt/ML procedure
comes from an examination of relative efficiency measures. Relative efficiency measures
are plotted in Figures 23 and 24, where the five major groups are defined by ability level
0 ={-2,-1,0, 1, 2, and within each group the relative efficiency measures are provided
for tests of length i = 5, 10, 15, and 25 items. Figure 23 illustrates the relative efficiency
measures when the unstable set of z. values were chosen. Although the relative
efficiency of Alt/ML over the conventional ML is always >1 for 6 = {-1, 0, 1}, it is quite
unsatisfactory at the extremes of ability; i.e., = {-2, 2}. In these cases, the alternative
ability estimation procedures lead to less efficient test administrations, and are clearly at a

disadvantage with respect to the conventional ability estimation procedures.

25

\
I N >
v A s

510 15 25 510 15 25 510 15 25 510 15 25 510 15 25
6=-2 6=-1 6=0 6=+1 6=+2

Rel Eff(alt,conv)

‘—0—2c=0.6 —m—2zc =07 —A—2zc=0.8 ‘

Figure 23. Relative efficiency measures for Alt/ML ability estimation; unstable set of z,
values.

For the set of stable z. values, the relative efficiency measures are > 1 across all
ability levels; i.e., 0 = {-2, -1, 0, 1, 2}. However, the conservativeness of the higher z.

values is apparent for z, > 1.1, as the relative efficiency measures are nearly equal to 1.0.
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It is only for z. equal to 0.9 or 1.0 that an increase in efficiency is observed for Alt/ML.
The increase in efficiency is especially pronounced for z. = 0.9.

Based on the analysis of the accuracy measures P(acc|invoked), it was concluded
that the optimal z. value for Alt/ML should be no less than 0.9, and preferably equal to it.
Analysis of the relative efficiency measures also rules out z. values less than 0.9; further,

it supports the selection of z. = 0.9 as the optimal z. value for the Alt/ML ability

estimation procedure.
2.5
2
6 15 L
Q
g ._.\4‘:\\03- szi:n I¥=-
5 1. mh
©
(74
0.5
0
510 15 25 510 15 25 510 15 25 510 15 25 510 15 25
0=-2 0=-1 0=0 0=+1 0=+2
——2c=09 —m—2zc=10 —4A—zc=11—06—2c=12 —%—2c=13 —@—2zc=14

Figure 24. Relative efficiency measures for Alt/ML ability estimation; stable set of z,
values.
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Optimal z. for the AIt/MAP procedure

The analysis of the two outcomes measures, accuracy and relative efficiency, for
identifying the optimal z. value for the AIt/MAP procedure parallels the analysis
conducted for the Alt/ML procedure. Again, the analysis of the accuracy measures is
considered first.

Figures 25 and 26 illustrate the accuracy measures observed for the Alt/MAP
simulations where test z. values 0.6 through 1.4 in increments of 0.1 were chosen. As
shown in Figure 25, z. values <1.0 led to unstable accuracy measures, although the
pattern of instability differs from that observed in the AIt/ML case (as shown in
Figure 19). For z. values equal to 0.8, 0.9, and 1.0, Figure 25 shows a somewhat erratic
pattern in the accuracy measures as test length increases. For the smallest z, values, the
pattern appears stable but it is quite low in magnitude, with P(acc|linvoked) equal to about

0.2. The z, values shown in Figure 25 are thus not likely to be optimal for Alt/MAP.

P(acc|invoked)

Item administration number

——2c=06 —m8—2c=07 —A—2c=08 —6©—2c=0.9 —%—2zc=1.0

Figure 25. Accuracy measures for Alt/MAP ability estimation; unstable set of z. values.
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In contrast, the z. values shown in Figure 26 are stable for increasing test lengths,
and the accuracy measures are higher. An anomaly appears for z. = 1.4 and a test length
equal to 4 items, where the accuracy measure suddenly drops to zero, only to return to
approximately 0.5 for the 5™ item. Of the four z. values shown in Figure 26, z. = 1.3
leads to the most desirable sequence of accuracy measures, in that the sequence possesses
no anomalies and never decreases with increasing item administration number. Based on
this analysis, the optimal choice of z. for the Alt/MAP procedure should not be less than

1.1 (and preferably equal to it).

P(acc|invoked)

0 5 10 15 20 25

Item administration number

——2c=11-—MW—2zc=12 —Ar—2c=13 ——2c=14

Figure 26. Accuracy measures for AIt/MAP ability estimation; stable set of z. values.
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As noted in the identification of the optimal z. for Alt/ML, increasing z. values
lead to decreasing frequencies for invocation of the alternative ability estimation
procedure. The probability that the procedure is invoked for the unstable set of z. values
is illustrated in Figure 27; the corresponding plots for the stable set of z. values are shown

in Figure 28.

P(invoked)

0 5 10 15 20 25

Item administration number

——2c=06 —m—2zc=0.7 —4A—2zc=0.8 —>¢—2zc =09 —%—zc=1.0

Figure 27. Probability of alternative procedure invocation concurrent with MAP
estimation; unstable set of z. values.
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P(invoked)

Item administration number

‘—0—zc=1.1 —8—zc=12 —4A~—2zc=13 —%—zc=14

Figure 28. Probability of alternative procedure invocation concurrent with MAP
estimation; stable set of z. values.

The relative efficiency measures for Alt/MAP over conventional MAP estimation
are provided in Figures 29 through 32. Figure 29 shows the relative efficiency measures
for the unstable set of z. values; Figure 30 is a rescaling of Figure 29 to show relative
efficiency measures close to 1. For the very smallest values of z. (0.6 and 0.7), the
relative efficiency is always less than 1 for ability levels at -2 and 2. For the remainder of
z. values in this set, the relative efficiency measures drop substantially below 1. Thus,

none of these unstable z. values should be considered as optimal.
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Rel Eff(alt,conv)

510 15 25 5101525 510 15 25

510 15 25 510 15 25
0 =+1 0=+2

6=-2 6=-1 6=0

——2c=06 —®8—2zc=0.7 —4A—2zc=08 —6—2c=09 —k—zc=1.0

Figure 29. Relative efficiency measures for AIt/MAP ability estimation; unstable set of

z. values.

Rel Eff(alt,conv)

5101525 510 15 25
6=-1 6=0 0 =+1 0=+2

5101525 5101525 510 15 25
0=-2

——2c=06 —8—2zc=0.7 —4A~—2c=08 ——2c =09 —%—zc=1.0 ‘

Figure 30. Relative efficiency measures (rescaled) for Alt/MAP ability estimation;

unstable set of z, values.



161

The stable set of z. values, as illustrated in Figures 31 and 32, clearly show
improved relative efficiency measures as compared to the unstable set of z. values.
Examining Figure 31 suggests that either z. = 1.2 or z. = 1.3 could be selected as an
optimal z. value; examining Figure 32 shows that inefficiencies introduced by AIt/MAP
(with respect to conventional MAP) are minimized for z. = 1.3; these inefficiencies occur
when 0 = {-1, 0, 1}. Further, although z. = 1.2 leads to greater relative efficiency for 6 =
2, 1t is less efficient than z. = 1.3 for 6 = -2. Thus, z. = 1.3 is recommended based on the
relative efficiency measures.

In sum, for Alt/MAP, the accuracy measures suggested that z. should be no less
than 1.1; in addition, the best sequence of the accuracy measure versus item
administration number was obtained for z. = 1.3 An analysis of the relative efficiency

measures also suggested that z. = 1.3 be selected as an optimal choice of z..

3.5 1

2.5 {4

1.5

Rel Eff(alt,conv)

0.5

510 15 25 510 15 25 510 15 25 510 15 25 510 15 25
6=-2 6=-1 6=0 0 =+1 0=+2

——2c=11-—MW—2z2c=12 —4A—2c=13 —6—2c=14

Figure 31. Relative efficiency measures for AIt/MAP ability estimation; stable set of z,
values.
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Rel Eff(alt,conv)

510 15 25 510 15 25 510 15 25 510 15 25 510 15 25
6=-2 6=-1 6=0 6=+1 6=+2

—<—2zc=11-—m—2c=12 —4A~—2c=13 —6—2Cc=14

Figure 32. Relative efficiency measures (rescaled) for Alt/MAP ability estimation; stable
set of z, values.



APPENDIX C
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APPENDIX D

Exact solution for Fisher interval information (FII)
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y
Define the integral for Fisher interval information as II .(0)d0 , where 1,(0) is the

information function for item 7, and x and y are points on the ability continuum such that
X <y.
To simplify notation, drop the subscript i from the information function. Then the

information function is given by

1)@ (Eq. 62)
PO))1 - P(O)]
Now let 4 = Da, where a is the discrimination parameter, B = b, where b is the difficulty
parameter, and C = ¢, where c is the pseudo-guessing parameter. Thus, the 3P logistic
model is given by
1-C

P(O)=C+ (Eq. 63)
{1 + exp[— A(G - B)]}

y
Then the exact solution for j 1,(6)d® under the 3P logistic model is

yj},. ©)do=1, -1, (Eq. 64)

X

where

. A[(C_l)eAB + C(eAB 4ol )1n(1+eA(X_B))— C(eAB +e™ )ln(C+ eA(X_B))] (Eq. 65)

(C - 1)(eAB + eA")

and

- A[(C_l)eAB n C(eAB e )ln(l+eA(y_B))_ C(eAB +e® )ln(C+€A(y_B))] (Eq. 66)

(C— 1)(eAB + eAy)
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