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Monte Carlo Evaluation of Implied Orders
As a Basis for Tailored Testing
Robert Cudeck, Douglas McCormick, and Norman Cliff
University of Southern California

TAILOR, the computer program which imple-
ments an approach to tailored testing outlined by
Cliff (1975), was examined with errorless data by
monte carlo methods. Three replications of each
cell of a 3 &times; 3 table with 10, 20, and 40 items and
persons were analyzed. Mean rank correlation coef-
ficients between the true person and item order,
specified by preassigned random numbers, and the
computed order produced by the program averaged
.96. The average proportion of items used was .48.
A marked tendency was observed for the program
to produce better results as the number of persons
and items increased.

This paper reports an evaluation of a system
for tailored testing proposed by Cliff (1975). The
system makes use of the fact that responses to
test items contain two kinds of informa-
tion-one which is explicit, based on observed
person-item relations, and one which is implicit,
pertaining to inferred relations among persons
or among items. The model for relating these
sources of information is the Guttman scale, but
since test data do not conform to perfect scales,
the method contains a procedure for handling
inconsistent responses. The present article out-
lines the general aspects of the procedure, which
is called TAILOR, and then describes the design
and results of a monte carlo study which at-

tempts to assess the performance of the method
with errorless data.

Implied Orders Tailored Testing

In the following discussion, it is convenient to
define a basic supermatrix which is composed of
four sections. First, let S be the usual response
matrix which is persons-by-items and which
contains correct responses, i.e., s,, = if person i

passes itemj, and zero otherwise. Corresponding
to S, S records the incorrect responses, such that
s,, = 1 only if person i misses itemj. Normally, S
and ~ are direct counterparts of each other, but
with tailored tests this will not usually be the
case. Therefore, both matrices are required in
order to keep track of responses which are cor-
rect, incorrect, or not yet asked. An item domi-
nance matrix is computed in N = ~S’S, with ele-
ments n,k equal to the number of persons who
failed item j and passed k. The corresponding
person dominances are contained in X = S§B
and x,~ equals the number of items that person i
passed and person h failed. The explicit infor-
mation is contained in S and S’; the implied
data is in N and X. The supermatrix A thus is
items-by-persons by items-by-persons as is
shown in Figure 1.
The testing process itself is actually an itera-

tive procedure which begins by asking each per-
son an item of median difficulty. Since no pre-
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Figure 1
Full supermatrix with incomplete data

testing is required, during the first phase of item
assignment the pairs are made at random, and
the submatrices N and X are null. Item and per-
son dominances result from powering A, AZ =
AA, as shown in Figure 2. In A2, N and X are in-
teger in form. Also, if the responses are con-

sistent, they will display an upper triangular pat-
tern which is characteristic of the Guttman
scale. Cliff (1975) describes how the information
in X and N can then be used to infer an order of

ability and difficulty, respectively. The primary
characteristics of orders are asymmetry and
transitivity, properties which are apparent in
Figure 2. Thus, the next step in the process is to

transform the integer dominance relations to bi-
nary relations which show the implied order be-
tween persons or between items.

Note that this process is consistent with the
ordinal nature of the testing theory being used.
The observed data in S and S are indicative of

binary orders which characterize dominance of a
person over an item or an item over a person. To
extend the idea of ordinal relations to item or

person dominances requires that a method be
given for inferring the binary relationship of
simple dominance from integer entries in N and
X. This requirement means that one imply,
based on the pattern of dominances, that a gen-

Figure 2
Integer item and person dominance matrices
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uine order exists between members of the set.
For example, given the elements n,k and nk, from
N, determine the ratio

where Equation 1 is the ratio of correlated pro-
portions (McNemar, 1947). Then by using a pre-
specified criterion for zik, n,k is set to 1 when the
obtained ratio exceeds the criterion; nk, is
recorded as 1 if -z,k exceeds it; and both are
zero if neither is the case. Thus, j dominates k
only if answered incorrectly by &dquo;significantly&dquo;
more persons. Some other functions could ob-

viously be used for this purpose, but this is the
approach used here. The same procedure is used
for person dominance relations. It is important
to note that this procedure modifies N and X in
the supermatrix A2 from integer to binary
entries.

Next, suppose there is an item which person i
passes but h fails, and a second item which is in
turn failed by person i. In this simple illustra-
tion, it is implied that i dominates h. Since i fails
the second item, and since h has less ability than
i, it must be the case that h would fail it too.

Similarly, if there is an item which h passes, it
need not be presented to i because he/she must

pass it. Computationally, A2A gives a matrix in
which submatrices N and X are again null, while
S and are integer in form. The entries in S are
the number of times person i actually dominates
item j, plus the number of times he/she is im-
plied to dominate j. In S the entries record the
actual and implied dominances of item j over
person i; see Figure 3.
The integer entries in A 2 A are then modified

in a manner similar to Equation 1 to put the re-
lations into binary form. However, since the test
is between members of different sets, Equation 1
becomes

In this instance, s,, and s,, are integer values
from A2A. Again, if z,~ is greater than the cri-
terion, then person i dominates itemj ; if -z,; is
greater than the criterion, j dominates i. In ef-
fect, new submatrices S and S are constructed
which contain binary entries based on the in-
teger values of A2A.
The final result of this procedure is simply to

use the rules of Boolean addition to add together
the binary forms of A + A2A. This last super-
matrix contains all the relations between the

Figure 3
Integer matrices of person-item implications
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items and persons which are actually observed
or implied from the results of Equations 1 and 2.

Figure 4 shows the entire procedure, which is
summarized below.

1. Integer dominance matrices N and X are
computed in A2 and dichotomized accord-

ing to Equation 1 in the binary version of
A2.

2. Integer person-item matrices Sand S are
given by A2 A and yield binary relations by
means of Equation 2 in the binary version of
A2A.

3. By Boolean addition, compute A + A2A.

Figure 4
Three-step procedure for obtaining the summary response

matrix of obtained and implied relations

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



69

The beginning of a second round in this itera-
tive process again determines item-person pairs.
When no information is available, this is done
by random assignment. After even one round,
however, the scores from the initial questions
can be used to select an item of approximately
appropriate difficulty for each person. The tra-
ditional score for a person is his/her sum across
a row of the score matrix S; the traditional item
difficulty (actually, it is an easiness) is the sum
down a column of the score matrix S, divided by
n. The present formulation extends this method
by considering all four components in the super-
matrix, some of which contain observed rela-
tions and others which are implied. To bring
together all aspects of the test, compute by Boo-
lean addition

where the term A + A 2 A is the binary form of S
and S and A2 is the binary form of N and X. A
net dominance score for each person on n items
is the difference between the total wins and the
total losses, where the total wins are the number
of 1’s in a given row of G and the losses are the
number in the corresponding column. For the
next round, a person is given the item with the
net score nearest to his/her score. Testing con-
tinues until each person has an actual or implied
relation with each item.

Before a testing system such as that proposed
here can be put into actual use, a thorough
examination of its performance under controlled
conditions is desirable. The most straightfor-
ward design is one in which the persons and
items are simulated by means of the monte carlo
method. Essential information regarding the ef-
fects of sample size and decision criteria on

speed and efficiency may then be obtained.

Method

This experiment used errorless data and as-
sumed that no prior information was available
for either persons or items. For each of np &dquo;per-

sons&dquo; and n, &dquo;items,&dquo; a uniform random deviate
Xk, k = 1, n, + n&dquo; 0 ~ X/r < 1, was generated from
the method described by Knuth (1973, Vol. 2,
chap. 3). These values served as measures of per-
son ability or item difficulty such that whenever
the number for person p, was greater than that
assigned to item i&dquo; then p, was said to have an-
swered i, correctly. When the converse was true,
then p, was said to have missed i,. No provision
was made in this elementary model for chance
success due to guessing or for the effects of item
discrimination.
The major independent variable examined

was the number of persons and items: np, n, =
10, 20, 40. The dependent variables of interest
were (1) the rank correlation between true score
order and response score order; (2) the percent-
age of responses required for a complete solu-
tion ; (3) the rate at which implications were
made; and (4) the amount of computer central
processing time (CPU) required. The decision
criterion for the ratio for correlated proportions
was set to 1.0. Each cell of the 3x3 design was
replicated three times.

Results

Correlation of True and
Estimated Rank Orders

The solution which TAILOR produces is a

joint rank ordering of the persons and items
along the ability-difficulty continuum. The

major outcome criterion is the correlation of the
computed rank order given at the end of a
monte carlo run, and the true rank order of the

persons and items based on the initially assigned
random numbers. The mean rank order correla-
tion coefficients based on Kendall’s Tau b for
the nine sample sizes are shown in Table 1. All
the validities were close to unity. As can be seen,
there was a tendency for studies with larger
numbers of relations to produce somewhat
higher correlations, presumably because the

greater the number of possible pairs, the more
likely the computation of a dominance relation
between any two elements becomes (that is, be-
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Table 1

Mean Correlation Coefficients

Between True Order and

Computed Order -

tween any item-person, item-item or person-per-
son).

It is noteworthy that with this errorless data,
there were no perfect validities for any of the
studies. This situation arises when the random

assignment of true scores places two persons, for
example, immediately adjacent to each other in
the joint order, with no item intervening. In such
cases, although the person or item pairs are not
out of order, they are in fact not in perfect corre-
spondence, so the correlation is less than unity.
Consequently, these results suggest that

TAILOR was highly successful in recovering the
order of the original true scores. The fact that
the validities were less than unity indicates that
the order among any adjacent persons remains
indeterminate when no item exists such that p, >
i, 7Pq.

Number of Responses

A second major outcome variable was the
number of responses needed for a complete solu-
tion to be obtained. The ultimate value of a

tailored testing approach lies in how much infor-
mation a single response produces or, con-

versely, in how many relations are eliminated by
the decision rules. Table 2 shows the mean per-
centage of responses which were required for
each data set size. The values ranged from 34%
to 72%. Again, there was a strong effect in the
larger studies for sample size, such that as more
persons or items were tested, relatively fewer re-
sponses were required.
The relation between the number of re-

sponses, the rate at which item-person implica-
tions were made, and the effect of sample size is
given in Figure 5. The three panels separate the
data by number of items. The abcissa contains
the number of responses given by each person,
while the ordinate shows the number of re-

sponses-plus-implications as a percentage of the
product nPn&dquo; which has been labeled the per-
centage of fill. If no implications were ever

made, the total number of relations would

always equal the number of responses, and the
percentage of fill would be a perfect linear func-
tion of responses. This minimum performance

Table 2

Mean Percentage of Possible
Relations Accounted for

- - - - - 
by Responses
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level has been marked by the dashed line labeled
base rate. When any implications are made, the
percent of fill will depart from the base rate,
such that the greater the difference in slope be-
tween base rate and percentage of fill, the more
efficient is the tailoring of the test.
As can be seen, in the 10-item test relatively

few implications were ever made; when this did
occur, it did so at a very even, nearly linear rate.
However, in the 20-item data sets, and especially
in the 40-item ones, there was a marked de-

parture from the base rate performance. The
majority of the implications tended to be made
after about three or four responses per person
had been obtained and fell off when about ti0 to

85% of the relations were accounted for. There
was also a consistent, although somewhat less
dramatic, effect for the number of persons.

CPU Time

Finally, performance was also assessed in

terms of central processing unit (CPU) time.
CPU time is the actual amount of time a com-

puter system is involved with calculation or the
institution of input and output. It is not invari-
ant from machine to machine, but the following
figures should provide a rough estimate of the
relative expense of using TAILOR in other en-
vironments. In fact, shortly after this study was
conducted, a series of programming modifica-
tions was undertaken to greatly reduce the time
requirements on the IBM 370/158 available to
the authors. These changes have resulted in

CPU time reductions of 1/2 to 2/3. Conse-

quently, the amounts of processing time re-

ported below should not be taken as absolutes.
Table 3 shows the average amount of CPU

time in seconds for the nine conditions, as well
as the mean across items for n, persons and
across persons for n, items. In each case, as npn,
increases, so did CPU time. However, the num-
ber of items contributed to the total time at a
much greater rate than the number of persons.
This can clearly be seen in Figure 6, which con-
tains CPU time as a function of the marginal
means of Table 3. The testing of additional per-
sons merely had an additive effect on CPU time,
but increasing the number of items increased
the computing requirements in an exponential
fashion. This finding is not surprising, since
TAILOR works from the item information
rather than from the person information to com-

pute the person-item implications. Designing
the algorithm in this manner makes the number
of items the primary factor affecting CPU time.
The advantage of this method is that when a re-
searcher increases the number of subjects, little
is added to the amount of computer time

needed.
Even though CPU time increased whenever

npn, increases, the cost-per-subject rates were
quite modest. For example, with n, = 40 and np
= 10, 20, or 40, the CPU time from Table 3 was
64, 89.4, and 132.1 seconds, respectively. This
results in an average of 6.4, 4.5, and 3.3 seconds
per subject, which at the standard USC comput-
ing rates of $4.00 per minute was .43, .30, and
.22 cents per person. Although no figures are
available on the comparable costs of conven-

Table 3

Mean CPU Tine*

----.----- ~-- - -------

*Central Processing Unit time for IBM 370/158 with version 1.0
of TAILOR. Subsequent versions are substantially faster.
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Figure 6
Effects of the number of persons or items

on central processing (CPU) time

tional testing, these rates suggest that implied
orders tailored testing may not be completely in-
feasible economically.

Discussion

This preliminary investigation of TAILOR in-
volved errorless data and data sets ranging in
size from 100 to 1,600 relations. The findings
were generally positive. All outcome measures
behaved in an orderly fashion across the various
study sizes. It has been suggested by Knuth
(1973, Vol. 3) that the minimum number of in-
formation bits required to order N objects is

log2M., where in this context N =n,, + n,. Al-
though much more is at stake in this situation
than mere sorting, for errorless data TAILOR
may be viewed as a sorting algorithm. It is grati-
fying that this theoretical minimum was closely
approximated and often surpassed by all but

one cell, namely, n = ni = 40. For that condi-
tion, however, the obtained percentage of re-
sponses was .46, while the expected minimum
was .25.
The measures of accuracy were the validities

between true score and observed score. The
validities for all conditions approached unity,
deviating only to the extent that ties in true
scores produced ties in the observed scores also.

Several technical enhancements have been

suggested as a result of this study which have re-
sulted in a substantial savings in CPU time. In
addition, modifications to the decision-making
process have enabled some reductions in the size
of the program. Two versions of the program
have been described-one in APL for indi-
vidual testing (McCormick & Cliff, 1977) and a
FORTRAN version which is adapted from the
method used in the current study (Cudeck, Cliff,
& Kehoe, 1977).
The next phase will be to carry out a second

series of studies, again using the monte carlo
method but with a more realistic model. Of the

major alternatives available, the four-parameter
model from Birnbaum (1968) seems especially
promising for this purpose.
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