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Evaluation of Implied Orders as a Basis
for Tailored Testing with Simulation Data
Norman Cliff, Robert Cudeck, and Douglas J. McCormick
University of Southern California

Monte carlo research with TAILOR, a program
using Implied Orders as a basis for tailored testing,
is reported. Birnbaum’s (1968) three-parameter
logistic model was used to generate data matrices
under a variety of simulated conditions. It was
found that TAILOR typically required about half
the available items to estimate for each simulated

examinee the responses on the remainder. Validity
of Tailored score with True score was found to be
within a few points of True score with Complete
test score. Increasing item discrimination affected
the efficiency of the tailored test, but the procedure
was little affected by any of a variety of other fac-
tors.

This research is based on an approach to tailored, i.e., computer-interactive, testing which differs
from other testing methods both in its theoretical basis and its practical implementation. Most ap-
proaches to tailored or adaptive testing, e.g., Jensema (1974), Lord (1970; 1971), McBride (1977), Urry
(1977), and Weiss (1976; 1977), are based on true score theory, employing items whose parameters
have already been estimated on large pretest samples so that the individuals’ true scores can be esti-
mated by employing parametric, continuous true score models. The interactive strategies they employ
are of several different types, but all follow this general mode. In contrast, the present method, called
Implied Orders Tailored Testing, seeks only to define the order of examinees and the joint order of
examinees and items according to a method whose basic rationale was given by Cliff (1975). A prac-
tical difference is that Implied Orders does not need to assume any pretest information on the items;
item and person characteristics are estimated in parallel.

In previous reports on this research, a rationale for tailored testing (Cliff, 1975) and an example
with errorless data (Cudeck, McCormick, & Cliff, 1979) have been presented. Implied Orders
Tailored Testing, implemented through a program called TAILOR (Cudeck, Cliff, & Kehoe, 1977)
has as its goal a simultaneous ordering of persons and items along the hypothetical ability continuum.
It is based on the concepts of order theory, in which it is well known that the logical properties of an
order are such that if certain of the relations among elements are known, then the remainder can be
deduced from them by making use of the transitivity property, which characterizes orders. The gen-
eral idea is that even an incomplete matrix of responses of persons to items can be used to deduce at
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least some order relations between items which is relative difficulty. These order relations between
items, in turn, can be used to predict the individual’s responses to items not yet taken, therefore re-
moving the necessity of administering those items. Cudeck et al. (1979) reported that TAILOR exactly
recaptured the order between persons and items on the basis of approximately half the responses
when the data used was errorless. The purpose of the present research was to evaluate the method in
an artificial experiment in which Birnbaum’s (1968) three-parameter logistic model was used to gen-
erate the data, thus determining its effectiveness under more realistically stochastic conditions.

TAILOR

E~rrorless Case

The mode of operation of TAILOR follows the general ideas suggested by Cliff (1975). The basic
concept may be stated as follows: Suppose there are n persons to be tested and k dichotomous items
that may be used in the tailored test. Then, at any stage in the testing process, there is an n x k matrix,
S, of scores on the items, in which s,, =1 if the item was answered correctly and 0 if it was incorrect or
if it was not yet taken. There is a second n x k matrix, ~, in which S:1 = 1 if the item was answered in-
correctly, and 0 if it was correct or had not been taken. Then, there is a supermatrix containing both S
and S’, which is multiplied by itself:

where 0 is a null matrix, and an element n,k of N, called the integer item dominance matrix, contains
the number of persons failing item j and passing item k. Similarly, x,,, is the number of items passed
by person i and failed by person h, and X is the integer person dominance matrix.

The elements of N may be used to infer the relative difficulty of the items. If the data are com-
pletely consistent, either n,k or nk, will be zero. If neither is zero, the magnitude of the difference be-
tween them implies the relative difficulty of the pair. Correspondingly, the elements of X may be used
to infer the relative ability of pairs of persons.

This relative difficulty information may be used to estimate responses to items not yet taken. A
matrix N* is constructed by setting n* = 1 if j is more difficult than k. Then SN* N Y is computed,
and y,~ is the number of items passed by i which are more difficult than j. Similarly, Y = SN*’ is com-
puted, and’ is the number of items failed by i. With perfectly consistent data, one or the other of y,,
and^’ will be zero. If y,, is not zero and’ is, this implies that i would answer j correctly if he/she took
that item. If the reverse is true, it implies he/she would get it wrong. In either of these cases, the ap-
propriate element of S or S is set equal to 1, even if the person has not taken the item. In some cases
both y,~ and j$,~ may be zero, in which case more items must be taken if this response is to be implied.
In this way an incomplete (tailored) items response matrix may be completed if the data are perfectly
consistent.

This is the general idea of the mode of operation of TAILOR. At any given time, some items have
been taken by some persons. The foregoing process, modified to take account of the fallible nature of
empirical data, is used to infer additional responses. Then, additional items are administered, but the
new items are those whose responses cannot be inferred from those already taken. This process con-
tinues until all responses are made or implied.
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Two additional aspects of TAILOR may be noted. First, (N*)2 may be computed and used to infer
additional, indirect item dominance relations; these are a kind of second-order item dominance rela-
tion. In fact, this process could be continued for further powers, but TAILOR uses only N and (N*)2
as currently designed. Second, the whole process could be carried out with the roles of N and X re-
versed ; TAILOR includes this option for use in case the number of persons is less than the number of
items. To reduce awkwardness of presentation, the description in this paper will emphase item domi-
nances, although this is not required.

Two additional major aspects of the program were crucial to its successful operation. One was the
introduction of a &dquo;significance test&dquo; to apply with fallible data in the comparison of n,k to nk, and y,
to y,,. The other was a heuristic rule for deciding which item was most appropriate for a given person
at a given time.

&dquo;Significance Test&dquo;

The fact that fallible data will often show both n,k and n,,, :0 0 can be dealt with by setting n* = 1 if
n,k > nk,. However, when n,k = nk&dquo; the true order between j and k will be in doubt. In TAILOR, the
doubt is resolved by one of two &dquo;loose significance tests.&dquo; The major one corresponds to comparing
frequencies n1k to nk, ory, to y‘, by a binominal probability (McNemar’s test; McNemar, 1969) and re-
jecting the null with a one-tailed alpha level of .22. For example, values of n,,~ and nk, of 2 to 0 and 3 to
1, respectively, lead to rejection by this rule and therefore imply that j is more difficult than k.

The second decision rule concerns instances in which the frequencies are 1 and 0. If the informa-
tion is sparse (i.e., early in the testing), most of the frequencies compared are either 0,0 or 1,0; but it is
still necessary to obtain some information from the latter in order to differentiate between items.

However, when the information is less sparse, frequencies of at least 1,0 are almost bound to occur.
Thus, the decision whether a 1,0 frequency is likely to reflect a true ordinal relation depends on how
sparse the information is. The nature of this decision rule is described in the Appendix.

Net-Wlns Scores

Since the basic premise of the method lies in trying to form a joint order of persons and items, it is
natural that information about this joint order be used to decide which item a person should take at
any given time. This was done by means of a Net-wins score for persons and items. At any given time
each person is assigned the item which is currently nearest him/her in the joint order furnished by the
Net-wins score, subject to some restrictions concerning the number of persons who can take an item
at the same time.

The Net-wins score requires the estimation of the person dominances as well as item dominances
and actual and implied responses The person dominances are derived from the matrices of actual
and implied responses; let S* and S* be matrices of the actual plus implied correct and incorrect an-
swers, respectively. Then S*S*’ is an n x n matrix whose entries are the number of actual or implied
items that the row person gets correct and the column person incorrect. The symmetrically placed
entries in this matrix can be compared by the &dquo;significance-testing&dquo; procedure described earlier; and,
in effect, a binary person-dominance matrix X* is constructed from S*S*’. The Net-wins score of a
person is then the number of items he/she dominates (actual or implied rights) plus the number of
persons he/she dominates (from X*) minus the number of each which dominate him/her. The first
two components are given by the number of elements in his/her row of S* and the number in his/her
row for X*, respectively; and the latter two are given by the number of elements in his/her column of
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S*’ and X*, respectively. An item’s Net-wins score has exactly the same definition. It is the number of
items and persons it dominates minus the number which dominate it. The former are the number of
elements in its row of N* plus the number in its row of S*’ ; the latter is the sum of the elements in its
column of N* plus the number in its column of S*. Thus, the Net-wins for both items and persons are
derived in exactly the same way from binary information concerning ordinal relations.

Testing Rounds

TAILOR carries out the above sequence of operations repeatedly, operating on a group of items
simultaneously. It starts by giving every person an item at random. It then calculates the small num-
ber of relative difficulty relations possible with such little data and enters them in a temporary N*
matrix, which it then uses to calculate S* and S*, which in turn are used to calculate X*. At this stage
there are many ties in the order; but the fact that TAILOR is already coming to some tentative rela-
tive difficulty decisions means that there are more than three possible scores after only two responses
per person, and it is possible that there already are some implied responses.

Each person is then assigned one of the items closest to him/her in the joint order. He/she is, of
course, not assigned any item to which his/her response is already implied, and a restriction is placed
on the number of persons who can be assigned the same item.

The new round of responses is entered into the S and ~S’ matrices. The latter are used to calculate
a new integer item dominance matrix N, and from this in turn flows new versions of N*, S*, S*, and
X*. These provide the basis for a new set of item assignments, and the whole process starts again. The
mode of operation means that ordinal relations which exist in any of the binary matrices at one stage
of the process may be cancelled and even reversed at later ones. Thus, no permanent harm is done by
the procedure when it comes to erroneous conclusions on very little data in the early stages. Even
then, most of the decisions it makes are correct, so they aid in correct assignment of items to persons.

The process terminates when there is an actual or implied response by every person to every item;
the S* and S* matrices are complete. This takes place on the basis of fewer responses for some per-
sons than for others, but the variation is not very great.

Other versions of the same general procedure exist. For example, TAILOR-APL (McCormick &

Cliff, 1977) is designed to test single subjects, with ordinal information therefore accumulating as
more and more individuals are tested, so that later examinees take fewer items than earlier ones. For

practical reasons, the &dquo;lock-step rounds&dquo; approach was also revised in later versions of TAILOR it-
self. Nonetheless, it was this version which was used in the study described here. Results would be ex-
pected to be closely applicable to other versions of the same basic procedure.

The model underlying this tailored procedure is then a rather simple one. It states:

1. If a person frequently fails some items that are easier than item j and seldom answers correctly
items that are more difficult than j, then he/she will probably failj; if the reverse holds, he/she
will pass it.

2. An item j is easier than an item k if the proportion of persons passing j and failing k is greater
than the proportion doing the reverse.

The McNemar’s test and the probability test which are used here are adjuncts to this model. They
constitute a decision rule for deciding whether Statement 1 holds for the pair of items and
whether Statement 2 holds for a pair of items over the population of persons.
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Effectiveness of TAILOR

The present study was designed to investigate whether the procedure described above could be ex-
pected to be effective with real data and to study some factors which were likely to affect its efficiency.
For these purposes, a monte carlo simulation has many advantages over real-data studies, although
the latter are necessary for the ultimate confirmation of findings.

Several variables seemed relevant to TAILOR’s operation, but the one that was the major source
of concern was the degree of consistency of the responses. Completely consistent data were bound to
give good results, as had already been shown (Cudeck et al., 1979), and no benefit is to be expected
from making inferences from responses which are completely random; but it is difficult to predict
what would happen at intermediate degrees of consistency. Similarly, it would be important to know
the effect of the presence of guessing, since this would be likely to introduce additional random com-
ponents. Situational variables such as the number of items in the test and the number of examinees
being tested might also be important. The difficulty distribution of the items in terms of whether they
were centered in the middle of the ability distribution and whether they were relatively constant or
fairly variable in difficulty might also have an effect on how TAILOR operated. This study inves-
tigated the effect of these variables by varying parameters of the simulation. The Birnbaum (1968)
model was used as a device for the convenient generation of data, even though the present model rep-
resents quite a different philosophy, since it allows the ready manipulation of various factors thought
likely to affect the operation of TAILOR.

As outlined above, TAILOR produces a final rank order of persons from the partial response ma-
trix using the Net-wins score at the point where the procedure terminates. The major question con-
cerns the accuracy of this order as a predictor of the &dquo;true&dquo; person order and how closely this ac-
curacy approaches that which would have been derived from the complete response matrix, in which
every person takes every item. Thus, primary interest was in the overall level of this accuracy for some
sets of conditions that might be typical of the range of conditions of actual testing. Of secondary, but
not negligible, interest was the overall level of efficiency in computer time and the factors which affect
it; for a procedure which is psychometrically effective but required enormous computing investment
to achieve that efficiency would not be of great practical applicability. Therefore, this investigation
was principally concerned with the correlation between obtained scores and true scores, and also with
the amount of computer time used.

Method

Birnbaum Model

The Birnbaum (1968) model postulates a probability, p,,, of person i correctly answering item j as

where

a, = item discrimination, j =1, 2, ... k,
b, = item difficulty
c, = probability of chance success, and
0; = person ability, i =1, 2, ... n.
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The parameter vectors used in this data were assumed to have the following distributions:

The normal variates were generated from a sequence of uniform random numbers in

with

V8 = the normally distributed vector of item or person characteristics,
ag = the parameter standard deviation,
/Âg = the parameter mean, and

U(k) = a function for uniform random numbers in the 0, 1 interval, based on a method from
Knuth (1973).

A run in the simulation began by specifying the number of persons and items to be tested and se-
lecting values for the parameters of the distributions of a, b, and c. Then the required numbers of
values for the item parameters and for 0 were sampled according to Equation 7. These were inserted
in Equation 2, and an additional random number U(k) was generated. An element S’l of the score ma-
trix S was set equal to 1 ifp,~ >U(k), and zero otherwise. A complete score matrix was prepared in this
fashion. Then &dquo;presenting item j to person i&dquo; consisted of looking in this score matrix to see if the re-
sponse was correct or incorrect.

A given condition was replicated by repeatedly sampling the item parameters from the population
specified by the condition, generating a new sample of ability scores (0) and a new score matrix by in-
serting them in Equation 2 and then generating a new U(k). Therefore, the actual characteristics of
the items varied from replication to replication according to basic sampling principles. This was felt
to provide a more realistic simulation than fixing the item parameters at specified values or making
them constant from replication to replication.

Design

The item parameters then had distributions, and the mean and variance of the distributions
could be considered determiners of the characteristics of the test. Thus, provided c = 0, tiaand o. de-
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fined the internal consistency of the test, the former the overall level of consistency and the latter the
degree to which items were equally consistent or varied. Setting c greater than zero would simulate a
multiple-choice test, and the value selected could be used to simulate different numbers of distractors
and/or whether they tended to be attractive. The value of ab determined whether the range of item
difficulties was small or large, and setting ¡Jb ::1= 0 would allow the difficulty distribution to be made
nonoptimum.

The fact that the item parameters were sampled from their specified populations separately for
each replication meant that there would be some variation in them. However, in the experiment, the
size of the manipulations of the parameters were selected to be large relative to these residual samp-
ling effects. Nevertheless, some sampling deviations from the population values set in the conditions
remained.

The variables whose influences were investigated and the labels used for them were the following:

1. Number of examinees assumed to be tested at the session ( Persons). Included to test the proce-
dure’s sensitivity to the size of the examinee sample.

2. Number of items in the item pool (Items). Included to examine the relation between TAILOR’s
effectiveness and the size of the item pool.

3. Mean item discrimination index (~). Included to investigate the effect of the basic discriminatory
power of the items.

4. Variation in discrimination (00), Investigated the effect of heterogeneity in discriminatory power.
5. Mean difficulty (E,~b). Setting ¡Jb ::1= 0 would show whether the process was affected by the appro-

priateness of the average difficulty level of the items.
6. Variation in difficulty (o,). Manipulation of a, showed whether TAILOR worked better with

small or large variation in difficulty.
7. Chance probability (c). This showed the extent to which TAILOR’s effectiveness would be af-

fected by guessing.

With this number of variables, it was not possible to vary all of them simultaneously or over a
wide range of values. Instead, two or three values of each were selected on the basis of realism and
practicality, and small factorial designs involving two or three of the variables were constructed. In
this way, the main effects and certain first- and second-order interactions could be studied, but
higher order interactions could not. The combinations selected were chosen on the basis of their ex-
pected importance, their practicality in a study of this kind, and their resemblance to empirical con-
ditions.

A total of 28 different conditions were run, as shown in Table 1. The assumed number of subjects
was 10, 25, or 40, with the great majority of the data coming from the latter two values. The number
of items was assumed to be either 15 or 25. These rather small numbers of persons and items were
chosen for reasons of economy. Mean discrimination was assumed to be either 1A. = 1.0 or 2.0, except
in two cases where it was .5. The standard deviation of discrimination was usually assumed to be 0,
but also took on values of .2 or .4. The mean population difficulty was usually assumed to be P, = 0,
equal to the mean ability, but was also set at +.5 (average difficulty one half sigma above the score
mean) for two cells. Similarly, the standard deviation of difficulty was usually 1.0, perhaps a rather
large value, and was 2.0 for two cells. The chance parameter was usually c = 0, but also took on values
of .1 or.2.

The basic part of the design was a 2 x 2 x 2 factorial design with 25 or 40 persons, 15 or 25 items,
and discrimination of 1.0 or 2.0. The other parameter variations were usually made singly in combi-
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Table 1
Characteristics of Samples of Score Matrices

Generated by Latent Trait Models

nation with different levels of one or two of these main parameters. Each row of Table 1 defines a set
of conditions for a sample of score matrices generated by the Birnbaum model.

Procedure

Five sample score matrices were generated according to the parameters of each line of Table 1. In
addition to the true score 0 that was used to generate the data, there are two scores for each person in
a given sample. One was the Net-wins score from the tailored simulation, and the other was number-
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correct score on the complete test. These will be referred to as Tailored scores and Complete scores,
respectively. Note that they are not experimentally independent, because the responses on which the
Tailored score was determined was a subset of the responses determining Complete score. A number
of statistics were calculated from these, and some of them were important to the later analysis.

The correlations of True score with Tailored score and Complete score were computed. The two
correlations with True score were the validities of Tailored and Complete scores. These correlations
were used as a major dependent variable and covariate, respectively. The reasoning was that agree-
ment with True scores is the major quality desired from a tailored testing procedure, and the expecta-
tion was that variations in Complete score validity would be the major source of influences to be con-
trolled. Both Pearson and rank-order (taub) coefficients were computed. The Fisher Z-transformation
was not used because previous experience indicated that it has little effect on results unless the mean
and the variance of the correlations are both large, and rarely even then.

Other dependent variables that were used reflected efficiency and cost of the procedure. In par-
ticular, the ratio of actual responses to total possible responses in a given score matrix was clearly
relevant, as was the amount of computer-processing time used per run. The effects of the independent
variables on these were assessed and the general overall levels were determined.

The analysis of the effects of the independent variables was carried out using regression analyses
or analyses of variance (ANOVA) and analyses of covariance (ANCOVA). The correlation of True
score with Complete score for the same data was used as the single covariate. This permitted the as-
sessment of the degree to which there were effects over and above that of the basic consistency of the
data. In addition to the numerous small analyses, a regression analysis with all the data combined
into a single score matrix (very much like Table 3) and with the main effects as independent variables
was carried out, both with the covariate and without.

Results

Principal Findings
The major results are included in Table 2, which shows the mean values of the important vari-

ables under conditions defined in Table 1. Table 3 gives the correlations among the main variables in
the study. Here, both Pearson and tau correlations of True score with Tailored score are given, as well
as True score with Complete score. The percentage of responses under TAILOR and the amount of
CPU time used are likewise presented.

The bottom line of Table 2 shows the mean of each variable. These means provide a quick sum-
mary of the major findings. On the average, TAILOR presented 55% of the items to each person. The
mean validity correlations for the Tailored scores averaged .757 (tau) and .889 (r). When compared to
the Complete score validities of .810 and .926, the results indicate that TAILOR performed quite well
over the range of conditions. The means represent averages across conditions that affect these vari-
ables, and some of the effects were substantial. Therefore, their precise values should be viewed
rather tentatively. This optimistic picture can be more closely examined by discussing the major
sources of variance, reflected by the appreciable deviation from these means.

Influences on Proportion of Responses

The major influences on the proportion of responses appeared to be the number of items and per-
sons, where there was an inverse relation. Table 4 shows the mean proportion of responses for the 2 x
2 X 2 subset of the study mentioned earlier, plus the results for the 10-person, 25-item condition.
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Table 2
Cell Means of Major Dependent Variables

Here, the strong effect of items and persons was quite apparent, but the effect of discrimination was
weak or nonexistent and was nonsignificant in the ANOVA for these data. For the 25-item, 40-person
cell, the mean proportion of responses was .456, indicating that in large-scale testing, fewer than half
the items will be needed.

Table 5 shows the results of a regression analysis for all 28 conditions (n = 140) of proportion of
responses on all three variables, treated as main effects. There, the F-column shows the significance
of the regression weight for the individual variables; items and persons were clearly significant, but
discrimination was not. Thus, the proportion of items used decreased sharply with the number of
items in the test and also significantly with the number of persons, but was not affected by anything
else.
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Table 4
Influence of Number of Persons and Items, and Average

__ Discrimination on Proportion of Items Used

Validity of Tailored Scores

The success of a tailored testing scheme is primarily measured by the ability of the Tailored scores
to substitute for the Complete test scores. In a monte carlo study such as this, in which a True score is
available, correlation with True score would appear to be the most appropriate criterion by which to
judge the success of TAILOR.

As noted earlier, the Tailored validities were only slightly less than the Complete score validities
but were quite variable, ostensibly as a function of various experimental parameters (see Table 2). A
number of analyses were made to attempt to identify the characteristics that affected Tailored valid-
ity.

The primary effect was due to the consistency of the original sample of data. This is illustrated
graphically in Figures 1 and 2, which plot mean Tailored correlations as a function of mean Complete
correlation for each of the 28 conditions. Figure 1 shows tau; and Figure 2, r.

Treating each of the five replications under each condition separately, the correlation between
Complete and Tailored validities were .86 and .83 for tau and r, respectively, showing a strong de-
pendence of Tailored validity upon the consistency of the data. The slopes of the regression lines in
the figures are greater than unity, showing that a variable having an effect on the validity of a com-
plete test will have an even greater effect on the validity of the items in a tailored format.

Influences of Independent Variables on Validity
A variety of regression analyses and analyses of variance and covariance were performed to iden-

tify influences on validity. Tailored tau, the rank-order correlation of Tailored score with True score,
was the dependent variable in most of these analyses. Some of the analyses were duplicated with both
dependent variables, r and tau; and the results were never in conflict. Tau was emphasized for two

Table 5
Regression of Proportion of Items on

Persons, Items and d Discrimination
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Figure 1

Relationship between Complete Test Tau and Tailored Test
Tau for 28 Conditions
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Figure 2

Relationship between Complete Test r and Tailored Test r

reasons. One is the ordinal emphasis of TAILOR, making the rank-order agreement more appro-
priate. The other is of a more pragmatic nature. There is more variability in tau, and it is farther from
the limit of 1.0, whereas the range of r is toward high values where variability is limited. Furthermore,
tau showed slightly greater sensitivity to the independent variables, viz., the .86 versus .83 validity cor-
relations for Complete test score. Thus, the effects showed slightly more clearly with tau.
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Regression analyses based on the values of the parameters in Table 1 for all 28 conditions were
performed, treating Tailored tau as the dependent variable. Analyses of variance of subsets of that
data were also performed, as were analyses of covariance treating Complete tau as the covariate.
These showed only one significant interaction; therefore, the regression analysis, which includes the
main effects of all the independent variables, provides a valid summary. The analyses of variance and
covariance will be presented also, however, in a few instances.

Since the validity of the Tailored score is dependent on the validity of the original data, the valid-
ity of the Complete data score serves as a limiting value on Tailored validity. The validity of Complete
score from the following analyses was itself found to be affected by three manipulated variables and
by a random effect that is dependent on the actual sampling of items (see Table 3). The three manip-
ulated variables were the mean discrimination index for the population of items, the probability of
chance success, and the number of items.

Table 6 shows the results of a stepwise regression analysis of Tailored tau on predictors. The
upper section shows the results when Complete tau was included as a predictor; and the lower, when
it was not. The &dquo;significant variables&dquo; are those which significantly increased the multiple R as they
were included. After they were included, none of those remaining were found to add significantly to
the multiple R by any plausible interpretation of &dquo;significant.&dquo;

Complete tau was the first variable entered in the regression equation, accounting for 74% of the
variance of all 140 observations (5 replications in 28 conditions). However, two of its causes-mean
discrimination and chance probability-still added significantly to the multiple R2, contributing 5%
and 2% of the variance, respectively. All three had weights of the expected sign: High Complete tau
and higher mean discrimination led to higher Tailored tau, while greater chance probability led to
lower.

When only the manipulated variables were included, the third influence on Complete test validity
also became significant. Now, mean discrimination accounted for almost half the variance (19%), and
chance probability contributed another 8%. Items added a final 5%. The total percentage of variance
accounted for was 63%, rather than 82% as it was when the consistency of the actual data set was in-
cluded. The number of persons, the variability in discrimination of the items, and the mean and stan-
dard deviation in difficulty were not significant influences on validity with the levels of parameters
used here. The level of precision here (witness the small proportion of variance for items, which was
nevertheless significant) was such that these variables must only have small effects, if any. The lack of
negative effects for numbers of persons and items is particularly interesting in view of the fact that a
smaller proportion of responses were used as these increase.

Table 6
~ ~~ 

Significant Predictors of f Tailored Tau u _ _ __ _ _ _
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Subsidiary Findings

The 28 conditions contained a number of subdivisions that represent orthogonal designs with two
or three of the manipulated variables. These allowed the investigation of a number of first-order, and
a few second-order, interactions among the variables, as well as the highlighting of the main findings.
That is, there were a number of small factorial designs contained in the total set; the other variables
were held constant at some particular combination of levels.

Analyses of variance (and analyses of covariance with Complete tau as the single covariate) of
these subdesigns gave essentially the same picture as the regression analyses just described, but in
some cases they pointed up unique findings or gave a more direct impression of the magnitude of ef-
fects. The particulars will not be presented here; interested readers are referred to Cliff, Cudeck, and
McCormick (1977) for an examination in detail. Some specific findings will be briefly noted, however.
The following summary remarks can be verified by examining the data provided in Table 2.

When mean discrimination was changed from 1.0 to 2.0, Tailored tau was raised about .10, other
factors held constant. Lowering it to .5 had an approximately equivalent effect. This is largely be-
cause the reliability of the basic data is closely related to discrimination. Changing from 0 to a .2
guessing probability had almost the same effect as going from 1.0 to 2.0 discrimination. On the other
hand, the degree of variability in discrimination of the items in a pool did not show any effect, at least
over the moderate ranges studied here. These findings echo those from the regression analyses; the
only significant interaction will be mentioned later.

Somewhat surprisingly, no effect for the number of persons was found, even though the sample
size was reduced to 10 in two conditions. As shown in Table 4, TAILOR presented a somewhat larger
proportion of the items with fewer subjects, and apparently this compensated for the greater uncer-
tainty of the process with very small samples.

The findings with respect to the number of items were similarly negative. With a larger item pool,
TAILOR tended to give slightly more valid scores, but the differences were not quite significant. Even
these differences were largely accounted for by the fact that TAILOR gave a slightly larger number,
although a small fraction, of items when the item pool was larger. The quality of its performance,
thus, was not sensitive to the size of the item pool.

Most of the 28. conditions assumed that the item difficulty distribution was the same as that of
ability, but there were some exceptions. When the difficulty distribution was centered a half-sigma
away from the ability distribution, there was no effect. Thus, TAILOR was not sensitive to the exact-
ness of the difficulty match. There was no main effect for the variance of difficulty either, but this
variable did furnish the only significant interaction which was discovered. It turned out that highly
variable difficulties gave higher validity when the discrimination index was high, but moderately vari-
able difficulties were better when discrimination was merely good. However, this effect also occurred
with the Complete validities and vanished in the ANCOVA. That is, the effect appeared to be a prop-
erty of test items in general, rather than a methodological result of using TAILOR. Unfortunately, a
ab = 0 condition was not run to enable testing of the limits on this finding.

Overall, the results of these subsidiary analyses supported the picture shown by the regression
analysis. There was a substantial robustness of TAILOR with respect to the variables manipulated.
The variables that affected the validity of TAILOR scores were those that affect the validity of con-
ventional test scores.

Computer Time

A real-time system is only useful if it can operate efficiently, and if a computerized testing system
is to be adopted, it cannot be too costly. The amount of central processing unit time (CPU) used in
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each computer run was recorded as part of the operation of the program. A few conditions that were
anomalous for technical programming reasons were deleted, and the average CPU for each of the
main combinations of persons and items were computed. These are given in Table 7, where it is ap-
parent that both had a substantial effect, particularly items. Prorated across persons, the data in-
dicate that about 4 seconds of CPU was expended per subject with a pool of 25 items. This is, ad-
mittedly, on a highly efficient IBM 370/158 installation, but at charges which were about five cents
per CPU second, computing costs do not seem to be a major factor. It should be noted as well that a
good part of the computer time was used for overhead routines used to monitor the process, which
would not be included in an operational version of the program. Furthermore, substantial increases
in program efficiency were instituted since these data were gathered, and computing costs seem to be
continuing their historic decline, rather than leveling off. Therefore, it is not foreseen that computing
will be a major expense, even with item pools of substantially larger size.

Discussion

How much does a tailored test save? One answer to this can be found by comparing the reliability
of a tailored test to one which is simply shortened to an equivalent length. Alternatively, given the re-
liability of tailored and complete tests, the Spearman-Brown formula (Lord & Novick, 1968, p. 112)
can be solved for the length factor and can be compared to the actual proportion of items asked in the
tailored version.

The latter was done, starting by squaring the validities to obtain a reliability estimate. The Pear-
son correlations were used for this purpose. The most representative case is the data for 25 items and
40 persons, with discriminations of 1.0 and 2.0-Conditions 25 and 26 of Table 2, where Tailored
validities were .920 and .940, respectively, and the Complete validities were .956 and .965. The rela-
tion of .965 to .940 corresponds to using a test 78.4% as long, whereas in actuality only 44.1% of the
responses were used by TAILOR. That is, a test that required only an average of about 11 responses
acted like a complete test with nearly 20 items. The corresponding data with discriminations of 1.0
were not quite as favorable, but still were encouraging. Here, the validities of .956 and .920 corre-
sponded to using a test 72.6% as long, whereas in fact TAILOR used 47.1% of possible responses.
Here, 12 responses acted like an 18-item test. More exactly, the ratio of actual responses to lengths
estimated from reliability was 1.778 for the 2.0 discrimination item pool, and 1.541 for 1.0 discrimi-
nation.

The corresponding calculations for the smaller item pools were also favorable, but not as much
so. For 15 items the ratios of the number of responses to lengths estimated from reliabilities were
1.612 for 2.0 discrimination and 1.257 for 1.0, primarily because of the larger proportion of items
used. The relations between the results for 25 and 15 items suggests that the savings for item pools of
a more realistic size will be even more substantial. That is, the process becomes relatively more effi-

Table 7

, 
Central I Processing Time in Seconds

by Items and Persons
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cient as the number of items increases because the items that are used are, on the average, closer to
the person’s ability level.

The question which may be raised with respect to the usefulness of TAILOR has to do with its
sensitivity to the consistency of the data. A discrimination parameter of 1.0 is near the upper reaches
of what can be expected with real items, corresponding to item-ability biserial of .707 with free-an-
swer items (Urry, 1974). However, even the results for Condition 17, which simulated multiple-choice
items with 5 alternatives, were still fairly good. This, coupled with the fact that validity held while the
proportion of responses used decreased with the size of the pool and thus resulted in greater effi-
ciency, suggests that TAILOR would operate successfully with only moderately discriminating items,
provided that the pool was large. Thus, TAILOR might provide a reasonable method in a variety of
situations.

Some aspects of the design of the present study may deserve comment. One is that the main
measures of the procedure’s effectiveness were actual correlations between True scores and scores on
a subset of responses- Thus, the correlations were not confounded with assumptions concerning the
accuracy of the model, as would be the case if standard errors of estimates of ability had been used.
Also, the purely ordinal model here was shown to work well, even though the data were generated by
means of a parametric true-score model. The study is therefore a relatively unconfounded test of the
procedure.

One serendipitous finding may be noted: For both Complete and Tailored scores, a highly vari-
able distribution of difficulty gave more valid scores than a moderately variable one when the dis-
criminations were high. The reverse was true if they were less high. This is presumably a manifes-
tation of a phenomenon related to the attenuation paradox (Loevinger, 1954), suggesting a trade-off
between discrimination and difficulty variability, which may bear exploration in more detail. Con-
cepts of interitem redundancy and uniqueness as determiners of the usefulness of items, as proposed
by Cliff (in press), may well be relevant here.

Summary

It appears that the TAILOR procedure worked quite well under a variety of circumstances. With-
out any pretesting it arrived at a reasonable approximation to the Total score on a test, using about
half the items. Moreover, the percentage decreased with the number of persons and items without a
concomitant loss in validity. The major determinant of the validity of the Tailored score was the valid-
ity of the item responses on which it is based. The Tailored score was somewhat more sensitive to in-
fluences of consistency, such as mean discrimination and chance than the Total score. It was rela-
tively robust with respect to variations in a variety of parameters, and TAILOR is computationally ef-
ficient enough for practical use, provided that the items are of the levels of quality used here.

Appendix

This test assesses the probability that elements distributed at random in two vectors will corre-
spond on the basis of chance alone. Suppose a vector has n elements, n, of which are 1 and the re-
mainder 0. Suppose a second n vector has nk 1’s and the rest 0. If the n;1’s are scattered at random in
the first vector and the nk 1’s are scattered at random in the other, when the two vectors are laid side
by side, what is the probability that none of the 1’s in the one vector are matched by 1’s at corres-
ponding places in the other? If the complement of this probability is found, this is the probability of
at least one pair of 1’s with the same index in the two vectors, i.e., a frequency that is not 0,0. Ob-
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viously, if n, + nk is greater than n, there must be at least one match. If not, the probability of 0
maches is given by the following formula, where n, is greater than nk:

If p (0) ~ .5, this implies that a random match is unlikely to occur; therefore, the observed 1,0 fre-
quency probably represents real information about the item order. If p(0) < .5, the probability is con-
sidered too great that the matching elements occurred by chance and that insufficient order informa-
tion exists.

These standards will clearly seem incautious to anyone raised in the .05 to .01 tradition of signifi-
cance testing. Two things should be borne in mind. Most of these implications of order are subject to
reversal on the basis of later evidence, so the decisions are not irrevocable. Second, there is not the
same payoff matrix here as that underlying traditional hypothesis testing. Particularly at the early
stages, the penalty for concluding that there is not a difference in difficulty when one actually exists is
as large as the penalty for concluding that there is a difference when in fact there is not. In fact, a
good deal of exploratory simulation work forced the abandonment of the use of more traditional sig-
nificance levels, and it was not until this mode was adopted that reasonably good results were ob-
tained.
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