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Abstract

A new sharing item response theory (SIRT) model is presented which ex-
plicitly models the effects of sharing item content between informants and
test-takers. This model is used to construct adaptive item selection and
scoring rules that provide increased precision and reduced score gains in
instances where sharing occurs. The adaptive item selection rules are ex-
pressed as functions of the item’s exposure rate in addition to other com-
monly used properties (characterized by difficulty, discrimination, and guess-
ing parameters). Based on the results of simulated item responses, the new
item selection and scoring algorithms compare favorably to the Sympson-
Hetter exposure control method. The new SIRT approach provides higher
reliability and lower score gains in instances where sharing occurs between
informants and test-takers.

Introduction

In recent years, computerized adaptive testing (CAT) has grown in popularity be-
cause of its many advantages over conventional paper-and-pencil administration. These
advantages include, but are not necessarily limited to increased measurement accuracy
and shorter test-lengths (Sands, Waters, & McBride, 1997; van der Linden & Glas, 2000;
Wainer, 2000). CAT has also grown in popularity through its association with on-demand
testing. These exams can be administered at the convenience of the test-taker since they
are essentially self -paced and -administered.

Compared to periodic test schedules (where essentially different items are adminis-
tered on different testing occasions), on-demand testing has a serious shortcoming: test
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security. With on-demand test schedules, the same test items are administered over multi-
ple occasions (spanning weeks, months, or possibly years). This continuous item exposure
provides increased opportunities for test compromise. Several item selection algorithms
have been proposed to help moderate the effects of compromise. These algorithms (Davey
& Parshall, 1995; Stocking, 1993; Stocking & Lewis, 1998; Stocking & Lewis, 2000; Thomas-
son, 1995), based in large part on the Sympson-Hetter algorithm (Hetter & Sympson, 1997;
Sympson & Hetter, 1985) limit the exposure of the pool’s most informative items in an
attempt to reduce the advantages to test-takers of sharing item content. Although these
exposure-control algorithms might help reduce the degradation in measurement precision
associated with compromise, evidence suggests that there is still substantial scoring advan-
tages given to examinees who preview item content from one or more friends or informants
(Segall, 1995; Segall & Moreno, 1997). Accordingly, some test-developers have gone to ex-
traordinary lengths to help ensure test security, including the frequent replacement of entire
item pools.

This paper investigates several issues associated with test compromise in CAT. First,
a new sharing item response theory (SIRT) model is derived and evaluated. This model is
used to construct new CAT item selection and scoring algorithms that provide increased
measurement precision and reduced scoring advantages in the presence of compromise.
Second, the performance of this method is evaluated with simulated response data, and is
compared to the performance of one of the most commonly used exposure control algorithms,
the Sympson-Hetter procedure.

The Sharing Item Response Theory (SIRT) Model

We begin by hypothesizing a specific compromise behavior based on the sharing of
item content between informants and test-takers. According to this model, a given test-taker
has h informants who have taken the adaptive test before him (where h = 0,1,2,...,np).
The informants disclose r randomly chosen items (out of n items received) to the test-taker.
Accordingly, each item in the pool (i = 1,..., N) has two states with regard to preview by
the test-taker:

o — 0, if item ¢ has not been previewed,
! 1, if item 4 has been previewed.

Then the conditional probability that item 7 has been previewed given h informants have
participated in the disclosure, is stated by

plv; =1lh) =1— <1—%ei>h , (1)

where e; is the exposure rate of item i (defined as the probability of receiving item 7).

Next we denote item responses by u = (u1, ug, ..., uy ), where a correct response to item
1 is denoted by u; = 1, and an incorrect response by u; = 0. Assuming that all previewed
items are answered correctly by the test-taker, the probability of a correct response to item
i1 conditional on ability 8 and number of informants h is given by

pi(u; = 110, h) = p(v; = 1|h) + pi(u; = 1{0)p(v; = 0|h) , (2)
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where p;(u; = 1]0) is the probability of a correct response for item ¢ conditional on 0,
modeled by the three-parameter logistic (3PL) function (Birnbaum, 1968):

1-— C;
T ep [ 17a 0 b))’ ®)

pi(ui = 1‘0) = C;
and p(v; =0|h) =1 — p(v; = 1|h).

Following from conditional (on 6 and h) independence assumptions among item re-
sponses, the joint distribution of parameters and data can be expressed by

plu.0,h) = p(O)p(k) [ piCuil0. 1) . (4)
=1

where p(0) and p(h) are independent prior distributions for  and h, respectively, and where
pi(uil6, h) = [pi(ui = 1]6, W)]" [1 — pi(u; = 1]6, k)] .

Summing (4) over values of h, the joint distribution of  and w is provided by

p(“? ‘9) = Zp(ua 0, h) (5)
h=0

= p(0)) [p(h)Hpi(uinh)] -
h=0 =1

The posterior distribution of ability 0 given data u is provided by

p(O0lu) = p(0,u)/p(u) , (6)

where p(u) = [ p(6,u)do.

Central tendency measures of the posterior density (6) (such as the posterior mean)
can in principle provide an ability estimate which should be less contaminated by the effects
of item disclosure than ability estimates produced by the standard item response theory
model. Dispersion measures obtained from (6) (such as the posterior variance) can be used
to summarize the level of uncertainty regarding 6 in the presence of both measurement-
error, and uncertainty due to item disclosure by informants. Numerical approximations to
the posterior variance and mean can be computed from (14) and (15).

Note that the joint probability given by (4) implies conditional independence among
item disclosure outcomes. According to the model, the probability of item disclosure is
conditionally dependent on h (the number of informants). In practice the probability of
disclosure is also likely to be dependent on the ability level(s) of the informant(s) as well.
The effects of this model simplification will be assessed in the simulation study described
in a following section.

Item Selection

The SIRT model can be used to construct an adaptive item selection algorithm which
explicitly considers the item’s exposure rate and its effect on the reduction of posterior
uncertainty. This item selection approach is provided below, along with two enhancements
intended to provide improved test-score precision.
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Minimum FExpected Variance Criterion

The posterior density function given by (6) can be used to construct an item selection
algorithm based on a minimum expected variance (MEV) criterion (van der Linden &
Pashley, 2000, p. 16, eq. 28). According to this criterion, the next item to be chosen is the
one that minimizes the expected posterior variance. The expected posterior variance for
item k (where k indexes the item in a pool of previously unadministered items), denoted
by E [Var(0|u, ug)], can be expressed by

E [Var(0|u, u)] = Var(0|u, ux, = 1)p (ux, = 1|u) + Var(f|u, up = 0)p (ug, = 0Ju) ,  (7)

where u contains the responses to previously administered items. The predictive posterior
distribution for the response to item k can be calculated from the ratio of two terms:

_ pu,ur)
p(urfu) = = 5

where the numerator is expressed by

p(ua uk) = /p(eau7uk)d07 (8)

and denominator by

p(u) = / p(6, u)do (9)

The integrals on the right sides of (8) and (9) can be approximated by substituting the
appropriate item-related terms (and responses) into (5) and then using a one-dimensional
numerical integration algorithm. The variance terms Var(6|u, ur = 1) and Var(f|u, ux, = 0)
in (7) can also be approximated numerically from (5). Computational details are provided
by (14) through (16).

Stochastic Minimum Expected Variance Item Selection

The minimum expected variance (MEV) item selection algorithm falls in the class
of greedy selection algorithms—at each stage in the item selection process the minimum
variance item is always selected, regardless of how close other items are in terms of their
variance estimates. Consequently, the usage or administration rates of nearly identical
(in terms of their item-response functions) items can vary widely. Two items with nearly
identical discrimination, difficulty, and guessing parameters can have very different usage
rates. Among items with the same difficulty levels, preference is given to the item with the
slightly higher discrimination level (and lower guessing parameter).

To help equalize the administration rates of similar items, the MEV criterion can
be modified to include a probabilistic or stochastic component, resulting in the stochastic
minimum expected variance (SMEV) criterion. According to this approach, the first item
is chosen with probability equal to

X,gl) x 1 — E [Var(0|u, ug)] , (10)
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(1)

where the subscript k& denotes the kth unadministered item in the pool, and the X, values
are normed so that their sum is equal to one. The second and subsequent items (i = 2, ...,n)
are also chosen stochastically, so that the probability of selection is equal to

Zy,

(@) _
X = 7 (11)
where
{1 - E[Var(0|u,ug)]} — {1 — Var(0|u)}
Zk = 1 — Var(0|u) (12)
Var(6|u) — E [Var(6|u, ug)]
1 — Var(0|u)

The value Z; is equal to the percent of relative increase in explained test-score variance
due to the administration of item k, relative to the amount of variance already explained
by previously administered items.

Purposely Over-Exposed Items

The goal of exposure control algorithms is to limit the usage of items, most typically
the usage of highly discriminating items of moderate difficulty. With the standard item
response theory (IRT) model, these frequently administered items are likely to be problem-
atic in instances where examinees share item content. When sharing occurs, responses to
highly exposed items are likely to degrade the precision of the final ability estimates.

In contrast, highly exposed items can provide useful information when ability is esti-
mated using the SIRT model. This is especially true if the highly exposed items are difficult
highly discriminating items. With these highly exposed difficult items, the probability of a
correct response is high through sharing, and low otherwise. Consequently these items can
provide useful information regarding the number of informants h that shared item-content
with the test-taker. If a large proportion of highly-exposed extremely-difficult items are
answered correctly, then it is plausible that h > 0 (i.e., the test-taker benefited from the
aid of informants). Conversely, if few highly-exposed difficult items are answered correctly,
then the plausibility that h = 0 is greatly enhanced.

The role of highly exposed difficult items can be examined more formally through a re-
examination of components used in the computation of p(u, 8). From (5), we see that the ker-
nel of this expression is a weighted average of conditional likelihood functions—where each
likelihood function is conditional on the number of informants L(0|u, h) = [];—; pi(wi|0, h).
In cases where a number of difficult highly-exposed items are answered correctly, the likeli-
hood functions conditional on non-zero informant levels L(0|u, h = 1), ..., L(0|u, h = ny) will
be large relative to the likelihood function conditional on zero informants: L(6|u,h = 0).
This is evident from (2). Consequently when highly-exposed difficult items are answered cor-
rectly, the posterior density p(0|u) will display increased plausibility over the lower ranges
of 0, since correct responses can be obtained through sharing (when h > 0) as well as
through proficiency and guessing. Conversely, when difficult highly-exposed items are an-
swered incorrectly, the likelihood functions conditional on h > 0 will be small relative to
the likelihood function conditional on h = 0. Consequently when highly-exposed difficult
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items are answered incorrectly, the shape of the posterior density p(f|u) will more closely
approximate the posterior density based on the standard IRT model, where the probability
of a correct response is expressed as a function of ability 6 only.

These observations suggest that the performance of the SIRT procedure, unlike con-
ventional exposure control strategies, might actually be enhanced through the deliberate
administration of highly-exposed items to each examinee—given the caveat that these items
are difficult and moderate to highly discriminating. According to this strategy, these items,
termed Trojan items, would be administered early in the adaptive sequence so that re-
sponses to these items could influence the choice of subsequent items. If these items are
answered correctly, then the SIRT algorithm is likely to choose less exposed items for the
remainder of the test. If these difficult highly-exposed items are answered incorrectly, then
the algorithm is likely to rely on more heavily exposed (and possibly more informative)
subsequent items. The usefulness of Trojan items and their effects on SIRT precision is
examined in the simulation study described below.

Simulation Study

A simulation study was conducted to answer several questions related to the SIRT
item selection and scoring algorithms. First how well do the SIRT procedures counter the
effects of sharing between informants and test-takers? Second, what benefit is there (if any)
to the forced administration of Trojan (highly-exposed difficult) items? And third, how
does the performance of the SIRT approach compare to another item selection and scoring
approach based on the Sympson-Hetter item exposure control algorithm?

Item Pool

The item pool consisted of 300 items where the difficulty parameters b were equally
spaced from —1.5 to +1.5. The slope a; and guessing ¢; parameters were sampled from
independent uniform distributions: a; ~ U[0.5,1.5] and ¢; ~ UJ[0,0.3], for i = 1, ..., 300.

Informant Distribution

The prior distribution of informants was assumed to be

(0.60, h=0,
0.20, h=1,
0.10, h=2,
P(M) =9 005 h—3. (13)
0.03, h=4,
0.02, h=5

Accordingly, 40% of the population benefited from the disclosure of one or more informants,
with 10% of the population previewing items from 3 or more informants. This prior dis-
tribution was used in all SIRT item selection and scoring calculations. This distribution
was also used to generate the number of informants A for simulation conditions where the
number of informants was randomly sampled for each test-taker.
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SIRT Calculations

Item selection and scoring calculations were based on the SIRT model. Since there
are no closed form solutions for (7), (8), and (9), approximations were obtained using a
numerical quadrature approach with ¢ = 61 evenly spaced points 01, ...,0¢1 in the range
+3. The general form of the calculations was patterned after an approach based on the
standard IRT model, outlined by Bock and Mislevy (1982). The posterior variance for a
given set of administered items and associated responses u was approximated by

a .12
Var (O|u) ~ K1 Z [Hj - 9] p(0;,u), (14)
and the posterior mean by

O~ K> 0;p(6;,u), (15)

where

and where p(0;,u) is given by (5), and p(#) [contained in (5)] is a standard normal density
function. The marginal probability terms for (8) and (9) can be approximated by

p(ﬁj,u) . (16)
1

1 q
pu) ~ —

10

J

To calculate the expected posterior variance associated with the administration of item k
given by (7), the posterior variance calculations described by (14) and (15) were augmented
by the item-related terms associated with the kth item, including the response to the kth
unadministered item, ug. In a similar manner, the marginal probability calculations given
by (16) were also augmented with additional item-related terms and responses to complete
the calculation of the expected posterior variance (7) for the administration of the kth
item. Once expected posterior variance terms were calculated for each unadministered item
contained in the pool, the next item was administered according to the SMEV algorithm
described by (10) and (11). A final posterior mean was calculated from the responses to all
administered items using (15). This posterior mean was taken as the ability estimate.

Response Generation

For a fixed ability # and informant level h, the response u; to item ¢ with parameters
a;, b;, c;, e; was generated by one of two approaches.
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Model Based (MB) Response Generation.
According to this approach, a number ¢t was sampled from a uniform distribution and
compared to the conditional probability of a correct response:

o 1, tﬁpi(uizlw,h)
v = { 0, otherwise, (17)

where the conditional probability p;(u; = 1|6, h) was calculated according to (2), and r =n
(all administered items were assumed to be disclosed by the informant). This approach was
used to generate item responses for adaptive test sessions used in the estimation of item
exposure parameters e;.

Informant Aided (IA) Response Generation.

According to this approach, h adaptive test administrations were generated, and
preview status of item ¢ was calculated: v; = 1 if item ¢ was administered to any of the h
informants and v = 0 if none of the informants received item ¢. Then

w 1, ifv;=1ort<p;(u; =1/0),
1 0, otherwise,

where ¢ is a random uniform number, and p;(u; = 1|6) is the 3PL item response function
defined by (3). This approach to response generation was used for all simulation studies.

Exposure Parameter Estimation

Exposure parameters e; (for i = 1,..., N) were calculated from simulated data by a
multi-step iterative process:

(a) Sample 6 from a standard normal distribution p(0).

(b) Sample h from p(h).

(c) Generate an adaptive testing sequence using the SMEV item selection and SIRT
scoring algorithms in conjunction with the model-based (MB) response generation algorithm
(17).

(d) Update the frequency of item administration across this and any previously sim-
ulated test sessions. Update the estimate of e; by dividing the total number of times each
item in the pool has been administered by the total number of adaptive tests generated so
far.

(e) Perform 200 replications of Steps (a) through (d), and after each replication, substi-
tute the updated e;-values from Step (d) into the “Item selection and response generation”
portion of Step (c). The final exposure parameters e; obtained after the final replication
were used in subsequent simulations.

Trojan Items

Except where otherwise noted, each simulated respondent had an opportunity to
answer up to 10 Trojan (difficult highly exposed) items. Each of these 10 items (all with
parameters a = 2,b = 3,¢ = 0.2) were administered with probability 0.95. Consequently,
about 60% of the population would be expected to receive 10 Trojan items, about 32% to
receive 9 Trojan items, about 7% to receive 8 Trojan items, and so forth. These Trojan



ADAPTIVE EXPOSURE CONTROL 9

items were administered at the beginning of the test along with five adaptively selected
items. The Trojan items were randomly interspersed among the 5 adaptive items so that
their position in the item presentation sequence was not entirely predictable.

Sympson-Hetter Condition

The effects of compromise on test-scores were also simulated using the Sympson-
Hetter exposure control algorithm. This algorithm was implemented using maximum infor-
mation item selection (Lord, 1980, p. 151), where information tables were constructed from
61 equally spaced points in the range +3. Items providing the maximum information at
the point closest to the maximum a posteriori ability estimate were considered for admin-
istration. Items passing the stochastic Sympson-Hetter rule based on the exposure control
parameter were administered, those items not passing were set aside, and the next most
informative item was selected for consideration, and so forth. Exposure control parameters
required by the Sympson-Hetter procedure were estimated though a series of simulations
using a target ceiling exposure rate of 0.15. Test lengths of 40 items were drawn from the
300-item pool. The final ability estimate was the posterior mean based on the standard
IRT model, computed after the administration of the last item.

Results

A series of conditions were examined using the Sympson-Hetter and SIRT approaches.
The conditions differed in the generation processes for the examinee ability 6 and informant
h parameters. Examinee parameters 6 were either sampled from a N(0, 1) distribution,
or were set equal to fixed values: —2,—1,—-0.5,0,0.5,1,2. Informant-level parameters h
were either sampled from the distribution p(h) given by (13), or set equal to fixed values:
0,1,...,5. Except where otherwise noted, all examinees received 40 items selected adaptively
by either the Sympson-Hetter or SMEV algorithms. Up to 10 additional Trojan items were
administered for the SIRT conditions.

For each condition, 2000 replications (simulated test-taker sessions) were conducted
for the Sympson-Hetter procedure, and 500 replications were conducted for the SIRT ap-
proach. For each condition, replication outcomes were summarized by three measures:
M(0), the mean of the estimated ability parameters; SD(0), the standard deviation of the
estimated ability parameters, and PV (6), the mean of the examinee-level posterior variance
values computed by (14). For conditions where 6 was sampled rather than fixed, p (the
squared Pearson product moment correlation between 6 and 9) was also calculated.

Table 1 provides selected results for two conditions where 6 ~ N(0,1). When exami-
nees’ performance is not effected by sharing among informants (h = 0), the Sympson-Hetter
and SIRT procedures display similar performance with regards to reliability p, average
score M(0), and dispersion SD(6). However, when some test-takers do benefit from sharing
(h ~ p(h); line 2 of Table 1), the SIRT procedure displays substantially higher precision
(0.91 versus 0.77) and no score inflation (—0.04 versus. 0.18).

Table 2 displays some results regarding the effects of Trojan items on test score
properties. For total test lengths niot of 50 items, several combinations of adaptive naqp
and Trojan nto test lengths were examined. Adaptive items were selected according to the
SMEV criterion (egs. 10 and 11). In each condition, up to ny, items were administered,
each item administered with probability 0.95 to each simulated respondent. For conditions
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Table 1: Simulation Results for Fixed (zero) and Random Informant Levels

Sympson-Hetter Model® SIRT Model?
Informants  p M(#) SD(0) PV(0) p M) SD(9) PV(0)
h=0 94 —.04 .96 .02 .94 .03 .95 .06
h~p(h) .77 18 1.00 .02 91 —-.04 .94 .09

Note. 6 ~ N(0,1).
%Test length = 40 items.
bTest length = 50 items total including up to 10 Trojan items.

Table 2: Comparisons of SIRT Model Outcomes for Alternate Adaptive and Trojan Test Lengths

Nadp Mtro  Ttot ﬁ M(@) SD(@) PV(Q)
50 0 50 .87 .01 .92 A1
45 ) 50 91 -.01 97 .09
40 10 50 91 —-.04 .94 .09
35 15 50 .88 .06 .94 10

Note. 6 ~ N(0,1) and h ~ p(h).

where ny, > 0, the Trojan items were administered towards the beginning of the test with
5 adaptive items randomly interspersed among the Trojan items. The results suggest that
given a fixed overall test-length of 50 items, reliability can be increased by the administration
of 5 or 10 Trojan items, and that the relative mix of adaptive and Trojan items can effect
test-score precision.

Table 3 provides selected results for fixed informant levels h, where 8 ~ N(0, 1). For
conditions where h > 0, the Sympson-Hetter procedure displays moderate to large drops in
reliability and large increases in mean test scores. For h = 2, the Sympson-Hetter procedure
displays over one-half SD increase in average score, and about a one SD increase (or higher)
for h > 3. In contrast, the SIRT procedure displays much smaller decreases in reliability
and only moderate increases in scores for h > 0. For h < 2, no positive gains in scores are
observed, and p > 0.86. In addition, only small average gains are observed for higher levels
of informants 3 < h < 4 (as compared to the Sympson-Hetter procedure). The dispersion of

~

scores SD(0) appears much more constant across conditions for the SIRT procedure than for

A~

the Sympson-Hetter method. For the Sympson-Hetter procedure, SD(6) increases with h,
whereas with the SIRT procedure the SD(@) decreases slightly for h > 0. Note in addition,
that the Sympson-Hetter characterizations of posterior uncertainty PV () remain relatively
constant across informant levels h, and grossly under-estimate the actual uncertainty for
high h-levels. In contrast, the SIRT procedure provides PV(6) levels which tend to increase
with h-levels, reflecting the increased uncertainty about 6 associated with larger numbers
of informants.

Table 4 provides selected results for fixed ability levels 0, where h ~ p(h). Compared

A~

to the Sympson-Hetter procedure, the SIRT procedure displays lower average scores M(6)
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Table 3: Simulation Results for Fixed Informant Levels

Sympson-Hetter Model® SIRT Model?
h p M) SD(O) PV(0) p M) SD() PV(0)
0 94 -—-.04 .96 .02 .94 .03 .95 .06
1 .87 .22 .99 .01 90 —.14 .89 12
2 .74 .56 1.09 .02 86 —.04 .88 14
3 .60 .95 1.18 .02 .87 .22 .87 15
4 45 1.30 1.22 .02 .83 27 .87 A7
5 .39 1.54 1.25 .01 .79 .46 .89 A7

Note. 6 ~ N(0,1).
%Test length = 40 items.
bTest length = 50 items total including up to 10 Trojan items.

~

and smaller conditional SD(#), suggesting that the SIRT approach produces smaller score-
gains from informants and provides increased measurement precision. The columns in Table
4 labeled Gain indicate the gain in conditional performance over a group where performance
is not effected by informants (h = 0). For example, 0.38 reflects an average score-gain among
those respondents with fixed # = —2.0 and sampled h ~ p(h) over those with fixed § = —2.0
and zero informants (h = 0). Note that gains across ability levels for the Sympson-Hetter
procedure tended to range between two and four tenths. In contrast for the SIRT procedure,
significant positive score gains were only observed for the lowest ability levels, and near-zero
gains were observed over most of the ability range (§ > —0.5). Also note that the Sympson-
Hetter procedure tends to under estimate the posterior uncertainty at each ability level as

indicated by the small PV(#) values juxtaposed against the large conditional SD(6)’s.

Discussion

The results of the simulation study suggest that the SIRT model with stochastic min-
imum expected variance item selection can substantially reduce the negative consequences
of sharing item content. Compared to the Sympson-Hetter approach, the SIRT approach
produces test scores with substantially higher reliability, and substantially lower inflation
in instances where a substantial portion of the test-taking population benefits from item-
content provided by one or more informants.

Although no positive score gains were observed for conditions with only one or two
informants (Table 3) small to moderate gains were observed for conditions with 3, 4, or
5 informants. These larger gains in average test score might be attributable, in part, to
the small prior probability given to these informant levels: p(3 < h < 5) = 0.10. Smaller
score gains might have been observed had larger prior probabilities given to these informant
levels. However, larger proportions of informants in the upper h-ranges are also likely to
degrade measurement precision to a larger degree. For instances where larger percentages of
informants occur over the range 3 < h < 5, additional simulation studies would be required
to examine the effects on score gain and measurement precision.
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Table 4: Simulation Results for Fixed Ability Levels

Sympson-Hetter Model® SIRT Model?

0 M) SD(F) PV(f) Gain M(0) SD(9) PV(0) Gain
—-2.0 —1.47 .56 .03 .38 —1.62 .49 A1 .28
-1.0 -—-.74 .40 .01 .23 —.86 .30 .08 .09
-05 =29 .38 .01 A7 —.46 27 .08 .01

0.0 22 42 .01 .23 .00 27 .08 —.00
0.5 .75 .49 .01 .30 .46 .29 .09 —.03
1.0 1.27 .51 .01 .33 .99 .33 .09 .04
2.0 2.15 .35 .01 21 1.89 .28 A1 .00

Note. h ~ p(h).
%Test length = 40 items.
bTest length = 50 items total including up to 10 Trojan items.

One assumption made by the SIRT item-selection and scoring algorithms regards the
probability of item-preview conditional on only &, the number of informants that have par-
ticipated in the disclosure. (See Equation 1.) In practice, the probability of item-preview is
likely to be dependent on the ability level(s) 6 of the informant(s) as well as the number of
informants h. However, favorable precision and score-gain results were observed in spite of
this potential model violation. Note that the simulated data were based on informant be-
havior that violated, to a realistic degree, the conditional independence assumption: Entire
informant test-session records were randomly sampled from the population of test-takers,
and any items in common between the test-takers and informant(s) were answered correctly
by the test-taker. The SIRT item selection and scoring procedures provided satisfactory
results, even in spite of the suspected violation to the conditional independence assumption.

This study also demonstrates the surprising benefits of highly-exposed difficult items
(termed Trojan items). With standard IRT item-selection and scoring procedures, responses
to these items would likely provide little or misleading information regarding the respondents
ability level. In the context of the SIRT model however, these items help distinguish between
those test-takers who have benefited from the help of informants and those who have not.
A small number of highly-exposed difficult Trojan items administered to each test-taker can
actually increase the precision of estimated ability.

The optimal placement of the Trojan items in the sequence of administered items is
likely to be towards the beginning of the test, where the responses to these items can most
heavily effect the exposure levels of subsequently selected items. However, the predictable
placement of these difficult highly exposed items as the first (say 10) items in the test
might lead to deliberate incorrect responding by cheaters, where respondents routinely
answer the first 10 items incorrectly (in spite of their disclosure by informants), and then
proceed to answer the remaining items correctly based on their ability, and on information
provided by informants. In this way, test-takers might be able to more closely mimic the
response patterns of honest high-ability test-takers who did not benefit from the aid of
informants. However, by interspersing a few adaptively selected items of lower exposure
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(based on the SMEV item selection algorithm) among the Trojan items at the beginning of
the test, this sort of strategy might be effectively thwarted: The positioning of Tojan items
in the sequence of adaptively administered items would be less predictable. This sort of
countermeasure was implemented in the simulation study. Good measurement properties
of ability estimates were displayed by the SIRT procedure in the simulation study even in
spite of the possibly less than optimal placement of the Trojan items.

In at least one sense, the simulation study discussed here might overstate the nega-
tive impact of sharing among informants and test-takers, since it was assumed that each
informant discloses the contents of all items received (i.e., 7 = n in Equation 1). Even in
instances where informants only disclose a portion of received items (i.e., r < n), the SIRT
procedure will almost certainly provide improved performance in terms of precision and
score gain, as compared to the Sympson-Hetter procedure, or other procedures which do
not explicitly model the effects of sharing on responding. However, to determine the spe-
cific magnitude of the benefits for lower disclosure levels, additional simulated comparisons
would be required.

The SIRT algorithm assumes that the distribution of informant levels p(h) is known.
In practical application of the procedure, this is unlikely to be the case. When p(h) is
unknown, two approaches are possible. First, a subjective prior could be used. If such an
approach is taken, it would be useful to examine the sensitivity of item-selection and scoring
results when p(h) is misspecified to varying degrees. This could be accomplished through a
series of simulation studies. Alternatively, a methodology to estimate p(h) from empirical
data might be derived. Then the estimated distribution could be used in the SIRT item
selection and scoring calculations. Here too, the consequences of misspecification (due here
to sampling errors) should be studied before the estimated h distribution is used in place
of that assumed to be known.

McLeod, Lewis, and Thissen (2003) have suggested the use of a Bayesian index for the
detection of examinees with item preknowledge. They suggest additional testing with highly
secure items for those test-takers identified by the index as likely cheaters. The approach
described in this paper eliminates the first step of identification (of those suspected of
cheating) and adaptively selects the level of item-exposure for subsequently administered
items based on the expected reduction in posterior variance. It is possible that the SIRT
approach presented here is more efficient than the two-step approach suggested by McLeod
et al. However, additional research would be required to evaluate the relative benefits of the
two approaches.

One important implication of the SIRT model regards item replacement schedules
for high-stakes high-volume adaptive tests. According to the sharing item response model,
the usefulness of an item does not necessarily diminish over extended periods of exposure.
Rather, an item’s usefulness (in terms of precision) depends in large part on its relative (to
other items) exposure, not necessarily on its absolute exposure. That is, according to (1), an
item’s preview propensity depends on its exposure rate, which is calculated relative to other
items in the pool. According to the SIRT model, an item’s functioning is not dependent on
the total number of times an item has been used: An item with an exposure rate of 0.33
has the same measurement properties and usefulness whether it has been administered to
100 test-takers, or to 10,000 test-takers. This approach assumes that for a given test-taker,
he or she shares item content with a relatively small countable number of informants. The
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SIRT approach is not likely to provide reliable scores if item content is banked (which can
be thought of as sharing among a large number of informants and test-takers).

In cases where items are banked by a large number of informants and given to a large
number of test-takers, then frequent pool replacement might be warranted, and in fact might
be the only countermeasure for widespread compromise. However, if banked questions are
widely available to test-takers, then this availability should be easily known to the testing
organization as well, who ought to be able to stop such practices since the test-questions
themselves are likely to be protected under copyright restrictions. Consequently, in many
high-stakes high-volume applications of CAT, the SIRT model coupled with vigilance on the
part of the testing organization might allow large pools of items to be used over extended
periods, without the need for frequent item pool updating and replacement.

References

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability.
In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 395-479).
Reading, MA: Addison-Wesley.

Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a microcomputer
environment. Applied Psychological Measurement, 6, 431-444.

Davey, T., & Parshall, C. G. (1995, April). New algorithms for item selection and exposure control
with computerized adaptive testing. Paper presented at the annual meeting of the American
Educational Research Association, San Francisco, CA.

Hetter, R. D., & Sympson, J. B. (1997). Item exposure control in CAT-ASVAB. In W. A. Sands,
B. K. Waters, & J. R. McBride (Eds.), Computerized adaptive testing: From inquiry to operation
(pp. 141-144). Washington, DC: American Psychological Association.

Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale,
NJ: Lawrence Erlbaum Associates.

McLeod, L., Lewis, C., & Thissen, D. (2003). A Bayesian method for the detection of item pre-
knowledge in computerized adaptive testing. Applied Psychological Measurement, 27, 121-137.

Sands, W. A., Waters, B. K., & McBride, J. R. (Eds.). (1997). Computerized adaptive testing: From
inquiry to operation. Washington, DC: American Psychological Association.

Segall, D. O. (1995, April). The effects of item compromise on computerized adaptive test scores.
Paper presented at the meeting of the Society for Industrial and Organizational Psychology,
Orlando, FL.

Segall, D. O., & Moreno, K. E. (1997). Cwrrent and future challenges. In W. A. Sands, B. K.
Waters, & J. R. McBride (Eds.), Computerized adaptive testing: From inguiry to operation
(pp. 257-269). Washington, DC: American Psychological Association.

Stocking, M. L. (1993). Controlling item exposure rates in a realistic adaptive testing paradigm
(Tech. Rep. No. 93-2). Princeton, NJ: Educational Testing Service.

Stocking, M. L., & Lewis, C. (1998). Controlling item exposure conditional on ability in computerized
adaptive testing. Journal of Educational and Behavioral Statistics, 23, 57-75.



ADAPTIVE EXPOSURE CONTROL 15

Stocking, M. L., & Lewis, C. (2000). Methods of controlling the exposure of items in CAT. In W. J.
van der Linden & C. A. W. Glas (Eds.), Computerized adaptive testing: Theory and practice
(pp. 163-182). Boston: Kluwer-Nijhoff.

Sympson, J. B., & Hetter, R. D. (1985). Controlling item-exposure rates in computerized adaptive
testing. In Proceedings of the 27th annual meeting of the military testing association (pp.
973-977). San Diego, CA: Navy Personnel Research and Development Center.

Thomasson, G. L. (1995, June). New item exposure control algorithms for computerized adaptive
testing. Paper presented at the annual meeting of the Psychometric Society, Minneqgpolis, MN.

van der Linden, W. J., & Glas, C. A. W. (Eds.). (2000). Computerized adaptive testing: Theory
and practice. Boston: Kluwer.

van der Linden, W. J., & Pashley, P. J. (2000). Item selection and ability estimation in adaptive
testing. In W. J. van der Linden & C. A. W. Glas (Eds.), Computerized adaptive testing:
Theory and practice (pp. 1-25). Boston: Kluwer-Nijhoff.

Wainer, H. (Ed.). (2000). Computerized adaptive testing: A primer (2nd ed.). Mahwah, NJ:
Lawrence Erlbaum Associates.



