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It is usually the role of a discussant to take a set of papers and show how
they contribute to a larger coherent body of work. Unfortunately, in this case
the contents of the two papers I am to discuss are so different that it is dif-
ficult to deal with them together. While they both deal with very important
topics in psychometrics--the effects of multidimensionality on test results, and
how to make decisions using test results-~each paper is best considered sepa-
rately from the other.

Weiss and Suhadolnik

The Weiss and Suhadolnik paper addresses the issue of the robustness of
adaptive testing to the violation of the unidimensionality assumption required
by most item response theory (IRT) models. The approach that they take is to
generate simulated test data according to a multidimensional model, use that
data in a unidimensional simulation of adaptive testing, and then compare the
obtained 6 estimates to the known 6 values from the first dimension.

For studies of this type to be meaningful, the procedure used to generate
the simulated item response data must be as similar to real item response data
as possible. If it is not, the results of the study cannot be generalized to
real testing situations. Of course, simulated test data never totally capture
the richness of real test data, but we are usually willing to give up the rich-
ness in sources of variation in exchange for knowledge of the true ability of
the examinees (simulees in Weiss and Suhadolnik's terminology). Whether the
procedure used in this paper generates data that are “close enough” to real item
response data is critical to interpreting the results of this paper. Therefore,
I will concentrate most of my remarks on the data generation procedure.

Before addressing the data generation procedure directly, a definition of
dimensionality is needed. To me, the dimensionality of a set of item response
data is the result of a complex interaction between the characteristics of the
examinees and the characteristics of the items. Examinees have many different
abilities, the sum total of which define the complete latent space (Lord &
Novick, 1968). These abilities may be related to each other in complex ways.
The items also have many characteristics. They have different reading levels,
different numbers of symbols, different lengths, and address different concepts.
The response to an item is a function of the person’'s and item's characteris—
tics:

. = f(O., e-) * [l]
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where xij is the response to item i by person j,
Qi is the vector of item characteristics, and

Qj is the vector of person characteristics.

~

When simulating item response data, both g3 and ej must be specified as well as

the function that relates them to the response.

In this study, § was generated so that the 6s on each dimension were uni-
formly distributed between —=3.2 and +3.2 and the dimensions were unrelated. In
addition, for the first dimension, only 17 uniformly spaced values of O were
used, with 100 simulees at each value. This was done to allow for the computa-
tion of several indices of the quality of the adaptive testing procedure.

The initial question that comes to mind when considering this 6 structure
is, "Is it reasonable?” Certainly the 6 distribution for actual groups of exami-
nees is probably not uniform on any dimension, and most likely the dimensions
should be somewhat related. However, for the sake of a uniform evaluation of
the adaptive testing procedure, this part of the simulation is probably justi-
fied. However, the heavy "tails" of the distributions should be kept in mind
when interpreting the results. The high number of high and low 0s will probably
result in more perfect and zero raw scores than usual.

The specification of the item characteristics for this study is much more
complicated. The initial characteristics of the test items were borrowed from
the factor structure of the General Science subtest of the ASVAB, presumably to
ensure that they matched real items. In reviewing the structure (see their
Table 1), I noticed that the loadings of the first factor tended to be inversely
related to the item number. I have seen this type of pattern before when anal-
yzing multiple-choice test items that were arranged in order of increasing dif-
ficulty. The reduction in factor loadings is due to the relative increase in
guessing for the more difficult items (see Reckase, 1981, for examples using
simulated test data). This is an important factor, because in order to develop
the full item pool the factor loadings were reproduced six times and, I assume,
they were not reordered. This means that the relationship between the factor
loadings and the item difficulty was probably not maintained in the full 150-
item adaptive testing item pool.

Using the 150 x 4 factor loading matrix derived by reproducing the matrix
from the 25 ASVAB items six times, 45 different item pool structures were devel-
oped and item responses were generated. I will not discuss this process for all
of the item pool structures, but a detailed analysis of several may prove in—-
formative.

Structure 1 is defined by the factor loadings from the first factor for the
150 simulated items. In order to generate dichotomous data to correspond to
this structure, parameters were generated for each item for the 3-parameter lo-
gistic model. The a parameters were obtained from the following formula which
was derived from the normal ogive model (Lord & Novick, 1968, p. 378):

'S
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where g3 is the a parameter estimate for item g and factor j, and ng is the

factor loading for item g on factor j. The b parameters were randomly sampled
from a uniform distribution from =3.2 to 3.2, and the £ parameters were randomly
sampled from a normal distribution with mean equal to .20 and standard deviation
equal to .02,

The three parameters for each item were used to compute the probability of
a correct response for the first dimension. This probability was compared to a
uniform random number in the 0-1 range to determine the dichotomous response.
If the random number was greater than the probability, an incorrect response was
generated; if it was less than the probability, a correct response was generat-
ed.

There are two possible problems with generating the data in this way.
First, the difficulty and guessing parameters do not correspond to the a par ame-
ters, and second the a parameters were based on a normal ogive model, but were
used in a logistic model. Since the normal ogive as are on a different scale
than the logistic as, this will produce aberrant results.

When a two-dimensional dataset was produced, the loadings on the second
factor were a multiple of the factor loadings on the first factor (except in one
case when the actual ASVAB factor was used). For Dataset 2, the multiplier was
selected so that the second factor accounted for 1/8 the variance of the first
factor. The IRT item parameters were computed in exactly the same way for the
second factor as for the first factor.

To generate the multidimensional data, probabilities of a correct response
were computed separately for each dimension. These were then combined using a
weighted average procedure, weighting the probabilities by the squared factor
loadings. This process results in a compensatory model, but the compensation is
on the probability metric, not on the € metric as it is in some other models
(McKinley & Reckase, 1983).

The characteristics of the data generated by this procedure are very diffi-
cult to predict. The smaller a values for the second dimension will tend to
keep the probabilities computed for that dimension close to .5, but weighting
the probabilities by the squared factor loading will tend to reduce the influ-
ence of the second factor. In effect, the impact of the second factor is being
reduced twice, first from the reduced a value, and second from the weighting by
the factor loading.

An important point to be made about this procedure is that the magnitude of
effects of the factors can no longer be described in terms of proportion of var-—
iance accounted for. Such a description is only appropriate when dimensions are
combined linearly on the factor score metric. 1In this case, the combination of

dimensions is being dome on the probability metric, a nonlinear transformation
of the factor score metric.

The point of describing the data generation process in detail was to demon-—
strate how difficult it is to determine the characteristics of the data that
were produced. The process has so many complexities that it is even difficult
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to determine whether the resulting data are really multidimensional. It would
have been informative if the authors had factor analyzed the simulated data so
that the characteristics of the data could be determined. Until confidence can
be gained in the data generation procedure, it is difficult to have confidence
in the results of the study.

Weitzman

The Weitzman paper addresses a second important problem in the area of psy-
chometrics: how to make decisions using test scores. 1In addressing this prob-
lem, he proposes a very intriguing variation of Wald's (1947) sequential proba-
bility ratio test (SPRT). Before discussing Weitzman's variation, I will first
briefly describe Wald's procedure.

When it is desired to decide whether a person is above or below a particu-
lar cutting score, the SPRT requires that an indifference region be defined.
This is an area on the score scale where it is a matter of indifference whether
a person is classified as above or below the cutting score. The region is typi-
cally defined by its upper and lower boundaries, 6; and 6o respectively. The

SPRT has error rates of a and B at the limits of the indifference region. The
error rates are higher within the region and lower outside the region. The
actual test statistic is the ratio of the likelihood of the observed responses

X]s X9y eeey X at the upper limit of the indifference region to the likelihood

of the observed responses at the lower limit of the indifference region,

L(Xl’XZ’ ceesX l Gl)

L(xl,xz, e X [ 6 )

Weitzman proposes to do away with the indifference region by changing the
form of the likelihood functions used. His test statistic can be formulated as

L(x ..,xnle>ec)

1’ X2’

(4]
L(Xl, Ky eees X | 8 < GC)

where Bc is the cutting score. His Equation 1 is a form of this statistic using

quantiles to approximate the continuous functions involved.

At first glance, Expression 4 would seem to reach Weitzman's goal of elimi-
nating the indifference region. However, the expression can be reformulated to
show that it is equivalent to a classical SPRT with an indifference region.

.The value of L(Xl’ Koy seey xnie > ec) is essentially a weighted average of
the L(xl, Koy sees xnle) for 8 > o, where the weights are the density of the

distribution of 6 at each 6 value. Therefore, the value of the likelihood will
be between L(X;, X9, ees, xnlec) and L(xj, X9, ees, xn]e max). Thus, for some

value of 8, 6', such that 6.< §' < 9§ max,

L(Xl’ Kys wees X | 8") = L(xl, x e X | & > ec). [5]

2’



- 294 -

Likewise a value of 6, 0", can be found such that
" _—
L(xl, Xps eens X ] g'") = L(xl, Xy eens X B < ec). [6]

Expression 2 can then be rewritten as

L
L(xl, Xps voes X I 6'")

7
L(xl’ Xys eves X 1™ [7]

where ©' and 6" are the limits of the implied indifference region. It is at
these two points that the specified error rates will hold. Thus, Weitzman's
procedure is not really any different than Wald's SPRT. The only difference is
that he does not know the extent of his indifference region, while Wald shows
how to specify the region. Also, according to the procedure specified, the re-~
gion will shift after each item is administered rather than remaining constant
throughout the decisfon-making process. It would probably be better to have
control over the limits of the indifference region rather than allow them to
float as a function of the items selected.

Despite the problems with the procedure, Weitzman's study does show the
value of SPRT types of procedures in increasing the efficiency of decision mak-
ing using test data. He has also demonstrated an item selection procedure based
on classical test theory that is equivalent to the IRT approach I proposed ear-
lier (Reckase, 1983). Both of these results are a valuable contribution to the
research in this area.
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