SoME DecisioN ProceDURES For USE
WITH TAILORED TESTING

Mark D. REckasEe
UNIVERSITY OF MISSOURI

There are many applications of testing technology that require decisions to
be made as to whether a person is above or below a criterion score. Criterion~—
referenced testing and its special case, mastery testing, are examples of such a
decision. In the criterion-referenced testing application, it would be espe-
cially useful if decisions could be made quickly and conveniently for each stu-
dent in an individualized instruction program. The recently developed technolo-
gy of tailored/adaptive testing (Lord, 1970) has the potential to fulfill the
requirements of such a testing system. However, there is no generally accepted
procedure for making classification decisions using tailored testing, probably
because these testing techniques are still relatively new. The few procedures
that do exist are either based on randomly sampling items (Epstein, 1978; Sixtl,
1974), which does not take advantage of the power of tailored testing, or on
heuristic techniques (Weiss, 1978), which do not have a sound theoretical base.
The purpose of this paper is to present some decision procedures that operate
sequentially and can easily be applied to tailored testing without loss of any
of the elegance and mathematical sophistication of the examination procedures.

Tailored Testing Procedures

Numerous tailored (i.e., adaptive, response contingent, sequential) testing
procedures now exist in the research literature, ranging from simple two-stage
procedures (Betz & Weiss, 1973) to complex Bayesian procedures (Owen, 1969; see
Weiss, 1974, for a good review of the tailored testing procedures that were de-
veloped prior to 1974.) Although many procedures exist, for the purposes of this
paper only tailored testing procedures using item characteristic curve (ICC)
theory and maximum likelihood ability estimation will be considered. It will-
also be assumed that the tests are administered to the examinees on a computer
terminal and that the items are selected to maximize the value of the informa-—
tion function at the previous ability estimate. Despite the narrow definition
of tailored testing used for this paper, the results should generalize to any
procedure based upon ICC theory. '

In applying the decision procedures discussed in this paper, two specific
ICC models will be used: the 1- and 3-parameter logistic models. Although any
other ICC model could just as easily have been used, these models were selected
because of their frequent appearance in the research literature and because of
the existence of readily available calibration programs (LOGIST, CALFIT) and
tailored testing programs (Reckase, 1974).
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Sequential Decision Procedures

A cursory review of the statistical literature indicates that much has been
written about sequential estimation and classification procedures. Although
somewhat more obscure than ANOVA and regression procedures, most intermediate
level mathematical statistics books include at least one chapter on sequential
analysis (for example, see Brunk, 1965, chap. 16). 1In an ongoing review of the
extensive literature on this topic, it has been found that most procedures fall
into one of three categories: 1) sequential probability ratio tests (SPRT;
Wald, 1947), (2) Bayesian sequential procedures (e.g., DeGroot, 1970), and (3)
curtailed single sampling plans (Dodge & Romig, 1929). Of these procedures,
only the SPRT is narrowly specified-—-the other two refer to families of proce-
dures rather than a single technique.

Although these statistical procedures are widely applied for quality con-
trol, little use has been made of them in the area of mental testing, probably
because operable sequential testing procedures did not exist until recently. To
date all references in the testing literature to sequential decisions have used
the SPRT (Epstein, 1978; Reckase, 1978; Sixtl, 1974). The SPRT will therefore
be described first, followed by the Bayesian procedures, since the curtailed
sampling plans cannot readily be applied to the commonly used tailored testing
procedures, they will not be discussed in this paper.

The Sequential Probability Ratio Test

The sequential probability ratio test (SPRT) was initially developed by
Wald (1947) as a quality control device for use by the Armed Forces during World
War II. 1In addition to Wald”s (1947) excellent book on the subject, this proce-
dure has been clearly described by Epstein (1978). It will, therefore, be only
briefly described here in order to generalize the procedure so that it will more
directly apply to tailored testing.

Application to Mastery Decisions

Wald originally developed the SPRT as a statistical test to decide which of
two simple hypotheses is more correct. For example, it might be interesting to
determine whether a student can answer correctly 607 or 807% of the items in an
item pool. The basic philosophy behind the procedure used to decide between
these two alternatives was to determine the likelihood of an observed response
to an item under the two alternative hypotheses. If the likelihood were suffi-
ciently larger for one hypothesis than the other, that hypothesis would be ac-
cepted. 1If the two likelihoods were similar, another observation would be
taken. Wald (1947) has shown that one hypothesis will always be selected over
another using a finite set of items.

To demonstrate this procedure, suppose an item is randomly selected from an
item pool and administered to a student. If a correct response were obtained,
the likelihood under H; (80% knowledge) would be .80, and the likelihood under
H, (60% knowledge) would be .60. To evaluate these likelihoods, Wald takes the
ratio of the two..
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If the ratio is sufficiently large, H; is accepted; if it is sufficiently small,
H;, is accepted; and if it is near 1.0, another observation is taken. The values
of this ratio that are considered sufficiently large or small depend upon what
is considered acceptable for the two possible decision errors: (1) accepting H,
when Hy, is true (o error) and (2) accepting H; when H, is true (8 error).

Although Wald (1947) developed a procedure for determining the exact values
of these decision points, the procedure is very complex and is seldom used.
Instead, good approximations can be determined using the following formulas:
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Thus, if the likelihood ratio is less than or equal to B, H, is accepted with
error probability approximately B. 1If the likelihood ratio is greater than or
equal to A, H; is accepted with error probability approximately o. If the ratio
is between B and A, another item should be randomly sampled and administered and
the decision rule implemented again. If o = .05 and B = .10, for example, the
decision points would be at. B = .105 and A = 18. Since the likelihood ratio
(1.67) is between these two values, no decision would be made, and another item
would be selected and administered.

Since the responses to the items follow a binomial distribution in this
example, a general expression for the likelihood ratio can be developed for the
administration of n items:
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where
X4 is the score on item i (0 or 1),
p, is the proportion of items known by the student in the item pool under
H;, and
p 1is the proportion known in the item pool under H,.
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Otherwise, continue administering items.

This procedure was originally developed to test simple hypotheses, but Wald
(1947) has shown that the procedure operates in the same way for composite hy-
potheses. For example, suppose it is desirable to know whether a student knew
more than some proportion, p,, of the items in an item pool. In order to use
the SPRT to make this decision, a region for which it does not matter which de-
cision is made must first be selected around p, say, p, < p<p,. Ifp,is
close to p,, a very precise decision is required. 1If P, and P, define a wide
indifference region around p, a rather gross decision rule is all that is need-
ed. The SPRT is then carried out in exactly the same fashion as above, using P,
and p; as the values for hypotheses H, and H, ,respectively. When the decision
points A and B are computed as above, the error rates, o and g, hold for true
values of p at p, and p,. For true values of p more extreme than p, orp,, the
error rates are lower.

Evaluating Outcomes

In order to evaluate the properties of the SPRT, two functions have been
derived: the operating characteristic (OC) function and the average sample num—
ber (ASN) function. The OC function is defined as the probability of accepting
hypothesis H; as a function of the true proportion of the item pool known by the
student. Although the derivation of the OC function is somewhat complex, the
function can be approximated by the following two formulas:
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These equations are used by substituting various arbitrary values of h and solv-
ing for p and L(p). L(E)’ the probability of accepting H,, is then plotted

and
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against p to describe the OC function. Figure 1 shows an OC function for o =
.05, 8 ='_.10,__20 = .6, and p, = .8. Note that at p = p, the height of the curve
is equal to 1l - @, and at p = p,, the height of the curve is equal to B. Note
that the OC function is only dependent upon ¢, B, Py» and p,. Also, the steeper
the curve, the more accurate the SPRT decision rule.

Figure 1
Example of the OC and ASN Functions
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The ASN function is defined as the expected number of items required to
make a decision at the various values of the true proportion of known items,
E(ELB). The formula for the ASN function for the binomial case described above
is

L(p) inB + (1 - L(p)) lnd_

ik + (1 1 LAY
plnpo ~‘p)7’ll__70

where all of the symbols are as described above and the logarithms are to the
base e. Figure 1 also shows the ASN function for the example presented above.
Note that the ASN function is highest between the points p, and p, and that the
closer together the values of p, and b, are, the higher the curve in that re-
gion. 1In general, the lower the ASN curve, the more efficient the decision
rule.

E(nlp) = [9]

Application to Tailored Testing

Although the SPRT as defined above is a valuable procedure for decision-



- 84 -

making in many situations, it makes an implicit assumption that limits its use-
fulness for tailored testing. The model as presented assumes that the probabil-
ity of a correct response is the same for all items in the pool. This assump—
tion is reasonable if items are randomly selected and p is the proportion of the
items that a student can answer correctly, but it is not reasonable if items are
selected to maximize information at an ability level. Under the tailored test-
ing model assumed by this paper, the probability of a correct response changes
with each item, requiring a modification of the model.

Fortunately, a detailed analysis of Wald”s (1947) work indicates that the
sequential random sample assumption is not necessary for the application of the
SPRT but is needed only for the derivation of the OC and ASN functions. The
SPRT can then be directly applied to tailored testing, but the OC and ASN func-~
tions must be determined in a different manner. One approach to determining
these functions will be presented later.

To demonstrate the application of the SPRT to tailored testing as defined
by this paper, suppose that a tailored test is being used to determine whether a
student has exceeded the criterion specified for a criterion-referenced test.
Although the method for selecting this criterion is currently not well speci-
fied, assume that a value, 6c, has been determined and that students above this

value on the latent achievement scale pass the unit, while those below 6. are
given more instruction.

In order to use the SPRT, a region must be specified around ec for which it

does not matter whether a pass or a fail decision is made. If high accuracy is
desired for the decision rule, a narrow indifference region must be specified,
but more items will be required to make the decision. As the region gets wider,
the decision accuracy declines, but fewer items are required. Values of 6, 0o,
and 8; mark the boundaries of this indifference region (6, < Gc < 6;). Once

these values have been selected, the likelihood ratio can be defined as
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where
Eﬁﬁl""’fnlek)’.k = 0, 1, is the likelihood of the student”s response

string of n items administered so far;
Xy 1is the 0, 1 score on item i;

P;(6y) is the probability of a correct response to item i as-

suming ability 6, determined from the appropriate ICC
model; and

Qi(ek) =] - Pi(ek).

If the l-parameter logistic model is used as a basis for the tailored test-
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ing procedure, Equation 10 becomes
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where by is the difficulty parameter for item i. Equation 11 can be simplified
to
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The values of this likelihood ratio can then be used to test whether the student
is above or below 0. using the same method presented earlier. If the ratio is

greater than A = 1 ; B). the student is classified as being above 6,; if it is
below B = (I—%TET’ the student is classified below the criterion; otherwise,

another item is administered. If the 3-parameter logistic model is the basis
for the tailored testing procedure, the SPRT procedure is applied in exactly the
same manner as above, except that
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is used in Equation 10 instead of the simple logistic form.

The evaluation of the OC and ASN functions cannot be performed as easily as
for the simple binomial model due to the presence of the item parameters in the
formula for computing the probability of a correct response. Since the item
parameters for the next item to be administered are dependent on the item pool
used and on the responses to the previous items, the derivation of these func-
tions depends on a complex string of conditional expectations. The conditional
probabilities involved make the derivation of these functions, for all practical
purposes, impossible. Therefore, the OC and ASN functions can only be approxi-
mated using simulation techniques, but these approximations should be adequate
for most purposes. Some OC and ASN functions for tailored tests based on the 1-
and 3-parameter logistic models will be presented later in this paper. Note,
however, that although the full OC function cannot be derived, the value of the
function is equal to 1 - o at 6, and to B at 6,, assuming that the item parame-
ters are known. In reality, these two points are not known either, since in all
cases except simulations the item parameters are only estimated.
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Bayesian Sequential Decision Procedure

The Bayesian decision procedure is an alternative to the SPRT for deciding

whether or not a student has exceeded the criterion, Gc. Although this proce-

dure is much more complicated than the SPRT, it has the capability of using ad-
ditional information in making the decision. This added information may improve
the decision process.

Basic Concepts

Initially, it is assumed that a population of students exists such that
each student has some definable achievement level, 6. Individual achievement
levels are labeled 61. Each person is to be tested and a decision is to be made

concerning placement above or below the criterion. The decision to place above
the criterion score is labeled d;; and the decision to place below the criterion
score, d,.

In order to decide upon a decision rule using Bayesian methodology, three
pleces of information are required in advance. These are (1) a prior distribu-
tion of 8, (2) a loss function relating the achievement levels to the decisions,
and (3) the cost of each observation. Using these three types of information, a
decision rule (technique for selecting a decision) and a stopping rule (tech—
nique for deciding when a decision should be made) can be determined.

The. basic concept used in choosing a decision rule is the concept of risk.
Risk is defined as the expected loss, given a decision. Obviously, the decision
that minimizes the risk is the desired one. When a Bayesian prior is used, this
minimum risk is called the Bayes risk.

The stopping rule used with the Bayesian sequential decision procedure is
also based upon the Bayes risk concept. If the expected risk after taking an-
other observation plus the cost of the observation is less than the risk before
the observation is taken, the sampling should go on. However, if the expected
risk plus the cost of a new observation is greater than the risk without the
observation, then sampling should cease. In some cases, it is best not to take
any observations at all, because the expected risk plus the cost of an observa-
tion is greater than the initial risk of a guess based on the prior distribution
of achievement.

Based on this framework, theorems have been proven showing that an optimal
procedure exists and that the optimal procedure will reach a decision after some
finite number of observations (DeGroot, 1977). If the risk decreases with each
observation, the procedure is called a regular sequential decision procedure.
Only regular procedures will be considered here, since it is assumed that each

item administered yields some positive information rather than providing some
misinformation.

Simplified Example

Although this example is not realistic, it demonstrates the basic concepts
without requiring complicated mathematical expressions. The extension of the
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procedure to realistic situations is direct, but the mathematics is cumbersome.
Suppose that two types of individuals exist in the population of interest, those
with ei = —.8 and those with 0y = +.8 on a latent achievement dimension. A tai-

lored test is to be used to classify the individuals into two groups—-those
above the criterion score 0.0 and those below. Thus, two decisions are possi-
ble: (1) classify as d, those above the criterion and (2) classify as d, those
below the criterion.

If persons with ability -.8 are classified above the criterion, a loss of
25 is incurred in each case. If they are classified below the criterion, there
is no loss. If persons with ability +.8 are classified above the criterion,
there is no loss, whereas a loss of 15 is incurred for each person classified
below the criterion. This loss function is summarized in Table 1; it should be
noted that these loss function values are totally arbitrary.

Table 1
Loss Function
Decision
Ability (04) 4d, d,
+.8 0 15
-.8 25 0

Suppose that the prior belief that a randomly selected person has ability
+.8 is .6 and the prior belief that he/she has ability -.8 is .4. Then, the
first step in using a Bayesian sequential decision process is to determine the
risk associated with d; and d, when no observations are taken. The expected
loss (risk) if decision d; is made is

E(lossldl)

P(8,)2(d [8,) + P(8,)2(d,[e,) [14]

L4 X 25 + e X 0

10,

where P(ei) is the prior probability of B; and m(gj|ei) is the loss from making
decisiongj when 91 is true. The expected loss (risk) if d, is made is

E(lossldz)

P(8.)2(d,[0,) + P(8,)0(d,]|8,) [15]

<4 X 0+ .6 x 15

= 9.

Thus, the Bayes decision when no observation is taken is d,, and the Bayes risk
is 9. The decision d, is obviously chosen because it has the lower risk.

Although the proper decision has been determined for the case when no ob-
servations have been taken, it has not been determined whether or not an obser-
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vation should be taken. To do that, the expected risk after one observation

plus cost must be compared to the Bayes risk without an observation. Determin-
ing the expected risk after an observation requires several steps, the first of
which is determining the posterior distribution of ability after an observation.

Suppose that an item of 0.0 diffiéulty is administered to a person with
ability +.8 or —.8. Depending upon whether the response is correct or incor-
_rect, a Bayesian posterior can be determined using Bayes theorem

P(o,ley = E(@l05) PCO,) . [16]
2
z P(xlei) P(6,)
=1

If a correct response to the item is obtained, the posterior probability of a
+.8 ability is given by

- P(1].8)P(.8)
- P(1[.8)P(.8) + P(1[-.8)P(-.8)

P(.8|x = 1) . (171

The probabilities of an ability of +.8 or -.8 were given in the prior distribu-—
tion as .6 and .4, respectively. The probability of a correct response, given
the known ability, can be determined from the appropriate ICC model. For exam—-
ple, using the l-parameter logistic model,

e('8 - 0)

.8) = = ,69 , [18]

P(1
1+ e('8 -0

where P(l[-.8) = .31. The posterior probability of +.8 is then P(.8|1) = .77.
Similarly, the posterior probability of -.8 is P(-.8|l) = .23. The posterior
probability of the +.8 and -.8 abilities, given an incorrect response, can like=-
wise be determined using Equation 16. The posterior probabilities, given an
incorrect response, are P(.8|0) = .37 and P(-.8|0) = .63.

The next step is to determine the risk using the posterior distributions
just computed. If a correct response is obtained, the expected loss for d,; is
.23 x 25 + .77 x 0 = 5.75. The expected loss for d, is .77 X 15 + .23 x 0 =
11.55. Thus, if a correct response is obtained, the Bayes decision is d, with a
Bayes risk of 5.75. If an incorrect response is obtained, the expected loss for
d, is .63 x 25 + .37 x 0 = 15.75, while the expected loss for d, is .37 x 15 +
.63 x 0 = 5.55. Thus, after an incorrect response, d, is the Bayes decision
with a Bayes risk of 5.55.

Since it is not known whether a correct or incorrect response will be giv-
en, the expected risk must be computed regardless of the response. To compute
the overall expected risk, the probability of a correct and an incorrect re-
sponse 1s needed. The probability can be obtained using the following formula:

P(1) = P(1|.8)P(.8) + P(1]|-.8)P(~-.8) [19]
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= .69 x .6 + .31 x 4

= ,538

P(0) 1 -~ P(1) = .462 .

The expected risk after a response can now be determined from

E(risk|response) E(loss|1)P(1) + E(loss|0)P(0) [20]

5.75 x .538 + 5.55 x ,462

5.66 .

At this point, whether or not another observation should be taken can be
determined. If the expected loss after an observation plus cost is greater than
the risk before an observation, then administration of items should cease. If
the risk before an observation is taken is greater, then another item should be
administered. In the example given here, assume the cost of a response is 1
unit. The expected loss after a response plus cost is then 5.66 + 1 = 6.66.
Since the Bayes risk with no items administered was 9, another item should be
administered. Depending on the response to the item, decision d, or d, could be
selected. After the item is administered, the appropriate posterior becomes the
new prior and the process continues as above. A flowchart of the entire deci-
sion process is presented in Figure 2.

Limitations

Although there are many positive factors in the use of the Bayesian proce-
dure, the very information that makes the control of the testing situation more
precise also makes it difficult to implement initially. For example, specifying
reasonable loss functions on the same metric as the cost of an observation is
difficult for most educational applications. What is the cost of misclassifying
persons below the criterion”s score when they really should be classified above
it? Some attempts have been made by this author to specify loss functions for
tailored testing applications, but no satisfactory results have been obtained so
far.

A second difficulty in the application of this procedure is in specifying
the prior distribution of achievement for a group. This is not as serious a
problem as determining loss functions, since performance data are usually avail-
able from previous groups. Of course, the more accurate the prior distribution,
the more accurate the decision based on the procedure.

It should be realized that the procedure presented here is a simplification
" of a procedure that would be used for actual tailored testing applications.
Achievement levels are usually continuous rather than discrete, as presented
here; and the loss due to an incorrect decision is a function of the person”s
distance from the criterion score rather than a constant value. The procedure
can also be modified by changing the cost of observations with increasing test
length to allow for fatigue effects. Unfortunately, the Bayesian decision pro-
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Figure 2

Flowchart of Bayesian Decision Process
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cedure as described here has not yet been implemented in conjunction with an
operational tailored testing procedure. Plans are being developed, however, to

evaluate an operational version at the Tailored Testing Research Laboratory at
the University of Missouri.

Research Design

The purposes of this research were (1) to obtain information on how the
SPRT procedure functioned when items were not randomly sampled from the item
pool; (2) to gain experience in selecting the bounds of the indifference region,
8, and ©,; and (3) to obtain information on the effects of guessing on the accu-
racy of classification when the l-parameter logistic model was used.
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Tailored Testing Procedure

To determine the effects of these variables, the computation of the SPRT
was programmed into both the 1- and 3-parameter logistic tailored testing proce-
dures that were operational at the University of Missouri-Columbia. Since these
procedures have been described in detail previously (Koch & Reckase, 1978), they
will be merely summarized here. The programs implementing both models used a
fixed stepsize method for branching through an item pool until both a correct
and an incorrect response had been given. After that point, all ability esti-
mates were obtained using an empirical maximum likelihood estimation procedure.
Items were selected for both models to maximize the item information at the pre-
vious ability estimate.

To evaluate the decision-making power of the SPRT, subjects with known
ability were needed. Therefore, a simulation routine was built into the tai-
lored testing program in place of the responding live examinee. At the begin-
ning of each simulation run, the true ability of the simulated examinee was in-—
put into the program. This value was used to determine the true probability of
a correct response to the administered items based on the model used (1- or
3-parameter logistic) and the estimated item parameters. A number was then ran-
domly selected from a uniform distribution in the range from O to 1. If the
randomly selected number was less than or equal to the probability of a correct
response, the item was scored as correct. If the randomly selected number was
greater than the probability of a correct response, the item was scored as in-
correct. This procedure continued for each item in the tailored test.

Tailored tests were simulated 25 times at each true ability using different
seed numbers for the random number generator. True abilities from -3 to +3 at
.25 intervals were used for both the 1= and 3-parameter models to evaluate the
performance of the SPRT. In addition, simulations were run on a composite pro-
cedure in which tailored test procedure and the probability ratio calculations
(Equation 11) were based on the l-parameter model, but the item responses were
determined by using the 3-parameter model. This was done to determine the ef-

fects of guessing on correct classification using the l-parameter logistic mod-
el.

Criterion Values

In computing the probability ratios, three sets of limits of the indiffer-
ence regions were used: +.3, +.8, +l. A criterion of 0e = 0 was assumed in all

cases. The ratios were computed after each item was administered, and the re-
sults were compared to an A value of 45 and a B value of .102. These were de=—
termined based on o = .02 and B = .10. A classification was made the first time
these limits were exceeded. If the limits were not exceeded before 20 items had
been administered (an arbitrary upper limit on test length), the values above
1.0 were classified as above ¢ and the values below 1.0 were classified as be-

low Gc. This is called a truncated SPRT. At each true ability used for the
simulation, the proportion of the 25 administrations classified below 6. and the

average number of items administered were computed. Plots of these values
against the true abilities approximate the OC and ASN functions, respectively.
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These plots were made for each combination of indifference region and tailored
testing method, yielding nine plots of the OC and ASN functions.

Item Pools

Two different item pools were used for this study. For the analyses using
just the l-parameter or the 3-parameter model, an existing pool of 72 vocabulary
items were used. This item pool had an approximately normal distribution of
difficulty parameters. For the l-parameter tailored test using 3-parameter re-
sponses, an item pool with 181 items, rectangularly distributed between -3 and
+3 in difficulty was used. These simulated items had constant discrimination
parameters of .588 (this value yields a 1.0 when multiplied by D = 1.7) and a
pseudo—-guessing parameter of .12. This simulated item pool was selected over
the real vocabulary pool to have better control over the guessing parameters.
The l-parameter procedure used only the b-values from the pool.

Results

l1-Parameter Model

Figure 3 shows the OC functions for the l-parameter logistic model based on
the vocabulary item pool. The figure shows three graphs, one for each of the
+.3, +.8, and +1 indifference regions. Note that the curves are similar regard-

Figure 3
One-Parameter OC Functions
for Three Indifference Regions
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less of the indifference region. The data indicate that in all three cases the
classification accuracy was nearly the same.
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The values of the curves at the limits of the indifference region give fur-
ther evaluative information. At the lower point the OC function should pass
through 1 - o. At the -.3 value the curve is in fact .85 when it should be .98,
showing the degrading effects of restrictive stopping rules used by the tailored
testing procedure. At the -.8 and -1 points for the corresponding curves, the
results are about as expected, being .94 and 1.00 rather than .98.

At the upper limit of the indifference region, the OC function should have
a value of .1. For the +.3 case it is in fact .5 rather than .1, again showing
the effects of truncating the procedure. At the values of +.8 and +1 the values
of the OC function were near or better than what they should have been, based on
the theoretically expected results.

The ASN functions for the l-parameter model are given in Figure 4. The
curves plotted correspond to the ASN functions, using indifference regions for
+.3, +.8, and +1. It can immediately be seen that there was a substantial dif-
ference in thé_éverage number of items needed to reach a decision, with the
greatest number required when the indifference region was narrowest. It can
also be seen that the largest expected number of items was near the criterion
score 0.0 and that the average number dropped off at the extreme abilities. The
slight lack of symmetry in the curves is due to the fact that o was not equal to
B. For abilities beyond +1, an average of only about 3 to 5 items was needed
for classification for the wider regions, but 6 to 11 items were needed for the
4.3 indifference region. Note that the +.3 curve approached the arbitrary
20-item limit for the tailored tests.

Figure 4
One-Parameter ASN Functions
for Three Indifference Regions
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Figure 5 shows, for comparison purposes, the theoretical curves for the ASN
and OC functions based on the +.3 indifference region. An infinite number of
items with difficulty 0.0 was assumed for the theoretical functions, and the
tests were assumed to have no upper limit on the number of items administered.

A comparison of Figures 3 and 4 with Figure 5 shows that the OC curve for the
theoretical function is steeper at the cutting point than the simulated curves,
and that the ASN function is substantially higher. The difference in the theo-
retical and simulated OC curves shows the effect of the 20-item stopping rule
and the selection of items of differing difficulty.

Figure 5
Theoretical OC and ASN Functions
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3=-Parameter Model

The results of the simulation of the 3-parameter logistic tailored test are
given in Figures 6 and 7. Figure 6 presents the OC functions for the 3-parame-
ter model, again using the indifference regions of +.3, +.8, and +1. Notice
that as with the l-parameter model, the OC curves are fairly similar for the
three indifference regions throughout most of the range of ability. However,
there are discrepancies for the +1 indifference range curve near the +1 and -1
points, indicating a decline in decision precision for that region. At the -.3
value for the +.3 indifference range, the value of the curve is .96, fairly
close to the .98 theoretical value. At the upper end (+.3), however, the value
is .2 instead of the .l value that it should be. This may show the effects of
guessing on the decision process. The +.8 and +1 indifference regions again
yield better error probabilities than would be ‘expected from the theory.

The ASN function for the 3-parameter model (Figure 7) also shows similar
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Figure 6
Three Parameter OC Functions
for Three Indifference Regions
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results to those obtained from the l-parameter model. The +.3 indifference re-
gion required the greatest number of items, while +.8 and +1.0 required about
the same number. As before, the largest number was required near the criterion
score. However, with the 3-parameter model far fewer items, on the average,
were required to make a decision than for the l-parameter model. Of special
note is the ASN value of about 1.0 in the -1 to -3 range on the ability scale.
Decisions seem to be possible with very few items in that range.

Because of the guessing component of the 3-parameter logistic model, the

ASN function tended to yield more asymmetric results than the l-parameter model.
More items were required when classifying high than when classifying low to com-
pensate for the nonzero probability of a correct response. Also, the ASN curve
for the +.3 indifference region.was much more peaked than its l-parameter coun-
terpart. If the simulated curves for the 3-parameter model are compared to the
theoretical curves presented in Figure 5, the OC functions can be seen to match
the theoretical functions fairly closely, while the ASN functions show that sub-
stantially fewer items were required. Over much of the ability range, as many
as 10 times more items were specified by the theoretical ASN curve when unlimit-
ed identical items were assumed. However, it should be noted that the theoreti-
cal curves are based on the l-parameter model.

Effect of Guessing on the l-Parameter Model

Figure 8 shows the OC functions for the l-parameter model when the 3-param—
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Figure 7
Three Parameter ASN Functions
for Three Indifference Regions

20+

INDIFFERENCE
REGIONS
——F . 3

16-
+.8

esvcsccscse 11.0

124

-
-..:\ )
Y “’Mﬂ?.g.,...

AVERAGE NUMBER OF ITEMS REQUIRED

A[“‘ I“nﬂﬁlauullnuﬂﬂzy‘:::;

T Y
-3 -2 -1 0

-1

-
[N

ACHIEVEMENT (o)

eter model was used to determine the responses. The figure shows three graphs,
one for each of the +.3, +.8, and +1 indifference regions. Note that the curves
are fairly similar regardless of the indifference region but that they are
shifted substantially to the left compared to the previous OC curves. This in-
dicates that the probability of classifying a person below ec has dropped off

substantially until an ability of about -2 has been reached. In other words, it
is much easier to be classified above the criterion score with this procedure
than when guessing does not enter into the decision. Instead of being at zero,
the effective criterion has been shifted down to -1.5. Clearly, the values of
the OC function at the limits of the indifference region are entirely different
. from the theoretical values.

The ASN functions for the three indifference regions=-+.3, +.8, and +l--are
shown in Figure 9. The difference between these graphs and those presented in
Figure 4 are that the curves are higher (more items were required) and the high-
est point of the curve is shifted to the steepest part of the OC curve. The
relationship between the height of the ASN function and the width of the indif-
ference region still holds; however, as the region gets wider, the average num-
ber of items decreases.

Summary and Conclusions

The purpose of this paper has been to describe two procedures for making
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Figure 8
Composite OC Functions
for Three Indifference Regions
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binary classification decisions using tailored testing--the sequential probabil-
ity ratio test (SPRT) and a Bayesian decision procedure-—and to present some
simulation data showing the characteristics of the operation of the SPRT for two
ICC models. The first procedure described, the SPRT, was developed by Wald for
quality control work. It has not been widely applied for testing applications
because the assumption of an equal probability of a correct response was made to
facilitate the derivation of the operating characteristic (0C) and average sam-
ple number (ASN) functions. Since this assumption can only be met for testing
applications by randomly sampling items for administration, the procedure has
not been used with tailored testing. In this paper the probability of a correct
response was allowed to vary from item to item, although it made the derivation
of the OC and ASN functions impossible. Simulation procedures were then used to
estimate these functions.

The SPRT procedure described is operational at the Tailored Testing Re-
search Laboratory of the University of Missouri-Columbia in two forms: a live
tailored testing procedure and a simulated procedure. The results of the appli-
cation of the simulation procedure to three studies were described in this pa-
per. The first study estimated the OC and ASN functions for a l-parameter lo-
gistic based tailored testing procedure in which the size of the indifference
region around the criteron score was varied. The results of the study showed
that the average number of items needed for classification was quite low when
the true ability of a simulated person was not too close to the criterion score
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Figure 9
Composite ASN Functions
for Three Indifference Regions
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and that the width of the indifference region did not greatly affect the 0OC
function. The width of the indifference region did have a substantial effect on
the ASN function. The accuracy of classification of the simulated tailored test
was not quite as good as administering a large number of items with difficulty
values equal to the criterion score. This result was explained by the arbitrary
20-item limit imposed on the tailored test and by the variation in the diffi-
culty parameters of the items administered.

The second study estimated the OC and ASN functions for a 3-parameter lo-
gistic tailored testing procedure, also varying the size of the indifference
region. The results were similar to those for the l-parameter model, but even
fewer items were generally needed for classification. The results of these

first two studies both indicated that the SPRT could be successfully applied to
tailored testing.

The third simulation study estimated the OC and ASN functions for the 1-pa-
rameter model when guessing was allowed to enter into the responses to the items
administered. The results showed that, in effect, guessing lowered the criteri-
on score, making it easier to classify an examinee above the criterion and rais-
ing the average number of items needed for classification. This spurious shift
in the criterion greatly increased the error rates in classification. The ef-
fect was strong enough to preclude the use of the l-parameter model for classi-
fication decisions when guessing is a factor.
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The second decision procedure described in this paper allows the use of a
greater amount of information in making a decision than the SPRT. The Bayesian
procedure includes a prior distribution of student achievement, a loss function
for incorrect decisions, and the cost of observations in the development of the
decision rule. The basic philosophy of this procedure is to administer items
until the expected loss incurred in making a decision is less than the expected
loss after the next item is administered plus the cost of administration. At
that point a decision is made that minimizes the expected loss. The Bayesian
procedure is described in detail, and a simple example is given of its use. The
Bayesian procedure is not yet operational for making decisions under tailored
testing because appropriate loss functions for educational decisions have not
been determined. However, simulation studies of the procedure will commence in
the near future.

Both of the decision procedures described in this paper show promise for
use in tailored testing. Both also require substantial research effort before
they can be applied with confidence. It is hoped that this paper will help to
stimulate that research.
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