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Calibrating CAT Pools and Online Pretest Items  
Using Marginal Maximum Likelihood Methods 

 
The research in this paper was conducted as part of an ongoing large-scale simulation study to 
evaluate methods of calibrating pretest items for CAT pools.  The simulation study was designed 
to mimic the operational CAT-ASVAB testing program, whereby a single pretest item is 
embedded, or seeded, into the administration of an operational CAT.  The overriding goal of the 
research is to select a calibration method that will best represent the data and maintain a 
consistent scale over time, as new calibrations are conducted, pretest items are formed into new 
pools, and operational pools are replaced with the new pools.   
 
A series of papers accompany this paper.  The history of the CAT-ASVAB testing program is 
discussed in Nicewander (2003), along with relevant issues in maintaining scale consistency for 
the CAT-ASVAB.  The design used in the simulation study and a rationale for the design is 
discussed in Thomasson (2003), along with the procedures used to simulate items that do not 
conform to a 3PL model.  MCMC methods of calibrating the pretest items are evaluated in 
Segall (2003).  Nonparametric and adjusted marginal maximum likelihood methods of 
calibrating the pretest items are evaluated in Krass and Williams (2003).  This paper evaluates 
MML methods of calibrating the pretest items using the 3PL model. 
 
The goal of the study is to identify the best possible calibration method for new pretest items so 
that the true underlying parameters are recovered as closely as possible.  The calibration problem 
is made difficult by the nature of the CAT data.  Namely, examinees take a small percentage of 
differing operational CAT items and only one of a set of pretest items, creating a sparse matrix of 
item responses to be analyzed.  Each operational item has a variable number of responses, some 
with very few responses, some with large numbers of responses.  The operational items are 
typically administered to examinees within a limited range of ability.  The pretest items are 
administered randomly to fixed numbers of examinees, but each examinee takes only one pretest 
item.  This is contrary to a typical calibration for a fixed-form test or pretest items, whereby a 
fixed number of examinees take a fixed number of items. 
 
In this study, pretest and operational CAT items are simultaneously calibrated and placed on the 
scale of the operational parameters from one CAT pool that is designated as the anchor CAT 
pool.  Operationally, the anchor CAT pool is infrequently administered, so the parameters are 
assumed to have little drift over time.  This assumption is warranted by our belief that item 
exposure is the most common cause of parameters displaying drift over time.  In using the 
anchor pool to fix the scale, we assume that other sources of drift will not occur over time in the 
anchor pool.  As our intention is to use the anchor pool to maintain continuity of scale as old 
pools are replaced with new pools in the operational administration, it is necessary to make this 
assumption.  The re-estimation of operational CAT items, in addition to the estimation of the 
pretest items, should help account for any parameter drift that may occur in the operational CAT 
pools that are not fixed (i.e., all pools but the anchor CAT pool). 
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The Simulation Design 
 
A primary objective of the simulation study is to evaluate the performance of the MML 3PL-
based calibration methods when some of the items do not fit a 3PL model.  In practice, we 
believe that not all items conform to a 3PL model.  For purposes of evaluating the strengths and 
limitations of the calibration methods under conditions specific to our operational CAT program, 
the simulation was conducted in stages.  In the first stage, a conventional test was simulated, 
where 10,000 examinees responded to a fixed number of items, and all items were generated 
using a 3PL model.  Examinees were simulated from N(0,1), N(-1,1), and N(1,1) distributions.  
The first stage simulation provided an optimal calibration situation, which allowed us to 
minimize estimation error as much as possible, in order to identify important issues in calibrating 
to maintain a given scale.  In the second stage, an operational CAT was simulated, where all 
items were generated using a 3PL model.  Examinees were simulated from N(0,1), N(-1,1.2), and 
N(1,0.8) distributions.  The second stage simulation allowed us to identify important issues in 
calibrating to maintain a given scale, under the added complications of a large sparse data 
matrix, varying sample sizes for some items, and a restricted range of ability for some items.  
Again, all items were generated using a 3PL model, so that results would not be confounded by 
fitting an inappropriate model to the items.   
 
In the first two stages of the simulation the true item parameters were known.  This enabled us to 
evaluate the strengths and weaknesses of the calibrations, and to adjust the calibration procedures 
accordingly.   This paper reports results only from the first two stages.  A third simulation will be 
conducted in the future, which is designed to allow us to evaluate the calibration methods under 
the most realistic conditions.  For the third stage simulation, an independent party will generate 
realistic CAT data, and the true parameters will be unknown to us.  Thus, we must implement the 
calibration procedures as we would operationally, without being able to make any adjustments to 
the procedures.  In addition, some items will be generated using a 3PL model, while others will 
be generated using a non-parametric model.  The percentage of 3PL and non-parametric items 
will be varied according to what is observed in real data.  Examinees from different ability 
distributions will be generated, again according to what is observed in real data.  The third stage 
simulation will allow us to fully evaluate the calibration methods under the most realistic 
conditions, when a percentage of items are not represented by a 3PL model.  In the simulation, 
new CAT pools will be developed from the pretest items and administered operationally, 
replacing older operational pools.  Scale drift will be evaluated as pools are updated. 
 
The second stage simulations were designed to represent the operational CAT program and the 
conditions under which pretest items would be calibrated in practice.  Operationally, pretest 
items are administered in groups of 100 items.  One pretest item is randomly selected from the 
set of 100 and administered to an examinee during an operational session.  One of four 
operational CAT pools is randomly administered to an examinee.  Pools 1-3 are administered 
about 98% of the time, while Pool 4 is administered about 2% of the time.  Parameters for Pools 
1-3 and the pretest items will be simultaneously calibrated, as discussed above.  Pool 4 will be 
used as the anchor CAT pool, and parameters for Pools 1-3 and the pretest items will be placed 
on the scale of the anchor CAT pool.  Operationally, the calibrations will be conducted when the 
pretest items have been administered a sufficient number of times.   
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The test administration design for the second stage simulations is summarized in Table 1.  Each 
examinee was administered a 15-item CAT (using Pool 1, Pool 2, Pool 3, or Pool 4), and one 
pretest item.  Pool 1 contained 94 items, Pools 2-4 each contained 137 items, and the pretest set 
contained 100 items, for a total of 605 items, of which an examinee took 16.  CAT Pools 1-3 
were administered to a total of 40,000 examinees each (400 per pretest item per pool).  Pool 4 
was administered to a total of 2400 examinees (24 per pretest item).  Each pretest item was 
administered to a total of 1224 examinees, resulting in a total of 122,400 examinees 
 

Table 1.  Test Administration Design for the CAT Simulations. 
 

Pretest 
Item 

Operational 
CAT Pool 

Number of 
Examinees 

1 1 400 
 2 400 
 3 400 
 4 24 
 Total 1224 
2 1 400 
 2 400 
 3 400 
 4 24 
 Total 1224 
. 
. 
. 

. 

. 

. 

. 

. 

. 
100 1 400 

 2 400 
 3 400 
 4 24 
 Total 1224 
   
   

All Items 1 40000 
 2 40000 
 3 40000 
 4 2400 
 Total 122400 

 
MML Software 
 
A variety of commercial software programs exist that use marginal maximum likelihood (MML) 
methods of estimating parameters.    Three popular commercial programs, Bilog-MG (Zimowski, 
Muraki, Mislevy, and Bock, 2003), Parscale (Muraki and Bock, 2003), and Multilog (Thissen, 
2003) have recently been ported to a Windows platform, and the programs are documented 
together in one reference manual (du Toit, 2003).  The calibration programs are designed for a 



 5 

variety of purposes, and have differing capabilities.  This paper focuses on Bilog-MG, which is 
one of the most popular 3PL calibration programs available.   
 
Our interest was in evaluating calibration results from Bilog-MG when attempting to fix the 
scale of the estimated parameters to a known scale.  A new feature in Bilog-MG for Windows is 
that selected item parameters may be fixed at pre-defined starting values and the rescaling of the 
latent distribution that is typically done in Bilog-MG may be suppressed.  In theory, these 
features may be used to place parameter estimates for non-fixed items on the scale of the fixed 
items.  In the case of our operational CAT, the items from the anchor pool (Pool 4) were treated 
as fixed, and the parameters were estimated for the pretest items and for Pools 1-3.  Results for 
conventional data were evaluated first, followed by results for CAT data, so that problems due to 
the fixing of the scale could be identified without the added complication of sparse data matrices. 
 
Evaluation of Conventional 3PL Data 
 
The conventional data were simulated using parameters that mimicked parameters from one of 
the operational CAT pools.  Responses were generated for 10,000 examinees taking a total of 94 
items.  The results were replicated for examinees drawn from three different ability distributions: 
N(0,1), N(-1,1), and N(1,1).   Parameters for 20 of the 94 items (21%) were treated as anchor 
items and fixed at their known value, while the parameters for the remaining 74 items were 
estimated, with the intent that the parameters for the 74 “non-fixed” items would be on the same 
scale as the parameters for the 20 “fixed items”.  This enabled us to evaluate the capability of 
Bilog-MG to fix the scale.  The percentage of fixed items used here is comparable to the 
percentage of fixed items that we would have for our operational CAT.  Note that the 
“NOADJUST” option in the “CALIB” command was used in every calibration where item 
parameters were fixed to suppress the rescaling of the item parameters, and no Phase 3 analyses 
were conducted.  Thus, the final parameters for the fixed items were always equal to their 
starting values. 
 
Figure 1 shows the recovery of the b parameters for the non-fixed items when Bilog-MG was 
used to fix the parameters for 20 items and estimate the parameters for the remaining 74 items, 
and the data were generated from a N(0,1) distribution.  Parameter recovery, as expected, was 
quite good. Figure 2 shows the recovery of the b parameters for the non-fixed items when the 
same procedure was applied to data generated from a N(+1,1) distribution.  In this case, 
parameter recovery was not as clean.  There appeared to be a slight systematic bias in the 
parameter estimates; the estimated parameters were somewhat underestimated.  Figure 3 shows 
the recovery of the b parameters for the non-fixed items when the process was applied to data 
generated from a N(-1,1) distribution.  Again, there appeared to be a slight systematic bias in the 
parameter estimates.  In this case, the estimated parameters were somewhat inflated.   
 
Figures 4 and 5 show the estimated posterior distributions from Bilog-MG for the data simulated 
from a N(+1,1) and N(-1,1) distribution, respectively, relative to the population distribution from 
which the data were generated.  Figure 4 shows that the estimated posterior distribution was 
close to the target population distribution, but that it was shifted somewhat to the left of the 
target population distribution.  Figure 5 shows that the estimated posterior distribution was 
shifted quite a bit to the right of the target population distribution.  The means and standard 
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deviations of the estimated posterior distributions differed from 0 and 1, so the fixing of the item 
parameters did adjust the scale to some degree. However, that the posterior distributions were not 
closer to the true population distributions suggests that either insufficient information was 
available to adequately estimate the group mean and standard deviation, a N(0,1) distribution 
was still assumed in some computation (i.e., in the likelihood or the prior), or that some kind of 
rescaling was done on the estimated item parameters.  Multilog also has the capability fix certain 
item parameters and estimate others.  Results using the fix capability in Multilog with data 
generated from a N(-1,1) distribution were virtually identical to the results from Bilog-MG, 
which suggests that Multilog uses a similar process when item parameters are fixed. 
 
 MML Method for Transforming Item Parameters Appropriate for Sparse CAT Matrices 
 
Because the bias for the non-fixed items displayed in Figures 2 and 3 appears to be systematic, 
the parameters for the non-fixed items can be transformed to the scale of the fixed items using a 
linear transformation.  In the conventional data case that we are simulating, we may treat it as if 
we have a single group taking two mutually exclusive sets of items that are on different scales.  
If we knew the means and standard deviations of abilities in the group for both scales, we could 
find the transformation constants to place the non-fixed items on the scale of the fixed items.  To 
do a similar transforming in our CAT data case, we have the added complications of randomly 
equivalent groups of examinees taking mutually exclusive sets of items, items administered at 
different frequencies across examinees, and not all examinees taking all items in a pool.  We 
want to place all of our parameters on the scale of one set of items, but there are no common 
items across the pools, so we cannot use transformation methods that operate on the parameters 
for common items.  Thus, in our case, traditional transformation methods such as the 
mean/sigma, mean/mean, or characteristic curve methods are not appropriate for obtaining 
transformation constants for rescaling purposes. 
 
This paper utilizes a method for computing marginal maximum likelihood estimates of 
transformation constants that place item parameters from one source onto the scale of item 
parameters from another source. The maximization is conducted with respect to the 
transformation constants and the population mean and variance.  The method can be applied to a 
single group design, where some common items are shared across examinees (i.e., one group of 
examinees takes items from the same pool).  The method can also be applied to separate, 
randomly equivalent groups where there are no common items across groups, (i.e., examinees 
are randomly administered items from one of several pools).   
 
Consider the case where a single group of N examinees is administered n items, where each item 
has its parameters scaled relative to one of two possible metrics: 
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for i = 1, ..., n.  We further assume that ability is normally distributed θ ~ N(θ; µ,σ).  Then the 
likelihood function of the scaling and distribution parameters given the observed responses ua = 
{ua1, ua2, ..., uan} for a = 1, ..., N is 
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The MML estimates of A and B can be obtained by maximizing the joint likelihood of (1) with 
respect to A, B, µ and σ2, i.e.,  
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This can be accomplished by a two step procedure: 

1. Holding A and B fixed, maximize (1) with respect to µ and σ2. 
2. Holding µ and σ2 fixed, maximize (1) with respect to A and B. 
3. Iterate Steps 1 and 2 until A and B change very little from one iteration to the next. 

 
The process is followed as described above when finding the A and B transformation constants 
that place Scale 2 parameters on the Scale 1 metric, for a single group of examinees taking some 
common items.  A modified process can be followed to find the A and B transformation 
constants in the case of randomly equivalent groups being administered mutually exclusive sets 
of items.  In this case, A is fixed to 1.0 and B is fixed to 0.0, and only µ and σ2 are estimated 
using Equation (1).  If  µ and σ2 are estimated for the two groups in that manner, the 
transformation constants to place the Scale 2 parameters on the Scale 1 metric can be obtained by  
  

A = σ(Scale 1)/ σ(Scale 2)                                                                                              (2) 
B = µ(Scale 1) – A*µ(Scale 2).                                                                                       (3) 

 
Once the transformation constants A and B have been obtained, the parameters for Scale 2 items 
can be placed on the metric of Scale 1 items by the following transformations: 
 

at(Scale 2) = a(Scale 2)/A                                                                                               (4) 

bt(Scale 2) = A*b(Scale 2) + B.                                                                                      (5) 

 
Application of the MML Transformation Method to the Conventional Data 
 
When the MML transformation method was applied to the conventional data, the following 
procedure was used.  A and B were fixed to 1.0 and 0.0, respectively, and Equation (1) was used 
to estimate the mean and variance for the group on the 20 “fixed” (or anchor) items, using the 
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known parameters and the examinee responses to these items.   Item parameters for the 74 non-
fixed items were obtained by running Bilog-MG on those items only.  No attempt was made to 
fix the scale in this calibration, so results were approximately on the N(0,1) metric.  The mean 
and variance were then estimated for the group on the 74 “non-fixed” items, using the estimated 
parameters and the examinee responses to these items (and fixing A and B to 1.0 and 0.0, 
respectively).  The transformation constants A and B were obtained using Equations 2 and 3, and 
the item parameters for the 74 non-fixed items were rescaled applying those transformation 
constants to Equations 4 and 5. 

Figure 6 shows the recovery of the b parameters for the 74 non-fixed items when the MML 
transformation method was used to rescale parameters for the data simulated from a N(+1,1) 
distribution. Figure 6 should be compared to Figure 2, which shows the result for the same 74 
items when the “fix” capability is used in Bilog-MG to fix the scale of the 74 items to the 20 
anchor items.  Note that Figure 6 does not represent a transformation of the 74 parameters in 
Figure 2.  Instead, it represents a transformation of the 74 parameters when they were calibrated 
assuming a N(0,1) scale.  The bias that occurred in Figure 2 does not appear in Figure 6.  Figure 
7 shows the recovery of the b parameters for the non-fixed items when the MML transformation 
method was used to rescale parameters for the data simulated from a N(-1,1) distribution.  Figure 
7 should be compared to Figure 3, which shows the results for the same items using the “fix” 
capability in Bilog-MG.  Again, the bias that was evident in Figure 3 does not appear in Figure 7.   

Figure 8 and 9 show the root mean squared difference (RMSD) between the item characteristic 
curves (ICCs) based on the estimated and true parameters, for the data simulated from a N(+1,1) 
and N(-1,1) distribution, respectively.  For each item, the estimated and true ICCs were 
computed at the true ability for each examinee taking that item, and the sum of the squared 
difference in ICCs was weighted by the number of examinees taking that item prior to taking the 
square root.  The results labeled “Fixed” are based on the estimated parameters for the 74 items 
when the “fix” capability is used in Bilog-MG.  The results labeled “Rescaled” are based on the 
rescaled parameters for the 74 items when the MML transformation method is applied to the 
N(0,1) scaled Bilog-MG parameters.  Figure 8 and 9 demonstrate a substantial decrease in 
RMSD from the fixed parameters to the rescaled parameters.  For comparison purposes, Figure 
10 shows the RMSD results for the data simulated from a N(0,1) distribution.  In this case, the 
Fixed solution and the Rescaled solution give very similar results.  Table 2 summarizes the 
average RMSD over the 74 items for the Fixed and Rescaled parameters.   
 

Table 2.  Average RMSD for the Fixed and Rescaled Parameters,  
by Examinee Ability Distribution. 

 
Examinee 
Distribution 

 
Fixed 

 
Rescaled 

N(0,1) .007 .007 
N(1,1) .024 .010 
N(-1,1) .040 .013 

 
 
In total, the results for the conventional data all suggest that using the Bilog-MG fix capability to 
place estimated parameters on the scale of the fixed items does not place them quite on the 
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desired scale, when the examinees do not conform to a N(0,1) ability distribution.  The RMSDs 
for the N(0,1) data show us the optimal RMSD we can expect using the Bilog-MG fix capability, 
when the underlying assumptions made by the program are met in the data.  This is the target 
RMSD we would like to achieve.  Unfortunately, when the examinees are not distributed N(0,1), 
the results from using the Bilog-MG fix capability are biased to some degree.    
 
In this example, the percentage of fixed items used was comparable to the percentage of fixed 
items that we would have for our operational CAT.  Increasing the number of fixed items when 
using the fix capability does reduce the bias in the parameter estimates, but a very large number 
of items need to be fixed before the RMSDs are reduced to a comparable level as observed for 
the N(0,1) parameters that are rescaled using the MML transformation method.  Figure 11 shows 
the RMSD over 44 common items when 20, 30, 40, and 50 items are fixed in Bilog-MG, for the 
data simulated from a N(-1,1) distribution.  Table 3 summarizes the average RMSD over the 44 
common items when using the Bilog-MG fix capability with different numbers of fixed items 
(labeled Fixed).  The average RMSD over the same 44 items for the N(0,1) scaled parameters 
that are rescaled to the scale of the 20 fixed items is presented for comparison (labeled 
Rescaled).  When over half of the items are fixed (50 out of 94), the average RMSD for the non-
fixed parameters from the Bilog-MG “fixed” solution begins to approach the value of the 
average RMSD observed when the MML transformation method was used to rescale the item 
parameters to the scale of 20 anchor items.    
 

Table 3.  Average RMSD over 44 Common Items by Number of Fixed Items. 
 

Number 
Fixed Items 

 
Fixed 

 
Rescaled 

20 .037 .012 
30 .025 - 
40 .019 - 
50 .016 - 

 
Evaluation of CAT 3PL Data 
 
The CAT data were simulated as discussed earlier.  Because of the randomly equivalent groups, 
the calibration can be conducted as a single group analysis on one set of items.  Thus, the 
calibration problem consisted of 122400 examinees and 605 items (with each examinee taking 
16 items).  Items that were not administered to a given examinee were treated as not presented 
and ignored in the calibrations.  This created a large sparse matrix for analysis.  For the data 
generated from a N(0,1) distribution, item administration rates for Pools 1-3 ranged from 5 
administrations of one item to 14,283 administrations of another.  Administration rates for Pool 
4, which was administered only about 2% of the time, ranged from 0 administrations of one item 
to 825 administrations of another.  Because the parameters for Pool 4 are never re-estimated, the 
small sample size associated with this pool was not a concern.  Items were administered at 
different rates across the N(0,1), N(+1,0.8), and N(-1,1.2) conditions. 
 
Figure 12 shows the recovery of the b parameters for the non-fixed pretest items when Bilog-MG 
was used to fix the parameters for the anchor items (Pool 4) and estimate the parameters for the 
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remainder of the items (Pools 1-3 and the pretest items), and the data were generated from a 
N(0,1) distribution.  In this case, there were 137 fixed items and 468 non-fixed items.  The 
results are plotted only for the 100 pretest items.  Although we would like the calibration of the 
Pool 1-3 items to be the best possible, we are ultimately only concerned with the quality of the 
calibrations for the pretest items, as the parameters for the operational pools will not be updated 
during the life of a pool.  Figure 12 shows that the parameter recovery is not as good for the CAT 
case as in the case of the conventional N(0,1) data (see Figure 1).  The smaller sample size for 
these items (N=1224 for the CAT case versus N=10,000 for the conventional case) is one likely 
cause of this.  However, another possible contributor could be the poor calibration of some of the 
Pool 1-3 items.   
 
Some Pool 1-3 items were calibrated poorly simply because very few examinees took them.  
Others were calibrated poorly because the starting values for the parameters were too far from 
the true parameters for Bilog-MG to converge on the appropriate solution.  Bilog-MG uses 
classical item statistics (biserial correlation and percent correct) as default starting values for the 
a and b parameters.  The classical item statistics provide good starting values for conventional 
data, but not for adaptive CAT data.  Biserial correlations are often negative in the case of CAT 
data, and percent corrects may be based on a subset of examinees that are at similar levels of 
ability.  In some cases, it is necessary to over-ride the default starting values in order to get 
Bilog-MG to even run with sparse CAT data.  In this study, starting values of 1.0 were used for 
the a parameter and starting values of 0.0 were used for the b parameter, for all items in Pools 1-
3.  For some of these items, Bilog-MG could not recover from start values for the b parameters 
that were too far from the true parameters.  Thus, some individual operational items were 
estimated very poorly.   
 
Assigning appropriate starting values for a sparse CAT data matrix is an interesting problem that 
was not explicitly addressed in this study.  Fortunately, only a small percentage of Pool 1-3 items 
were affected by poor start values.  If we were concerned with obtaining the optimal calibration 
possible for Pools 1-3 items, we would have to find a better way of assigning start values to 
those items.  Since our concern was with the optimal calibration of the pretest items, we were 
able to overlook the noise that was caused by a few poorly calibrated items from Pools 1-3.  
Fortunately, starting values were only a concern for the items that were administered adaptively.  
The default start values used in Bilog-MG were appropriate for the pretest items because those 
items were administered at random to examinees and were not targeted toward a particular 
ability. 
 
Bilog-MG uses two methods of estimating the parameters:  the EM method is implemented first, 
and upon convergence, is followed by the Newton-Gauss (Fisher scoring) method.  For the CAT 
data, the Newton-Gauss steps were suppressed because the results did not converge for any of 
the data.  The results all converged for the EM steps, unless otherwise reported.  Because of the 
nature of the data, it was also necessary to use a prior distribution when calibrating the b 
parameters for the sparse CAT data, in order to obtain a converged solution.  The default prior 
for the b parameters was used.  The calibration problems noted here only occurred with the CAT 
data.  For the conventional data, there were no convergence problems. 
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Figures 13-14 show the recovery of the b parameters for the non-fixed pretest items when Bilog-
MG was used to fix the parameters for the anchor items (Pool 4) and estimate the parameters for 
the remainder of the items (Pools 1-3 and the pretest items), and the data were generated from a 
N(+1,0.8) and N(-1,1.2) distribution, respectively.  (Note that two items are excluded from 
Figure 13, each with an estimated b parameter of < -7.0.)  Trends occur in the same direction as 
those observed for the comparable distribution in the conventional data case (see Figures 2 and 
3).  Namely, the estimated parameters were underestimated for the data generated from the 
N(+1,0.8) distribution, and the estimated parameters were inflated for the data generated from 
the N(-1,1.2) distribution.   As might be expected, the magnitude of the bias was much greater 
for the sparse CAT data than for the conventional data.   

Figures 15-16 show the recovery of the b parameters for the 100 non-fixed pretest items when 
the MML transformation method was used to rescale parameters for the data simulated from a 
N(+1,0.8) and N(-1,1.2) distribution, respectively.  (Note that two items are excluded from 
Figure 15, each with an estimated b parameter of < -5.0.)  When the MML transformation 
method was applied to the CAT data, the following procedure was used.  A and B were fixed to 
1.0 and 0.0, respectively, and Equation (1) was used to estimate the mean and variance for the 
group on the 137 “fixed” (or anchor) items from Pool 4, using the known parameters and the 
examinee responses to these items.   Item parameters for the 468 non-fixed items (Pools 1-3 and 
the pretest items) were obtained by running Bilog-MG on those items only.  No attempt was 
made to fix the scale in this calibration, so results were approximately on the N(0,1) metric.  The 
mean and variance for the group on the non-fixed items was assumed to be 0.0 and 1.0, 
respectively.  The transformation constants A and B were obtained using Equations 2 and 3, and 
the item parameters for the 468 non-fixed items were rescaled applying the transformation 
constants to Equations 4 and 5. 

A comparison of Figures 13 and 15 shows that the bias that occurred from using Bilog-MG to fix 
the scale did not occur when MML transformation method was used to rescale the non-fixed 
parameters when they were calibrated to a N(0,1) scale.  The rescaled parameters do show more 
spread than in the conventional data case, which is a reflection of the poorer calibration that 
occurred under the sparse CAT data simulation.  A comparison of Figures 14 and 16 also shows 
that the bias that occurred from using Bilog-MG to fix the scale was reduced when the MML 
transformation method was used to rescale the non-fixed parameters after they were calibrated to 
a N(0,1) scale.  The rescaled parameters do show a slight amount of bias, but that may have been 
caused by the quality of the calibration.  In the calibration of the non-fixed parameters (i.e., the 
468 items) to a N(0,1) scale, Bilog-MG initially approached convergence, but then bounced 
around and did not reach a convergence criterion of .001 after 100 iterations (in the EM step).  
The parameters were probably not as well estimated as they would have been if the results had 
converged.  Manipulations of the Bilog-MG options did not result in a converged solution.  The 
parameters reported here are the parameters after 100 iterations.  No convergence problems were 
noted in the N(+1,0.8) case. 

Figures 17 and 18 show the root mean squared difference (RMSD) between the item 
characteristic curves (ICCs) based on the estimated and true parameters for the 100 pretest items, 
for the CAT data simulated from a N(+1,0.8) and N(-1,1.2) distribution, respectively.  For each 
item, the estimated and true ICCs were computed at the true ability for each examinee taking that 
item, and the sum of the squared difference in ICCs was weighted by the number of examinees 
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taking that item prior to taking the square root.  The results labeled “Fixed” are based on the 
estimated parameters for the 100 pretest items when the “fix” capability was used in Bilog-MG 
(recall parameters were estimated for 468 items, although only results for the 100 pretest items 
are presented).  The results labeled “Rescaled” are based on the rescaled parameters for the 100 
items when the MML transformation method was applied to the N(0,1) scaled Bilog-MG 
parameters for the 468 items.  Figures 17 and 18 demonstrate a substantial decrease in RMSD 
from the fixed parameters to the rescaled parameters.   

For comparison purposes, Figure 19 shows the RMSD results for the CAT data simulated from a 
N(0,1) distribution.  As was observed with the conventional data from a N(0,1) distribution (see 
Figure 10), the Fixed solution and the Rescaled solution give very similar results.  Table 4 
summarizes the average RMSD over the 100 items for the Fixed and Rescaled parameters.  The 
average RMSD was larger for the rescaled parameters in the N(-1,1.2) data, but this is likely 
because the parameters were as not well estimated as they could have been (recall that the results 
did not converge in the calibration). 
 

Table 4.  Average RMSD for 100 Pretest Items, for the Fixed and Rescaled Parameters,  
by Examinee Ability Distribution. 

 
Examinee 

Distribution 
 

Fixed 
 

Rescaled 
N(0,1) .018 .018 

N(+1,0.8) .159 .018 
N(-1,1.2) .157 .036 

  
Discussion 

 
This paper evaluated two different methods of calibrating non-anchor items to the scale of 
anchor items.  The first method used Bilog-MG to fix parameters for anchor items to their known 
values and simultaneously estimate the parameters for non-anchor items.  The second method 
used Bilog-MG to estimate parameters for non-anchor items only (without attempting to fix the 
scale), and then used a MML transformation procedure to rescale those parameters to the scale of 
the anchor items.  The results suggest that it is safer to calibrate the non-anchor items to a N(0,1) 
scale and then rescale to the scale of the anchor items, rather than to fix the parameters for the 
anchor items and simultaneously calibrate the non-anchor items.  If the examinees are distributed 
N(0,1), the two procedures will give similar results, but it could be difficult in practice to know 
for certain how the examinees are distributed.   
 
If the examinee ability distribution is shifted in location from N(0,1), fixing the parameters for 
the anchor items and calibrating the non-anchor items could result in biased estimates.  Results 
from using the “fix” capability in Bilog-MG were biased for both the conventional and CAT 
data, when the examinee ability distributions were shifted away from N(0,1).  The bias in the 
estimates for the non-anchor items resulting from fixing the anchor item parameters was much 
larger for the CAT data than for the conventional data because of the small number of examinees 
taking the anchor items relative to the rest of the items to be estimated.  There was very little 
information for Bilog-MG to use in fixing the scale.  The MML transformation method worked 
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well even in the case of the CAT data, because it did not re-estimate any item parameters.  Thus, 
the smaller sample sizes for the anchor items were not a concern. 
 
All attempts to fix the scale of the non-anchor items to the scale of the anchor items using Bilog-
MG options were unsuccessful.  A variety of different options were tried, but none enabled the 
recovery of the original scale.  Ideally, if some item parameters are fixed, the population mean 
and standard deviation would be estimated using the fixed parameters and the responses to those 
items.  That estimated prior distribution would then be used in every computation that uses a 
prior, rather than using a N(0,1) prior.  The bias observed when using the “fix” capability in 
Bilog-MG suggests that somewhere a N(0,1) distribution is being assumed, or that not enough 
information is available to adequately fix the scale.  There appears to be no obvious way when 
using the fix capability in Bilog-MG to ensure that the non-anchor items are truly on the scale of 
the anchor items. 
 
Parameter recovery for the pretest items was promising when the MML transformation method 
was used to rescale parameters for the non-anchor items onto the scale of the anchor items.  The 
parameter recovery for the operational pools (Pools 1-3) was not presented in this paper.  
However, some of the operational items were calibrated very poorly.  Our calibration problem 
presented somewhat of an optimal calibration situation, as we were not overly concerned with 
the quality of the calibration of the operational CAT items, even though those items were 
simultaneously calibrated with the pretest items.  Clearly we would like the operational items to 
be calibrated as best as possible, but an occasional poor calibration of some operational items did 
not appear to have much of an effect on the calibration of the pretest items.  If our interest was 
also in the calibration of the operational items, then the calibration problem would be much more 
difficult. 
 
There are some calibration issues that arise when dealing with sparse CAT data.  Small sample 
sizes for individual items can be problematic.  The Newton-Gauss steps do not appear to work 
with the CAT data.  However, identifying appropriate starting values is probably the critical 
issue.  The default starting values used in Bilog-MG were suitable for our pretest items because 
they were administered randomly across examinees.  When default start values were used for the 
operational items, Bilog-MG had problems running.  When start values of a = 1.0 and b = 0.0 
were used instead of the defaults for the operational items, Bilog-MG was able to run.  In some 
instances, however, the starting values for the b parameters were too far from the true 
parameters, and Bilog-MG converged on an incorrect solution.  It was easy to detect this 
occurrence with simulated data, but would be difficult to do so with real data.  The diagnostic χ2 

test given for each item was generally very large for the operational CAT items, so it would be 
difficult to use that test to detect that an inappropriate starting value had been used.   
 

Although results were promising for the parameters that were rescaled using the MML 
transformation method, the results for the rescaled parameters will be only as good as the 
underlying unscaled parameters.  In the case of the N(-1,1.2) CAT data, the parameters did not 
converge, and the RMSDs for the rescaled pretest parameters were larger than observed for the 
N(+1,0.8) CAT data.  If it is not possible to obtain a converged solution when calibrating, then it 
might not be appropriate to apply the MML transformation method to those results.  Calibrations 
of CAT data may be affected not only by the sparseness of the data, but by the relationship 
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between the item and the ability of the calibration sample.  For example, in the case of a very 
difficult item that is administered to a below-average ability group, it may be difficult to calibrate 
that item, no matter how many people take it. 
 
The simulations presented here were designed to demonstrate parameter recovery when items all 
fit a 3PL model.  Because Bilog-MG and the MML transformation method both assume a 3PL 
model, our results represent the optimal evaluation of these methods.  In cases where the 3PL 
model is not appropriate, the results are likely to show more error.  The final stage of the 
simulation study will be to evaluate the methods when some items do not fit a 3PL model.   
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