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Calibrating CAT Poolsand Online Pretest Items
Using Marginal Maximum Likelihood M ethods

The research in this paper was conducted as part of an ongoing large-scale simulation study to
evaluate methods of calibrating pretest items for CAT pools. The simulation study was designed
to mimic the operational CAT-ASV AB testing program, whereby asingle pretest itemis
embedded, or seeded, into the administration of an operational CAT. The overriding goal of the
research is to select a calibration method that will best represent the data and maintain a
consistent scale over time, as new calibrations are conducted, pretest items are formed into new
pools, and operational pools are replaced with the new pools.

A series of papers accompany this paper. The history of the CAT-ASVAB testing program is
discussed in Nicewander (2003), along with relevant issues in maintaining scale consistency for
the CAT-ASVAB. Thedesign used in the smulation study and arationale for the designis
discussed in Thomasson (2003), along with the procedures used to simulate items that do not
conform to a 3PL model. MCMC methods of calibrating the pretest items are evaluated in
Segall (2003). Nonparametric and adjusted marginal maximum likelihood methods of
calibrating the pretest items are evaluated in Krass and Williams (2003). This paper evaluates
MML methods of calibrating the pretest items using the 3PL model.

The goal of the study isto identify the best possible calibration method for new pretest items so
that the true underlying parameters are recovered as closely as possible. The calibration problem
is made difficult by the nature of the CAT data. Namely, examinees take a small percentage of
differing operational CAT items and only one of a set of pretest items, creating a sparse matrix of
item responses to be analyzed. Each operational item has a variable number of responses, some
with very few responses, some with large numbers of responses. The operational items are
typically administered to examinees within alimited range of ability. The pretest items are
administered randomly to fixed numbers of examinees, but each examinee takes only one pretest
item. Thisis contrary to atypical calibration for afixed-form test or pretest items, whereby a
fixed number of examinees take a fixed number of items.

In this study, pretest and operational CAT items are simultaneously calibrated and placed on the
scale of the operational parameters from one CAT pool that is designated as the anchor CAT
pool. Operationally, the anchor CAT pool isinfrequently administered, so the parameters are
assumed to have little drift over time. Thisassumption iswarranted by our belief that item
exposure is the most common cause of parameters displaying drift over time. In using the
anchor pool to fix the scale, we assume that other sources of drift will not occur over timein the
anchor pool. Asour intention isto use the anchor pool to maintain continuity of scale asold
pools are replaced with new pools in the operational administration, it is necessary to make this
assumption. The re-estimation of operational CAT items, in addition to the estimation of the
pretest items, should help account for any parameter drift that may occur in the operational CAT
poolsthat are not fixed (i.e., al pools but the anchor CAT pooal).



The Simulation Design

A primary objective of the simulation study is to evaluate the performance of the MML 3PL-
based calibration methods when some of the items do not fit a3PL model. In practice, we
believe that not al items conform to a 3PL model. For purposes of evaluating the strengths and
limitations of the calibration methods under conditions specific to our operational CAT program,
the simulation was conducted in stages. In the first stage, a conventional test was simulated,
where 10,000 examinees responded to a fixed number of items, and all items were generated
using a 3PL model. Examinees were simulated from N(0,1), N(-1,1), and N(1,1) distributions.
The first stage simulation provided an optimal calibration situation, which allowed us to
minimize estimation error as much as possible, in order to identify important issues in calibrating
to maintain agiven scale. In the second stage, an operational CAT was simulated, where all
items were generated using a 3PL model. Examinees were simulated from N(0,1), N(-1,1.2), and
N(1,0.8) distributions. The second stage simulation allowed us to identify important issuesin
calibrating to maintain a given scale, under the added complications of alarge sparse data
matrix, varying sample sizes for some items, and arestricted range of ability for someitems.
Again, al items were generated using a 3PL model, so that results would not be confounded by
fitting an inappropriate model to the items.

In the first two stages of the simulation the true item parameters were known. This enabled usto
evaluate the strengths and weaknesses of the calibrations, and to adjust the calibration procedures
accordingly. This paper reports results only from the first two stages. A third simulation will be
conducted in the future, which is designed to allow usto evaluate the calibration methods under
the most readlistic conditions. For the third stage simulation, an independent party will generate
realistic CAT data, and the true parameters will be unknown to us. Thus, we must implement the
calibration procedures as we would operationally, without being able to make any adjustments to
the procedures. In addition, some items will be generated using a 3PL model, while others will
be generated using a non-parametric model. The percentage of 3PL and non-parametric items
will be varied according to what is observed in real data. Examinees from different ability
distributions will be generated, again according to what is observed in real data. Thethird stage
simulation will alow usto fully evaluate the calibration methods under the most realistic
conditions, when a percentage of items are not represented by a 3PL model. In the simulation,
new CAT poolswill be developed from the pretest items and administered operationaly,
replacing older operational pools. Scale drift will be evaluated as pools are updated.

The second stage simulations were designed to represent the operational CAT program and the
conditions under which pretest items would be calibrated in practice. Operationally, pretest
items are administered in groups of 100 items. One pretest item is randomly selected from the
set of 100 and administered to an examinee during an operational session. One of four
operational CAT poolsisrandomly administered to an examinee. Pools 1-3 are administered
about 98% of the time, while Pool 4 is administered about 2% of the time. Parameters for Pools
1-3 and the pretest items will be simultaneously calibrated, as discussed above. Pool 4 will be
used as the anchor CAT pool, and parameters for Pools 1-3 and the pretest items will be placed
on the scale of the anchor CAT pool. Operationally, the calibrations will be conducted when the
pretest items have been administered a sufficient number of times.



The test administration design for the second stage simulationsis summarized in Table 1. Each
examinee was administered a 15-item CAT (using Pool 1, Pool 2, Pool 3, or Pool 4), and one
pretest item. Pool 1 contained 94 items, Pools 2-4 each contained 137 items, and the pretest set
contained 100 items, for atotal of 605 items, of which an examinee took 16. CAT Pools 1-3
were administered to atotal of 40,000 examinees each (400 per pretest item per pool). Pool 4
was administered to atotal of 2400 examinees (24 per pretest item). Each pretest item was
administered to atotal of 1224 examinees, resulting in atotal of 122,400 examinees

Table 1. Test Administration Design for the CAT Simulations.

Pretest Operational  Number of
Item CAT Pool Examinees
1 400
400
400
24
1224
400
400
400
24
Total 1224
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MML Software

A variety of commercial software programs exist that use marginal maximum likelihood (MML)
methods of estimating parameters. Three popular commercia programs, Bilog-MG (Zimowski,
Muraki, Mislevy, and Bock, 2003), Parscale (Muraki and Bock, 2003), and Multilog (Thissen,
2003) have recently been ported to a Windows platform, and the programs are documented
together in one reference manual (du Toit, 2003). The calibration programs are designed for a



variety of purposes, and have differing capabilities. This paper focuses on Bilog-MG, whichis
one of the most popular 3PL calibration programs available.

Our interest was in evaluating calibration results from Bilog-M G when attempting to fix the
scale of the estimated parameters to aknown scale. A new feature in Bilog-MG for Windowsis
that selected item parameters may be fixed at pre-defined starting values and the rescaling of the
latent distribution that istypically done in Bilog-MG may be suppressed. In theory, these
features may be used to place parameter estimates for non-fixed items on the scale of the fixed
items. In the case of our operational CAT, the items from the anchor pool (Pool 4) were treated
as fixed, and the parameters were estimated for the pretest items and for Pools 1-3. Results for
conventional datawere evaluated first, followed by results for CAT data, so that problems due to
the fixing of the scale could be identified without the added complication of sparse data matrices.

Evaluation of Conventional 3PL Data

The conventional data were simulated using parameters that mimicked parameters from one of
the operational CAT pools. Responses were generated for 10,000 examinees taking atotal of 94
items. The results were replicated for examinees drawn from three different ability distributions:
N(0,1), N(-1,1), and N(1,1). Parametersfor 20 of the 94 items (21%) were treated as anchor
items and fixed at their known value, while the parameters for the remaining 74 items were
estimated, with the intent that the parameters for the 74 “non-fixed” items would be on the same
scale as the parameters for the 20 “fixed items’. This enabled us to evaluate the capability of
Bilog-MG to fix the scale. The percentage of fixed items used here is comparable to the
percentage of fixed items that we would have for our operational CAT. Note that the
“NOADJUST” option inthe“CALIB” command was used in every calibration where item
parameters were fixed to suppress the rescaling of the item parameters, and no Phase 3 analyses
were conducted. Thus, the final parameters for the fixed items were aways equal to their
starting values.

Figure 1 shows the recovery of the b parameters for the non-fixed items when Bilog-MG was
used to fix the parameters for 20 items and estimate the parameters for the remaining 74 items,
and the data were generated from a N(0,1) distribution. Parameter recovery, as expected, was
quite good. Figure 2 shows the recovery of the b parameters for the non-fixed items when the
same procedure was applied to data generated from aN(+1,1) distribution. In this case,
parameter recovery was not as clean. There appeared to be a dight systematic bias in the
parameter estimates; the estimated parameters were somewhat underestimated. Figure 3 shows
the recovery of the b parameters for the non-fixed items when the process was applied to data
generated from a N(-1,1) distribution. Again, there appeared to be a slight systematic biasin the
parameter estimates. In this case, the estimated parameters were somewhat inflated.

Figures 4 and 5 show the estimated posterior distributions from Bilog-M G for the data simulated
fromaN(+1,1) and N(-1,1) distribution, respectively, relative to the population distribution from
which the data were generated. Figure 4 shows that the estimated posterior distribution was
close to the target population distribution, but that it was shifted somewhat to the left of the
target population distribution. Figure 5 shows that the estimated posterior distribution was
shifted quite a bit to the right of the target population distribution. The means and standard



deviations of the estimated posterior distributions differed from 0 and 1, so the fixing of the item
parameters did adjust the scale to some degree. However, that the posterior distributions were not
closer to the true population distributions suggests that either insufficient information was
available to adequately estimate the group mean and standard deviation, a N(0,1) distribution
was still assumed in some computation (i.e., in the likelihood or the prior), or that some kind of
rescaling was done on the estimated item parameters. Multilog aso has the capability fix certain
item parameters and estimate others. Results using the fix capability in Multilog with data
generated from a N(-1,1) distribution were virtually identical to the results from Bilog-MG,
which suggests that Multilog uses a similar process when item parameters are fixed.

MML Method for Transforming Item Parameters Appropriate for Sparse CAT Matrices

Because the bias for the non-fixed items displayed in Figures 2 and 3 appears to be systematic,
the parameters for the non-fixed items can be transformed to the scale of the fixed items using a
linear transformation. In the conventional data case that we are simulating, we may treat it asif
we have a single group taking two mutually exclusive sets of items that are on different scales.
If we knew the means and standard deviations of abilities in the group for both scales, we could
find the transformation constants to place the non-fixed items on the scale of the fixed items. To
do asimilar transforming in our CAT data case, we have the added complications of randomly
equivalent groups of examinees taking mutually exclusive sets of items, items administered at
different frequencies across examinees, and not all examineestaking all itemsin apool. We
want to place all of our parameters on the scale of one set of items, but there are no common
items across the pools, so we cannot use transformation methods that operate on the parameters
for common items. Thus, in our case, traditional transformation methods such as the
mean/sigma, mean/mean, or characteristic curve methods are not appropriate for obtaining
transformation constants for rescaling purposes.

This paper utilizes a method for computing marginal maximum likelihood estimates of
transformation constants that place item parameters from one source onto the scale of item
parameters from another source. The maximization is conducted with respect to the
transformation constants and the population mean and variance. The method can be applied to a
single group design, where some common items are shared across examinees (i.e., one group of
examinees takes items from the same pool). The method can also be applied to separate,
randomly equivalent groups where there are no common items across groups, (i.e., examinees
are randomly administered items from one of several pools).

Consider the case where a single group of N examineesis administered n items, where each item
has its parameters scaled relative to one of two possible metrics:

_ |4, if iOScalel
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fori=1, ..., n. Wefurther assume that ability is normally distributed &~ N(&, 1,0). Thenthe
likelihood function of the scaling and distribution parameters given the observed responses u, =
{Ua1, Uap, ..., Uxn} fora=1, .., Nis
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The MML estimates of A and B can be obtained by maximizing the joint likelihood of (1) with
respect to A, B, yand &, i.e,

max_L(A, B,,u,az‘U ).
AB,u,0?

This can be accomplished by a two step procedure:
1. Holding A and B fixed, maximize (1) with respect to ¢ and o*.
2. Holding ¢ and & fixed, maximize (1) with respect to A and B.
3. lterate Steps 1 and 2 until A and B change very little from one iteration to the next.

The process is followed as described above when finding the A and B transformation constants
that place Scale 2 parameters on the Scale 1 metric, for asingle group of examinees taking some
common items. A modified process can be followed to find the A and B transformation
constants in the case of randomly equivalent groups being administered mutually exclusive sets
of items. Inthiscase, A isfixed to 1.0 and B isfixed to 0.0, and only xand ¢* are estimated
using Equation (1). If xand ¢ are estimated for the two groups in that manner, the
transformation constants to place the Scale 2 parameters on the Scale 1 metric can be obtained by

A = o(Scale 1)/ o(Scale 2) (2
B = u(Scael) — A*u(Scae 2). ©)]

Once the transformation constants A and B have been obtained, the parameters for Scale 2 items
can be placed on the metric of Scale 1 items by the following transformations:

d(Scale 2) = a(Scale 2)/A (4)
b'(Scale 2) = A*b(Scale 2) + B. (5)

Application of the MML Transformation Method to the Conventional Data
When the MML transformation method was applied to the conventional data, the following

procedure was used. A and B were fixed to 1.0 and 0.0, respectively, and Equation (1) was used
to estimate the mean and variance for the group on the 20 “fixed” (or anchor) items, using the



known parameters and the examinee responses to these items.  Item parameters for the 74 non-
fixed items were obtained by running Bilog-MG on those items only. No attempt was made to
fix the scalein this calibration, so results were approximately on the N(0,1) metric. The mean
and variance were then estimated for the group on the 74 “non-fixed” items, using the estimated
parameters and the examinee responses to these items (and fixing A and B to 1.0 and 0.0,
respectively). The transformation constants A and B were obtained using Equations 2 and 3, and
the item parameters for the 74 non-fixed items were rescaled applying those transformation
constants to Equations 4 and 5.

Figure 6 shows the recovery of the b parameters for the 74 non-fixed items when the MM L
transformation method was used to rescale parameters for the data simulated from a N(+1,1)
distribution. Figure 6 should be compared to Figure 2, which shows the result for the same 74
items when the “fix” capability is used in Bilog-MG to fix the scale of the 74 items to the 20
anchor items. Note that Figure 6 does not represent a transformation of the 74 parametersin
Figure 2. Instead, it represents a transformation of the 74 parameters when they were calibrated
assuming aN(0,1) scale. The biasthat occurred in Figure 2 does not appear in Figure 6. Figure
7 shows the recovery of the b parameters for the non-fixed items when the MML transformation
method was used to rescale parameters for the data simulated from aN(-1,1) distribution. Figure
7 should be compared to Figure 3, which shows the results for the same items using the “fix”
capability in Bilog-MG. Again, the bias that was evident in Figure 3 does not appear in Figure 7.

Figure 8 and 9 show the root mean squared difference (RMSD) between the item characteristic
curves (ICCs) based on the estimated and true parameters, for the data ssimulated from a N(+1,1)
and N(-1,1) distribution, respectively. For each item, the estimated and true ICCs were
computed at the true ability for each examinee taking that item, and the sum of the squared
difference in ICCs was weighted by the number of examinees taking that item prior to taking the
square root. Theresultslabeled “Fixed” are based on the estimated parameters for the 74 items
when the “fix” capability isused in Bilog-MG. Theresults labeled “Rescaled” are based on the
rescaled parameters for the 74 items when the MML transformation method is applied to the
N(0,1) scaled Bilog-MG parameters. Figure 8 and 9 demonstrate a substantial decreasein
RMSD from the fixed parameters to the rescaled parameters. For comparison purposes, Figure
10 shows the RM SD results for the data simulated from aN(0,1) distribution. In this case, the
Fixed solution and the Rescaled solution give very similar results. Table 2 summarizes the
average RMSD over the 74 items for the Fixed and Rescaled parameters.

Table2. Average RMSD for the Fixed and Rescaled Parameters,
by Examinee Ability Distribution.

Examinee

Distribution Fixed Rescded
N(0,1) .007 .007
N(1,1) .024 .010
N(-1,1) .040 .013

In total, the results for the conventional data all suggest that using the Bilog-MG fix capability to
place estimated parameters on the scale of the fixed items does not place them quite on the



desired scal e, when the examinees do not conform to aN(0,1) ability distribution. The RMSDs
for the N(0,1) data show us the optimal RMSD we can expect using the Bilog-M G fix capability,
when the underlying assumptions made by the program are met in the data. Thisisthe target
RMSD we would like to achieve. Unfortunately, when the examinees are not distributed N(0,1),
the results from using the Bilog-M G fix capability are biased to some degree.

In this example, the percentage of fixed items used was comparable to the percentage of fixed
items that we would have for our operational CAT. Increasing the number of fixed items when
using the fix capability does reduce the bias in the parameter estimates, but a very large number
of items need to be fixed before the RM SDs are reduced to a comparable level as observed for
the N(0,1) parameters that are rescaled using the MML transformation method. Figure 11 shows
the RMSD over 44 common items when 20, 30, 40, and 50 items are fixed in Bilog-MG, for the
datasmulated from aN(-1,1) distribution. Table 3 summarizes the average RMSD over the 44
common items when using the Bilog-M G fix capability with different numbers of fixed items
(labeled Fixed). The average RMSD over the same 44 items for the N(0,1) scaled parameters
that are rescaled to the scale of the 20 fixed items is presented for comparison (labeled
Rescaled). When over half of the items are fixed (50 out of 94), the average RM SD for the non-
fixed parameters from the Bilog-M G “fixed” solution begins to approach the value of the
average RM SD observed when the MML transformation method was used to rescale the item
parameters to the scale of 20 anchor items.

Table 3. Average RMSD over 44 Common Items by Number of Fixed Items.

Number
Fixed Items Fixed Rescaed
20 .037 .012
30 .025 -
40 .019 -
50 .016 -

Evaluation of CAT 3PL Data

The CAT datawere simulated as discussed earlier. Because of the randomly equivalent groups,
the calibration can be conducted as a single group analysis on one set of items. Thus, the
calibration problem consisted of 122400 examinees and 605 items (with each examinee taking
16 items). Itemsthat were not administered to a given examinee were treated as not presented
and ignored in the calibrations. This created alarge sparse matrix for analysis. For the data
generated from a N(0,1) distribution, item administration rates for Pools 1-3 ranged from 5
administrations of one item to 14,283 administrations of another. Administration rates for Pool
4, which was administered only about 2% of the time, ranged from 0 administrations of one item
to 825 administrations of another. Because the parameters for Pool 4 are never re-estimated, the
small sample size associated with this pool was not aconcern. Items were administered at
different rates across the N(0,1), N(+1,0.8), and N(-1,1.2) conditions.

Figure 12 shows the recovery of the b parameters for the non-fixed pretest items when Bilog-MG
was used to fix the parameters for the anchor items (Pool 4) and estimate the parameters for the



remainder of the items (Pools 1-3 and the pretest items), and the data were generated from a
N(0,1) distribution. In this case, there were 137 fixed items and 468 non-fixed items. The
results are plotted only for the 100 pretest items. Although we would like the calibration of the
Pool 1-3 itemsto be the best possible, we are ultimately only concerned with the quality of the
calibrations for the pretest items, as the parameters for the operational poolswill not be updated
during the life of apool. Figure 12 shows that the parameter recovery is not as good for the CAT
case asin the case of the conventional N(0,1) data (see Figure 1). The smaller sample size for
these items (N=1224 for the CAT case versus N=10,000 for the conventional case) is one likely
cause of this. However, another possible contributor could be the poor calibration of some of the
Pool 1-3 items.

Some Pool 1-3 items were calibrated poorly simply because very few examinees took them.
Others were calibrated poorly because the starting values for the parameters were too far from
the true parameters for Bilog-MG to converge on the appropriate solution. Bilog-MG uses
classical item statistics (biseria correlation and percent correct) as default starting values for the
aand b parameters. The classical item statistics provide good starting values for conventional
data, but not for adaptive CAT data. Biserial correlations are often negative in the case of CAT
data, and percent corrects may be based on a subset of examinees that are at similar levels of
ability. In some cases, it is necessary to over-ride the default starting values in order to get
Bilog-MG to even run with sparse CAT data. In this study, starting values of 1.0 were used for
the a parameter and starting values of 0.0 were used for the b parameter, for all itemsin Pools 1-
3. For some of these items, Bilog-MG could not recover from start values for the b parameters
that were too far from the true parameters. Thus, some individual operational items were
estimated very poorly.

Assigning appropriate starting values for asparse CAT data matrix is an interesting problem that
was not explicitly addressed in this study. Fortunately, only a small percentage of Pool 1-3 items
were affected by poor start values. If we were concerned with obtaining the optimal calibration
possible for Pools 1-3 items, we would have to find a better way of assigning start values to
those items. Since our concern was with the optimal calibration of the pretest items, we were
able to overlook the noise that was caused by a few poorly calibrated items from Pools 1-3.
Fortunately, starting values were only a concern for the items that were administered adaptively.
The default start values used in Bilog-M G were appropriate for the pretest items because those
items were administered at random to examinees and were not targeted toward a particular
ability.

Bilog-MG uses two methods of estimating the parameters: the EM method is implemented first,
and upon convergence, is followed by the Newton-Gauss (Fisher scoring) method. For the CAT
data, the Newton-Gauss steps were suppressed because the results did not converge for any of
thedata. Theresultsall converged for the EM steps, unless otherwise reported. Because of the
nature of the data, it was also necessary to use a prior distribution when calibrating the b
parameters for the sparse CAT data, in order to obtain a converged solution. The default prior
for the b parameters was used. The calibration problems noted here only occurred with the CAT
data. For the conventional data, there were no convergence problems.
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Figures 13-14 show the recovery of the b parameters for the non-fixed pretest items when Bilog-
MG was used to fix the parameters for the anchor items (Pool 4) and estimate the parameters for
the remainder of the items (Pools 1-3 and the pretest items), and the data were generated from a
N(+1,0.8) and N(-1,1.2) distribution, respectively. (Note that two items are excluded from
Figure 13, each with an estimated b parameter of <-7.0.) Trends occur in the same direction as
those observed for the comparable distribution in the conventional data case (see Figures 2 and
3). Namely, the estimated parameters were underestimated for the data generated from the
N(+1,0.8) distribution, and the estimated parameters were inflated for the data generated from
the N(-1,1.2) distribution. As might be expected, the magnitude of the bias was much greater
for the sparse CAT datathan for the conventional data.

Figures 15-16 show the recovery of the b parameters for the 100 non-fixed pretest items when
the MML transformation method was used to rescale parameters for the data simulated from a
N(+1,0.8) and N(-1,1.2) distribution, respectively. (Note that two items are excluded from
Figure 15, each with an estimated b parameter of <-5.0.) When the MML transformation
method was applied to the CAT data, the following procedure was used. A and B were fixed to
1.0 and 0.0, respectively, and Equation (1) was used to estimate the mean and variance for the
group on the 137 “fixed” (or anchor) items from Pool 4, using the known parameters and the
examinee responses to these items.  I1tem parameters for the 468 non-fixed items (Pools 1-3 and
the pretest items) were obtained by running Bilog-M G on those items only. No attempt was
made to fix the scalein this calibration, so results were approximately on the N(0,1) metric. The
mean and variance for the group on the non-fixed items was assumed to be 0.0 and 1.0,
respectively. The transformation constants A and B were obtained using Equations 2 and 3, and
the item parameters for the 468 non-fixed items were rescal ed applying the transformation
constants to Equations 4 and 5.

A comparison of Figures 13 and 15 shows that the bias that occurred from using Bilog-MG to fix
the scale did not occur when MML transformation method was used to rescale the non-fixed
parameters when they were calibrated to aN(0,1) scale. The rescaled parameters do show more
spread than in the conventional data case, which is areflection of the poorer calibration that
occurred under the sparse CAT data simulation. A comparison of Figures 14 and 16 aso shows
that the bias that occurred from using Bilog-MG to fix the scale was reduced when the MML
transformation method was used to rescale the non-fixed parameters after they were calibrated to
aN(0,1) scale. Therescaled parameters do show a slight amount of bias, but that may have been
caused by the quality of the calibration. In the calibration of the non-fixed parameters (i.e., the
468 items) to aN(0,1) scale, Bilog-MG initialy approached convergence, but then bounced
around and did not reach a convergence criterion of .001 after 100 iterations (in the EM step).
The parameters were probably not as well estimated as they would have been if the results had
converged. Manipulations of the Bilog-MG options did not result in a converged solution. The
parameters reported here are the parameters after 100 iterations. No convergence problems were
noted in the N(+1,0.8) case.

Figures 17 and 18 show the root mean squared difference (RM SD) between the item
characteristic curves (ICCs) based on the estimated and true parameters for the 100 pretest items,
for the CAT datasimulated from a N(+1,0.8) and N(-1,1.2) distribution, respectively. For each
item, the estimated and true ICCs were computed at the true ability for each examinee taking that
item, and the sum of the squared difference in ICCs was weighted by the number of examinees
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taking that item prior to taking the square root. The results labeled “Fixed” are based on the
estimated parameters for the 100 pretest items when the “fix” capability was used in Bilog-MG
(recall parameters were estimated for 468 items, although only results for the 100 pretest items
are presented). Theresults labeled “Rescaled” are based on the rescaled parameters for the 100
items when the MML transformation method was applied to the N(0,1) scaled Bilog-MG
parameters for the 468 items. Figures 17 and 18 demonstrate a substantial decreasein RMSD
from the fixed parameters to the rescaled parameters.

For comparison purposes, Figure 19 shows the RMSD results for the CAT data simulated from a
N(O,1) distribution. Aswas observed with the conventional datafrom aN(0,1) distribution (see
Figure 10), the Fixed solution and the Rescaled solution give very similar results. Table 4
summarizes the average RM SD over the 100 items for the Fixed and Rescaled parameters. The
average RMSD was larger for the rescaled parametersin the N(-1,1.2) data, but thisislikely
because the parameters were as not well estimated as they could have been (recall that the results
did not converge in the calibration).

Table4. Average RMSD for 100 Pretest Items, for the Fixed and Rescal ed Parameters,
by Examinee Ability Distribution.

Examinee
Distribution Fixed Rescded
N(0,1) .018 .018
N(+1,0.8) 159 .018
N(-1,1.2) 157 .036
Discussion

This paper evaluated two different methods of calibrating non-anchor itemsto the scale of

anchor items. The first method used Bilog-MG to fix parameters for anchor items to their known
values and simultaneously estimate the parameters for non-anchor items. The second method
used Bilog-MG to estimate parameters for non-anchor items only (without attempting to fix the
scale), and then used aMML transformation procedure to rescal e those parameters to the scale of
the anchor items. The results suggest that it is safer to calibrate the non-anchor itemsto a N(0,1)
scale and then rescal e to the scale of the anchor items, rather than to fix the parameters for the
anchor items and simultaneously calibrate the non-anchor items. If the examinees are distributed
N(0,1), the two procedures will give similar results, but it could be difficult in practice to know
for certain how the examinees are distributed.

If the examinee ability distribution is shifted in location from N(O,1), fixing the parameters for
the anchor items and calibrating the non-anchor items could result in biased estimates. Results
from using the “fix” capability in Bilog-MG were biased for both the conventional and CAT
data, when the examinee ability distributions were shifted away from N(0,1). The biasin the
estimates for the non-anchor items resulting from fixing the anchor item parameters was much
larger for the CAT data than for the conventional data because of the small number of examinees
taking the anchor items relative to the rest of the items to be estimated. There was very little
information for Bilog-MG to use in fixing the scale. The MML transformation method worked
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well even in the case of the CAT data, because it did not re-estimate any item parameters. Thus,
the smaller sample sizes for the anchor items were not a concern.

All attempts to fix the scale of the non-anchor itemsto the scale of the anchor items using Bilog-
MG options were unsuccessful. A variety of different options were tried, but none enabled the
recovery of the original scale. Ideally, if some item parameters are fixed, the population mean
and standard deviation would be estimated using the fixed parameters and the responses to those
items. That estimated prior distribution would then be used in every computation that uses a
prior, rather than using a N(0,1) prior. The bias observed when using the “fix” capability in
Bilog-M G suggests that somewhere a N(0,1) distribution is being assumed, or that not enough
information is available to adequately fix the scale. There appears to be no obvious way when
using the fix capability in Bilog-MG to ensure that the non-anchor items are truly on the scale of
the anchor items.

Parameter recovery for the pretest items was promising when the MML transformation method
was used to rescale parameters for the non-anchor items onto the scale of the anchor items. The
parameter recovery for the operational pools (Pools 1-3) was not presented in this paper.
However, some of the operational items were calibrated very poorly. Our calibration problem
presented somewhat of an optimal calibration situation, as we were not overly concerned with
the quality of the calibration of the operational CAT items, even though those items were
simultaneously calibrated with the pretest items. Clearly we would like the operational itemsto
be calibrated as best as possible, but an occasional poor calibration of some operational items did
not appear to have much of an effect on the calibration of the pretest items. If our interest was
also in the calibration of the operational items, then the calibration problem would be much more
difficult.

There are some calibration issues that arise when dealing with sparse CAT data. Small sample
sizesfor individual items can be problematic. The Newton-Gauss steps do not appear to work
with the CAT data. However, identifying appropriate starting values is probably the critical
issue. The default starting values used in Bilog-M G were suitable for our pretest items because
they were administered randomly across examinees. When default start values were used for the
operational items, Bilog-MG had problems running. When start values of a= 1.0 and b = 0.0
were used instead of the defaults for the operational items, Bilog-M G was ableto run. In some
instances, however, the starting values for the b parameters were too far from the true
parameters, and Bilog-M G converged on an incorrect solution. It was easy to detect this
occurrence with simulated data, but would be difficult to do so with real data. The diagnostic y°
test given for each item was generally very large for the operational CAT items, so it would be
difficult to use that test to detect that an inappropriate starting value had been used.

Although results were promising for the parameters that were rescaled using the MM L
transformation method, the results for the rescaled parameters will be only as good as the
underlying unscaled parameters. In the case of the N(-1,1.2) CAT data, the parameters did not
converge, and the RMSDs for the rescaled pretest parameters were larger than observed for the
N(+1,0.8) CAT data. If it isnot possible to obtain a converged solution when calibrating, then it
might not be appropriate to apply the MML transformation method to those results. Calibrations
of CAT data may be affected not only by the sparseness of the data, but by the relationship
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between the item and the ability of the calibration sample. For example, in the case of avery
difficult item that is administered to a below-average ability group, it may be difficult to calibrate
that item, no matter how many people take it.

The ssimulations presented here were designed to demonstrate parameter recovery when items all
fita3PL model. Because Bilog-MG and the MML transformation method both assume a 3PL
model, our results represent the optimal evaluation of these methods. In cases where the 3PL
model is not appropriate, the results are likely to show more error. Thefina stage of the
simulation study will be to evaluate the methods when some items do not fit a 3PL model.
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