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A CoMPARISON OF THE FAIRNESS OF ADAPTIVE AND
CONVENTIONAL TESTING STRATEGIES

In a previous report, Pine and Weiss (1976) examined how the item
characteristics of a conventional test affect its fairness when used in a
selection application. That study was concerned with the effects on fairness
of (1) the degree of bias in the test items, (2) level of item discrimination,
and (3) the distribution of item difficulties. It was found that when fairness
was psychometrically operationalized in several ways, these characteristics
of a conventional test influenced its fairness. The implication of these
results is that the average item discrimination and the distribution of item
difficulties, as well as the distributions of test scores for the subgroups
being tested, should be considered when evaluating the fairness of a conven-
tional test used as a selection instrument.

Recently, a new class of potential selection tests, referred to as
tailored (Lord, 1970) or adaptive (Weiss & Betz, 1973) tests, has emerged.
These tests function quite differently from conventional tests and, consequent-
ly, may have quite different fairness properties. In adaptive testing each
individual is sequentially administered a subset of items from a larger pool of
items; each succeeding item administered is contingent upon the testee's
responses to the preceding items (Weiss, 1974). Therefore, each individual in
a test population will typically receive a unique test, which differs from the
tests administered to other people with respect to its average item discrimi-
nation and its distribution of item difficulties. Since Pine and Weiss (1976)
have already shown that differences among these psychometric properties can
affect the fairness of a test, it is appropriate to examine whether, and to
what extent, adaptive testing will decrease or increase test fairness.

Based on the current state of knowledge of the psychometric properties of
adaptive tests, there are reasons to believe their use can increase test
fairness in several ways. Adaptive tests generally produce smaller standard
errors of measurement at the extremes of the ability continuum than do conven-
tional tests (e.g., Lord, 1970; Vale, 1975; Vale & Weiss, 1975). Civen the
relationship between validity and the standard error of ability estimation
(Jensema, 1974), this implies that test validity for low-scoring individuals
could be expected to increase with adaptive testing. This would be an impor-
tant result, since members of minority groups tend to obtain low scores on
many selection instruments, and evidence of low validity for a minority sub-
group can be interpreted as indicating an unfair selection instrument.

Adaptive tests achieve their higher levels of measurement precision
(e.g., Lord, 1970; Vale & Weiss, 1975) and test validity (Jensema, 1974; Vale
& Weiss, 1975) by tailoring test difficulty to each testee. That is, in an
adaptive test the proportion of items answered correctly by each testee should
approach a theoretically optimal level (.50 if correct answers by random guess-
ing are not possible). Given an adaptive test item pool with an adequate range
of item difficulties, the proportion of items answered correctly would be
similar for members of both minority and majority subgroups. Consequently,



test information or precision would be equal. The result may be equal valid-
ities for different subgroups and therefore a potential for reduction in
unfairness.

A third possible advantage of using adaptive testing would be in extending
the principal of differential prediction to single test items. When conven-
tional tests are used, differential prediction involves using separate within-
group regression equations to predict the criterion performance of minority
and majority subgroups. The logic behind this procedure is that the best
prediction of criterion performance for a given subgroup is obtained by
developing the prediction equation based only on data from the subgroup for
which predictions are to be made. The logical extension of this procedure
would be to predict criterion performance using test items which have been
calibrated separately for each subgroup. Adaptive testing can accomplish this
and, at the same time, adapt the difficulty of the test to the ability level
of the examinee.

The purpose of the present study was to compare the properties of one
adaptive testing procedure, Owen's (1969) Bayesian adaptive method, with the
conventional tests previously studied by Pine and Weiss (1976). Specifically,
the investigation was concerned with (1) how item pools with varying item
parameters and degrees of item bias would interact with the two test models to
affect test fairness, (2) how the use of differential prediction within the
context of each testing strategy affected test fairness, and (3) how the
placement of the prior ability distribution and choice of a termination criter-
ion affected fairness for the Bayesian strategy.

Method

Assumptions

The above questions were investigated in the context of the same selection
situation assumed in the previous study (Pine & Weiss, 1976). The selection
process was modeled by a monte carlo simulation; it consisted of administering
a selection test to each hypothetical person and using the score from that test
to predict an external criterion represented by generated values of the known
latent trait, 6. The selection test was assumed to be completely described in
terms of its latent trait parameters so that each of its items could be described
in terms of its item discrimination (), item difficulty (b), and probability
of being answered correctly by chance guessing (¢). Some of the items in the
test, however, were assumed to be biased against the minority subgroup; and
the degree of item bias was expressed in terms of the latent trait item parameters.

A testee's true ability level on the underlying latent trait, 6, was
represented by a number randomly generated from a standard normal distribution.
The same 6 values were used for both the minority and majority subgroups. The
only distinction between the subgroups was how item responses were simulated.
For the testees in the "minority" subgroup, the degree of item bias (see Pine
& Weiss, 1976, p. 8) was added to the item difficulty to reflect the fact that
biased items are effectively more difficult for testees in minority subgroups.
This had the effect of lowering the probability of a correct response on
biased items for minority subgroup testees.



Tests

Each simulated testee was administered 18 conventional and 9 Bayesian
adaptive tests constructed from eighteen 100-item pools, described in Table 1.
Table 1 gives the specifications of each pool in terms of its latent trait
item parameters a and b (¢ was assumed to be .20 for all items). Each item
in each pool was additionally assumed to have a given level of subgroup bias,
which was defined as the difference between the item difficulty (b) parameters
for a majority (maj) and minority (min) subgroup. In the case of the conven-
tional tests, items were taken sequentially from all 18 pools; for the Bayesian
adaptive tests, items were selected in accordance with Owen's (1969) Bayesian
item search algorithm from only the 9 pools having a uniform distribution
of difficulties.

Table 1
Distributions of Item Difficulties, Levels of Item
Discrimination (a), and Degree of Item Bias 'in the
Simulated Item Pools

Ttem Pool
Difficulty Difficulty Bias
No. Distribution No. Distribution a (b maj-b min)

1 Peaked 10 Uniform .30 .5
2 Peaked 11 Uniform .30 1.0
3 Peaked 12 Uniform .30 2.0
4 Peaked 13 Uniform .70 .5
5 Peaked 14 Uniform .70 1.0
6 Peaked 15 Uniform .70 2.0
7 Peaked 16 Uniform 1.10 .5
8 Peaked 17 Uniform 1.10 1.0
9 Peaked 18 Uniform 1.10 2.0

Adaptive test. The Bayesian adaptive testing strategy (McBride & Weiss,
1976; Owen, 1969; Urry, 1977) begins with an initial (prior) estimate of 6.
In this study a normally distributed prior distribution having a mean of 0 and
a standard deviation of 1.0 was used. The item to be administered to a testee,
described by its latent trait item parameters, is the item that minimizes the
expected error function (8-6)2, where 6 is the current estimate of ability and
a function of the item parameters. Based on the current value of 6, the item
parameters, and whether the response to the administered item was correct or
incorrect, the current 6 estimate is updated. This new estimate then becomes
the current estimate, and the cycle is repeated until a termination criterion
is reached. 1In this study Bayesian adaptive testing was terminated when a
fixed number of items was administered. Consequently, the standard error of
the Bayesian ability estimate varied for testees of different 6 levels. The
average standard errors of these ability estimates was an additional dependent
variable studied for the Bayesian testing strategy; it was compared to
the theoretical value based on the fixed number of items administered (Jensema,
19743 Urry, 1977).




Criterion Prediction

Each test was scored in two ways for predicting criterion performance on 8.
For the conventional tests, the regression equations for either the majority or
minority subgroup were used to convert the total number correct score to the 6
metric; for the Bayesian adaptive tests, criterion performance was predicted
using Bayesian scoring and either the majority or minority subgroup (i.e.,
biased) item parameters. When only the majority group regression equations or
item parameters were used to estimate 6, this was referred to as the majority
prediction condition. It was contrasted with the differential prediction
condition, which used the appropriate subgroups' regression equation or item
parameters to estimate 6. In addition, in order to study the effect of test
length, each test was scored after 10, 30, and 50 items had been administered.

Fairness

Similar to the previous study (Pine & Weiss, 1976, pp. 9-12), selection
fairness was evaluated by K, the correlation between the predicted and true
ability on the latent ability; (, the difference between the mean ability levels
of the minority and majority subgroups; and 7, the difference between the
proportion of. individuals exceeding the selection cutoff (set at the mean of
the majority subgroup) in the two subgroups. 1In addition, a number of standard
distributional statistics were also studied. These included the mean, standard
deviation, skewness, and kurtosis of the ability estimates(é)and, for the
adaptive testing strategy, the standard error of its ability estimates.

RESULTS

Distributions of Predicted Scores

Means, standard deviations, skewness, and kurtosis indices of ability
estimates as a function of the experimental conditions are given for 50-item
tests in Table 2; results for tests with 10 and 30 items, which generally
parallel those for 50 items, are given in Appendix Tables A and B. 1In these
tables the statistics for the true ability distribution (6) are given in the
first row of the table, listed under the "True" group heading. Only standard
deviations are reported for conventional tests in the differential prediction
condition, since the other distributional statistics are not affected by
differential prediction. Table 2 also gives the results from the subcondition
of Bayesian adaptive testing in which the mean of the assumed prior distribution
used for the minority subgroup was varied. These conditions are based upon the
a=1.1, bias=1.0 condition; in these cases the mean of the prior distribution
was set at 6=-1.0, -.25, or +1.0.

Means

As Table 2 shows, increasing item bias caused the mean of the minority sub-
group to be underpredicted for all of the majority prediction conditions,
regardless of the testing strategy employed. In the majority prediction situa-
tion, this underprediction increased both with increasing item bias and with
increasing item discriminations. TFor low item discriminations (a=.30) and for
the first two levels of bias (0.5 and 1.0), adaptive testing led to a larger



Table 2

Mean and Standard Deviation of Ability Estimates for 50-Item Uniform (U) and Peaked (P)

Conventional Tests and the Bayesian Adaptive Test (BAT) as a Function of Item
Discrimination (a) and Degree of Item Bias, Using Majority and Differential Prediction,
for Majority (maj) and Minority (min) Subgroups

Mean Standard Deviation
Majority Differential Majority Differential
Prediction Prediction Prediction Prediction

a Bias Group U P BAT BAT U P BAT U P BAT

True -.07 -.07 -.07 -.07 1.01 1.01 1.01 1.01 1.01 1.01

.30 0.0 maj -.07 ~-.07 -.25 -.25 .80 .81 .80 .80 .81 .80

0.5 min -.39 -.40 -.57 -.25 .82 .81 .77 .81 .82 .79

1.0 min -.71 -.74 -.86 -.24 .82 .82 74 .81 .82 .79

2.0 min -1.34 -1.36 -1.43 -.23 .82 .80 .72 .82 .82 .83

.70 0.0 maj -.07 -.07 -.23 -.23 .94 .95 .93 .94 .95 .93

0.5 min -.50 -.54 -.64 -.22 .94 .94 .87 .94 .95 .91

1.0 min -.95 -.97 -1.04 -.22 .93 .90 .83 .93 .94 .91

2.0 min -1.75 -1.71 -1.76 -.23 .82 .72 .71 .92 .90 .92

1.1 0.0 maj -.07 -.07 -.19 -.19 .97 .96 .92 .97 .96 .92

0.5 min -.54 -.54 -.62 -.20 .98 .94 .86 .97 .96 .93

1.0 min -1.02 -.96 -1.02 -.20 .95 .85 .78 .96 .94 .90

2.0 min -1.85 -1.57 ~-1.67 -.20 .81 .54 .60 .94 .84 .90
Bayesian

Priors

1.1 -1.0 min -1.20 -.28 .90 .98

-.25 min -1.10 -.22 .84 .93

+1.0 min -.74 -.02 .66 .78




underprediction than did the conventional tests. When differential prediction
was used, the adaptive test resulted in substantially less underprediction than
did either of the conventional tests. Furthermore, under differential predic-
tion, the degree of underprediction produced by the adaptive test decreased with
increasing item discrimination (a) levels.

The mean of the assumed prior ability distribution influenced the predicted
mean ability levels in the adaptive test. This effect was substantially less
when differential prediction was used. In the majority prediction situation,

a prior of 6=1.0 increased the underprediction and a prior of +1.0 decreased it.
The smallest degree of underprediction across all conditions was obtained when
the prior was set at 6=+1.0; using differential prediction, underprediction
was reduced to nearly zero with this prior ability estimate.

Standard Deviations

The standard deviation of the ability distribution (1.01) was underpredict-
ed both for the majority and minority subgroups in all testing conditions. The
effect of item discrimination on the standard deviation is reflected by the
values for the majority subgroup, where item bias=0. For the conventional tests,
the standard deviations increased as the item discriminations were increased
from a=.30 to g=1.1. TFor the adaptive test, there was no increase for levels of
item discrimination beyond @=.70. Within each level of item discrimination
beyond a=.70,the standard deviations decreased as the item bias was increased,
for all testing conditions. The reduction in the standard deviations which
resulted from increased item bias was more pronounced at the highest level of
item discrimination. The uniform tests reflected this trend the least, and the
peaked tests reflected it the most.

The same general trends with respect to the influence of item discrimina-
tion and bias on the standard deviations of the distributions of ability
estimates occurred when differential prediction was used. However, the influence
of item bias was much less in this condition, particularly under adaptive test-
ing, where the overall size of the standard deviations increased relative to
the values obtained in the majority prediction condition. For example, where
a=1.1 and item bias increased from .5 to 2.0, the adaptive test had standard
deviations of .86, .78, and .60 in the majority prediction condition; with
differential prediction, a corresponding increase in bias produced standard
deviations of .93, .90, and .90. The placement of the prior distribution in
the adaptive test influenced the size of the standard deviation in both the
majority and differential prediction conditions. 1In both cases the +1.0 mean
prior produced a smaller standard deviation than did the -1.0 mean prior.

Skewness and Kurtosis

For all testing conditions, the degrees of skewness and kurtosis tended to
increase in a positive direction as both item discrimination and item bias
increased (see Table 3). Positive values of skewness indicate that the mode of
the distribution is lower than its arithmetic mean, while positive values of
kurtosis indicate that the distribution is more peaked than a normal distribution.
In the majority prediction condition, the adaptive test produced score distribu-
tions that were always more positively skewed and peaked than any of the uniform
conventional tests. Compared to the peaked tests, however, the adaptive test
was more positively skewed and peaked only at the lower levels of item bias. In



the combined high item discrimination and high bias conditions, the peaked
tests were considerably more leptokurtic than either the uniform conventional
or the adaptive tests.

Table 3
Skewness and Kurtosis of Distribution of Ability Estimates for 50-Item Uniform (U)
and Peaked (P) Conventional Tests and the Bayesian Adaptive Test (BAT) as a
Function of Item Discrimination (a) and Degree of Item Bias, Using Majority and
Differential Prediction, for Majority (maj) and Minority (min) Subgroups

Skewness Kurtosis
. Majority Differential Majority Differential
Ttem Prediction Prediction Prediction Prediction
a Bias Group U P BAT BAT U P BAT BAT
True -.01 -.01 -.01 -.01 .22 .22 .22 .22
.30 0.0 ma j .03 -.11 .30 .30 .00 -.06 .06 .06
0.5 min .04 .01 .30 .24 -.09 .00 .04 -.08
1.0 min .08 .10 .27 .22 -.06 -.02 .15 .07
2.0 min .28 .33 .34 .27 .10 .17 .14 .15
.70 0.0 maj -.08 -.11 .31 .31 -.27 -.66 .01 .01
0.5 min .10 .19 .29 .26 -.33 -.66 -.06 -.05
1.0 min .31 .49 .40 .26 -.19 -.38 .10 -.02
2.0 min .57 1.13 .70 .39 .08 1.08 48 .01
1.1 0.0 maj -.03 -.10 47 47 -.25 -1.13 .29 .29
0.5 min .20 .36 .51 .32 -.24 -.93 .04 -.11
1.0 min .30 .86 .62 .34 -.33 -.07 .05 -.19
2.0 min .77 2.13 1.12 .49 .42 5.03 1.66 .07
Bayesian
Priors
1.1 -1.0 min .34 .14 -.19 -.21
-.25 min .46 .27 -.17 -.24
+1.0 min .67 .62 .23 .05

The same general trends with respect to the influence of item discrimina-
tion and bias on skewness and kurtosis occurred when the differential prediction
version of the adaptive test was used. However, as for all the other distribu-
tional statistics, differential prediction greatly reduced the influence of
item bias and discrimination on skewness and kurtosis. For example, using
differential prediction the skewness and kurtosis of the distribution were
always equal to or lower than those obtained in the majority prediction condi-
tion. .Comparing the influence of the +1.0 prior resulted in a more positively
skewed distribution, as well as a more leptokurtic distribution, than did the

-1.0 mean prior.

Validity

Majority Prediction Condition

Subgroup validities. The validity coefficients (i.e., the correlations
between true and estimated ability levels) for the uniform and peaked convention-
al tests and the adaptive tests, for all experimental conditions, are shown in




Table 4

Validity Correlations for Uniform (U) and Peaked (P) Conventional Tests and for the Bayesian
Adaptive Test (BAT) as a Function of Item Discrimination (a) and Degree of Item Bias Using Majority
and Differential Prediction for Majority (maj) and Minority (min) Subgroups, and Differences (Diff)

Between Subgroups at Test Lengths of 10, 30, and 50 Items

Majority Prediction

Differential Prediction

Item 10 Items 30 Items 50 Items 10 Items 30 Items 50 Items
a Bias Group U P BAT U P BAT U P BAT BAT BAT BAT
.30 0.0 maj 493 . 540 .501 .725 741 .709 .793 .802 772 .501 .709 772
0.5 min .492 .543 .526 741 .754 724 .800 .814 J74 494 .701 776
Diff .001 .003 .025 .016 .013 .014 .008 .013 .002 -.007 .009 .005
1.0 min .512 .554 .548 743 .763 724 .805 .817 .785 400 .676 .790
Diff .019 .014 .047 .018 .022 014 .012 .016 .013 -.051 .033 .019
2.0 min .523 .540 .570 .749 .759 .733 .810 .811 .797 .543 .721 .803
Diff .030 -.001 .069 .024 .019 .024 .017 .009 .026 .042 .011 .032
.70 0.0 maj .745 .763 .797 .899 .912 .907 .935 941 .939 .797 .907 .939
0.5 min 744 .797 .791 .898 .918 .909 .934 .943 .940 .786 .905 .940
Diff .001 .014 -.006 -.000 .006 .001 .001 .002 .000 -.010 .003 .001
1.0 min .764 .801 .806 .891 .918 .913 .928 .936 .940 .804 .917 .943
Diff .019 .018 .009 -.007 .006 .005 .006 -.005 .000 .016 .003 .005
2.0 min 773 .756 .788 .880 .861 .903 .915 .891 .928 .812 911 .935
Diff .027 -.026 -.009 -.014 -.051 -.005 .020 -.050 -.011 .016 .003 -.005
1.1 0.0 maj .820 . 869 .881 .932 . 940 .956 .961 .954 .968 .881 .956 .968
0.5 min .829 .880 .865 .937 .941 .947 .959 .951 .961 .886 .951 .967
Diff . 009 .,011 -.016 .004 .001 -.009 .002 -.002 -.006 .005 .005 -.001
1.0 min .844 .853 .869 .932 .921 . 947 .954 .931 .958 .880 .956 .966
Diff .024 -.016 -.012 -.001 -.019 -.009 .007 -.022 -.010 -.001 .000 -.002
2.0 min .824 .753 .840 .915 .818 .929 .934 .831 .933 .877 .946 .955
Diff 004 -.115 ~.042 -.017 -.122 -.027 .028 -.123 -.034 -.004 .010 -.013
Bayesian
Priors
1.1 -1.0 min .880 .956 .966 .862 .958 .969
Diff -.001 .000 -.002 -.019 .002 .002
- .25 min .884 .954 .963 .874 .956 .965
Diff .003 -.002 -.005 -.007 .000 -.002
+1.0 min .857 .939 . .956 .869 .947 .958
Diff -.024 -.017 -.012 -.012 .009 -.010




Table 4. The three rows in Table 4 labeled "maj" give the validities for the
majority subgroup for each value of item discrimination (a). These results
correspond to the case in which item bias is zero. The rows labeled "min" and
"Diff" give, respectively, the validities for the minority subgroup and the
difference between corresponding majority and minority values, for each
combination of item discrimination and item bias. In the half of the table
labeled "Differential Prediction," only the validity values from the adaptive
tests are given. This is because differential prediction in the conventional
testing condition amounts to a linear transformation of the test scores and
therefore would not change the correlation coefficients. The last six rows of
the table give the results from the subcondition of the adaptive test in
which the mean of the assumed prior used for the minority subgroup was varied.

The validities for adaptive tests increased with increasing test length and
item discrimination. For instance, the lowest validity, r=.501, occurred for a
10-item test with a=.30 and the highest, r=.968, was for a 50-item test with
a=1.1. A comparison of corresponding validities between the adaptive test and
either type of conventional test for 10-item tests showed that the validities
of the adaptive tests were higher in almost all cases in which item discrimina-
tion was .70 or higher. For example, for a 10-item test with @=1.1 and item
bias of 0.0, the validity correlations were .869 for the peaked test, .820 for
the uniform test, and .881 for the adaptive test. For 30- and 50-item tests,
the adaptive test had a lower validity for many of the lower discriminating
items; but at g=1.1 the adaptive test produced consistently higher validities
for all item pools.

Differential validity. A major concern with respect to test fairness is
not just how validity varies as a function of the test characteristics for
a given subgroup but, more importantly, how validity varies differentially
between subgroups. The reason for this is that if a difference in subgroup
validities does exist, the predictions made on the basis of the test scores are
not as accurate for one subgroup as for the other. Therefore, the effect of
item bias on validity was studied by comparing the validities for both subgroups
for all the item pools and test lengths. To facilitate this analysis, differ-
ences between subgroup validities were determined. Differential validity was
thus defined as

Paiff = Tmin T “maj’ [1]

A negative value of differential validity indicates that the majority subgroup
had a higher validity coefficient than the minority subgroup. These values
appear in Table 4 in the rows designated "Diff."

Table 4 shows that for the lowest a value (@=.3) as item bias increased,
validity differences increased for the uniform and adaptive tests but decreased
for the peaked test. Also, at g=.30 differential validity tended to be posi-
tive (i.e., minority subgroup validities were higher for all test types), with
the largest values tending to occur for the adaptive test. However, for item
discriminations of g=.70and 1.1 for test lengths of 30 and 50, the direction
of differential validity reversed, so that higher validity correlations were
observed for the majority subgroup. As the degree of item bias and item
discrimination increased, the size of the negative difference became substantial
for the peaked test relative to the adaptive test, while the uniform tests
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generally produced a slightly smaller negative validity difference than did the
adaptive test. For example, the 50-item peaked test with g=1.1 and bias of

2.0 had a -.123 difference between the subgroup validities, compared to values
of -.028 for the uniform test and -.034 for the adaptive test.

The effect of choice of prior distribution on the validity of the adaptive
procedure was that when priors other than the majority subgroup prior were
used, validity tended to increase as the priors became higher in negative value.
Since the priors were varied only for the minority subgroup, the effect on
differential validity (i.e., the difference between majority and minority
subgroup validity coefficients) was that the negative priors produced differen-
tial validities closer to zero than in the positive prior case.

Differential Prediction Condition

Subgroup validities. At item discrimination levels beyond a=.70, the
differential prediction version of the adaptive test produced higher validities
than did the majority version of the adaptive test or either conventional test.
This relative advantage increased as item bias increased. Typical are the
values for a 50-item adaptive test with g=1.1 and bias of 1.0, where r=.966
under differential prediction and r=.958 under majority prediction; this can
be compared with r=.954 and r=.931, respectively, for the uniform and peaked
conventional tests. Under these same conditions, the validity for the adaptive
test increased to r=.968 by using the -1.0 mean prior for the minority subgroup.

Differential validity. Validity differences between subgroups were
reduced by using the differential prediction version of the adaptive test.
Unlike the majority prediction case, in which the uniform conventional tests
often showed less differential validity than the adaptive test, in this
condition the adaptive test generally had the smaller differential validity.
Furthermore, the advantage of the adaptive test increased as item bias in-
creased. The negative mean priors tended to increase differential wvalidity for
the 10-item test but had relatively little effect on the longer tests. The
+1.0 mean prior, however, led to an increase in differential validity at all
three test lengths.

C-Fairness

Majority Prediction

The Cleary type fairness measure, (, was defined as the mean of the predict-

ed ability, 6 minus the mean of the true ability, B (Pine & Weiss, 1976, p. 10).
Therefore, the (-index is in the same units as ©, which had a mean of 0 and a
standard deviation of 1.0.

In Figure 1 values of ”Cdiff’” the subgroup differences in the C-indices

(Cmin - Cmaj)’ are plotted against test length for the uniform, peaked conven-

tional, and adaptive tests for all levels of item discrimination in the majority
prediction condition. (Numerical values of (' by subgroup are given in Appendix
Table C.) It can easily be seen by some simple algebraic manipulation ( sub-

stituting [@ . -6 . 1forc ., I .
min min min maj

D>t

-8 .] for ¢ ., and subtracting) that
maj maj
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c =8 .

diff _ min

level, 90). Therefore, a negative value of Chiff implies unfairness to the
minority subgroup in the sense that their mean ability is underpredicted
relative to the predicted mean ability of the majority subgroup.

- 6maj (recall that both subgroups had the same mean true ability

Figure 1
Group Differences in C-Index (Cdiff

Discrimination (a), Item Bias, and Test Length, Using Majority Prediction

) as a Function of Item
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The (-index indicated increased unfairness for the majority subgroup
(higher negative values of Cﬁiff) as item bias was increased from .5 to 2.0.

This trend increased as a negatively accelerating function of test length, with
the rate of increase varying as a function of item discrimination and degree

of item bias. For all tests, increasing item bias tended to be associated with
higher levels of C for longer tests within a level of item discrimination.

diff
This effect of test length decreased, however, as item discrimination increased.
There were small differences between tests on Chiff at the g=.30 level

of item discrimination. For 30- and 50-item tests, the adaptive test generally

had lower levels of Chiff' However, at the higher levels of item discrimination
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and item bias, the adaptive test showed substantial advantage over either

conventional test in producing lower levels of Cdiff' For example, for a

30-item test with g=1.1 and item bias of 2.0, the adaptive test produced ability

estimates one-third of a standard deviation less biased than those produced
by the uniform conventional test.

The choice of a prior distribution for the minority subgroups in the
adaptive test directly affected the resulting values of Cdiff' The larger the

mean of the prior ability distribution (in a positive direction), the lower the
values of Cdiff' Increasing test length had the effect of reducing differences

in Cdiff'due to the different Bayesian prior ability estimates.

Figure 2
Group Differences in (-Index (Cdiff) as a Function/of Ttem

Discrimination (a), Item Bias, and Test Length, Using Differential
Prediction with the Bayesian Adaptive Test
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Differential Prediction

Values of Cdiff are plotted in Figure 2 against test length for the

adaptive test for all levels of item discrimination in the differential
prediction condition. (Only the results of the adaptive tests are plotted,
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since by definition C is always equal to zero under differential prediction

diff
for conventional tests; see Pine & Weiss, 1976, pp. 10-11.) As Figure 2
indicates, when differential prediction was employed with the adaptive test,
differences in the degree of unfairness between subgroups were practically
eliminated, especially at the high levels of item discrimination. For a=.30
there was a tendency for the minority subgroup to be overpredicted (i.e.,
positive values of Cdiff)' This tendency, however, decreased as item discrimi-

nation increased (Figures 2b and 2c¢). At ag=1.1 all Cdiff values were practi-
cally zero, the largest (which occurred at the shortest test length) being -.022.
The relationship of Cdiff to test length when various priors were used was

very similar to that found in the majority prediction case, except that values
of Cdiff were closer together and shifted down to near the zero bias level.

Because of this shift, the use of the +1.0 mean prior caused an overprediction
of the minority subgroup. Once again, as test length was increased,values of
Cdiff resulting from the differential priors were more similar.

T-Fairness

Majority Prediction

Tdiff can be defined as the differences between the T-indices for the
majority and minority subgroups and is equivalent to the difference between
the percentage of minority and majority testees predicted to be above the
majority group average (see Pine & Weiss, 1976, p. 11). A negative value of
Tdiff indicates that the percent predicted to be above average was smaller for

the minority than for the majority subgroup, i.e., the test was more unfair to
the minority subgroup. Values of Tdiff for the conventional and adaptive tests

are shown in Figure 3. The numerical values of T by subgroup for all tests are
shown in Appendix Table D.
As Figure 3 shows, Tdiff varied in a complex way as a function of item

discrimination, degree of item bias, and test length. The adaptive test
showed smaller effects due to increases in test length. Comparing the tests
under different degrees of item bias and levels of item discrimination, the

10-item uniform tests were usually fairest (i.e., had smallest values of Tdiff)
when ¢=.30 and .70, regardless of level of item bias. 1In all other cases for
a=.70 and 1.1, the adaptive test produced levels of T closest to zero. At

diff
the highest level of discrimination (q=1.1) and bias (2.0) for a 50-item test,
Tdiff=37.6% for the adaptive test, 45.57 for the uniform conventional test,

and 44.27 for the peaked conventional test. In terms of the percentage of
examinees who would be judged above average, this implies a difference between
the adaptive and uniform conventional tests of 7.8% in the number of minority,
compared to majority, examinees.

The effect of choosing a negative mean prior in the Bayesian adaptive test
was to produce a negative bias against the minority subgroup. Holding test
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Figure 3
Group Differences in T-Index (7

) as a Function of

diff
Item Discrimination (a), Item Bias, and Test Length, Using Majority Prediction
.
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length constant and comparing Tdiff between levels of prior ability estimates,

the differences were about 2% to 3% for 30- and 50-item tests and 97 to 12%
for 10-item tests. However, these differences,due to choice of priors, were
relatively small compared to the effect of varying item bias in the cases in
which a prior equal to the true mean ability was used.

Differential Prediction

The results of using differential prediction in conjunction with the
adaptive test on T-fairness are shown in Figure 4. (For simplicity, the results
of differential prediction on conventional tests are not shown in Figure 4; but
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their numerical values are given, along with those from the adaptive testing
condition in Appendix Table D. A detailed discussion of the effects of
differential prediction on conventional tests can be found in Pine & Weiss,
1976.) Appendix Table D shows that the main effect of using differential
prediction with any of the three testing strategies was that a much larger
percentage of minority applicants was predicted to be above average than in the
majority prediction condition. Consequently, the general level of unfairness
was reduced using differential prediction.

Figure 4

Group Differences in 7-Index (7 ) as a Function of

diff
Item Discrimination (a), Item Bias, and Test Length, Using
Differential Prediction with the Bayesian Adaptive Test
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Figure 4 shows that with the differential prediction version of the
adaptive test, the minority subgroup tended to have a greater percentage of
examinees above the mean than did the majority subgroup. TFor example, at the
a=.30 level of discrimination, a 10-item test having an average item bias of
2.0 had 8.2% more of the minority subgroup above average than the majority
subgroup. However, as item discrimination increased, this overprediction was

reduced to the point where at a=1.1, Tdiff values ranged between +2.67 to
-.47.

This overprediction of the minority subgroup never occurred in the majority
prediction case for any other of the test strategies (see Figure 3). However,
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a similar result did occur when differential prediction was used in conjunction
with the uniform conventional tests, but only at the shorter test lengths or at
the lowest level of item discrimination. Overprediction of the minority
subgroup almost never occurred with the peaked conventional test.

When differential prediction was used, T indicated that the adaptive

diff
test produced a fairer test than the conventional test in all but 6 cases (out
of 18 possible) when discriminations were .30 and .70 (see Appendix Table D).

At the high discrimination level (a=1.1), there was only one instance in which

one of the conventional tests produced levels of Tdiff nearer zero than the

adaptive test (i.e., a 30-item uniform test with bias of 1.0); and the
difference there was small, 1.67% for the uniform test compared to 1.8% for the
adaptive test.

Contrary to what was found when majority prediction was used, the choice
of priors in the adaptive test had a relatively large effect on Td'ff compared
i

to item bias. As was the case with the (-index, differential prediction some-
times resulted in a positive bias in favor of the mlnorlty subgroup; this
occurred primarily when the +1.0 prior was used.

The Standard Evror of Fstimation in Bayesian Adaptive Testing

The Bayesian adaptive testing procedure provides an estimate of the mean
(8) and variance (sé) of the estimated ability distribution after each test

item is administered. 1In the present study, sé (and its square root,sm)varied

across testees because a fixed test length termination criterion was employed.
The average sé (the standard error of estimate) was computed for each experi-

mental condition and compared to its actual value; the resulting ratios are
plotted for majority and differential prediction conditions in Figures 5 and 6,
respectively.

Majority Prediction

The average posterior standard deviation (ém) after m test items were

administered underestimated the theoretical value of the standard error of
estimate (SFE) in all conditions (see Figure 5). This underestimation became
progressively worse as item bias increased. For example, at a=1.1 for a 50-
item test with bias of 2.0, the obtained ratio was .094. Little difference
in the ratios resulted from use of the negative mean priors. The +1.00 prior,
however, produced a larger ratio at each test length.

Differential Prediction

The ratios for the differential prediction case are plotted in Figure 6.
In this condition, the effect of item bias on the size of the standard error
ratios was greatly reduced. However, a small effect due to bias was still in
evidence, particularly at the lower discrimination levels. The effect due to
test length was also reduced, particularly at a=.30 (Figure 6a). There was
still a systematic decrease in the ratios as a function of increasing discrimi-
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Figure 5
Ratio of Estimated Standard Error of Estimate Based on
Bayesian Posterior Variance to Predicted Standard Error
of Estimate as a Function of Item Discrimination (a),
Item Bias, and Test Length, Using Majority Prediction
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nation. As in the majority prediction case, there was little difference due to
use of negative mean prior ability estimates. The effect of using the +1.0
prior, however, was a relatively larger decrease in the standard error ratio
than occurred in the majority prediction case.
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Figure 6
Ratio of Estimated Standard Error of Estimate Based on
Bayesian Posterior Variance to Predicted Standard Error
of Estimate as a Function of Item Discrimination (a),
Ttem Bias, and Test Length, Using Differential Prediction
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DISCUSSION

In a previous study (Pine & Weiss, 1976), it was shown that the fairness
of a test when used as a selection instrument will depend on the item
characteristics of the test items and on the way fairness is defined. The
purpose of the present study was to extend these results by investigating the
effects on fairness of varying the testing strategy as well as the characteris-
tics of the test items.

Shape of the Predicted Ability Distributions

The shape of the test score distributions varied systematically as a
function of the independent variables manipulated in this study. The effects
of two of these--level of item discrimination and distribution of item diffi-
culties—-have been studied rather extensively in previous research (Cronbach
& Warrington, 1952; Lord & Novick, 1968; Pine & Weiss, 1976; Urry, 1969).
However, the influence of type of testing strategy (i.e., conventional versus
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adaptive) and use of differential prediction on the shape of score distributions
has not received previous attention.

Skewness and kurtosis. In general, the findings were that as the degree
of item bias and item discrimination increased, the shape of the score distri-
butions became increasingly positively skewed and flat relative to a normal
distribution. These findings are consistent with Lord & Novick's (1968, chap.
16) graphical demonstration that increasing test discrimination will tend to
flatten the true score distribution, while increasing the difficulty of a test
will cause positive skewness in the true score distribution.

The shape of the ability score distributions was also a function of the
testing strategy. The peaked conventional tests were more strongly influenced
by the presence of item bias and by increasing item discrimination than were
the other test types. At the highest degree of bias and discrimination, the
score distributions for the peaked conventional tests became exceedingly flat
and positively skewed. 1In contrast, the differential prediction version of
the Bayesian adaptive test produced ability distributions relatively unchanged
in shape across bias and discrimination conditons.

Means and standard deviations. Both the means and standard deviations of
the distributions tended to be underestimated. The underprediction of the
standard deviations is the direct result of regression towards the mean.

The effect of item bias on the mean of the score distributions was also in the
predicted direction, since a direct inverse relationship would be expected
between degree of bias in test items and test scores. In terms of the

means and standard deviations, the uniform conventional tests showed the

least underprediction of the standard deviations, and the peaked conventional
tests generally resulted in the smallest underprediction of the means. How-
ever, the condition in which values of the prior ability estimates of the adap-
tive testing strategy were varied produced less underprediction of both the
mean and standard deviation of the ability distribution. Furthermore, when
the differential version of the adaptive test was employed, even lower levels
of underprediction resulted.

Validity Index

The results of the validity data have several implications for the
construction of tests and the interpretation of existing test data. First, as
was previously discussed (Pine & Weiss, 1976), the validity results offer a
possible explanation for the often-reported but controversial phenomenon of
differential validity. According to the model used in this study, the
existence of subgroup validity differences (i.e., differential validity) is
interpreted as an indication of the fairness of a selection instrument. The
smaller the difference between validity coefficients, the fairer the selection
instrument.

Several researchers (i.e., Campbell, Crooks, Mahoney, & Rock, 1973;
Schmidt, Berner, & Hunter, 1973) have presented arguments, based on various
analyses of empirical data, that differential validity does not exist as a
substantive phenomenon. The results of this study indicate that differential
validity is real and, in fact, can be expected when test items are biased
against one of the subgroups being tested. Furthermore, based on the present
study, it can be seen that the properties of the testing strategy will also
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influence differential validity. Both conventional and adaptive testing stra-
tegies had a direct influence on the extent to which a given degree of item
bias affected differential validity.

Variations within each of these testing strategies also affected differen-
tial validity. Within the conventional tests, the distribution of item
difficulties (peaked or uniform) and item discrimination level had a differen-
tial effect. TFor the adaptive tests, the influence of item bias on differential
validity varied as a function of the level of item discrimination and choice
of prior ability estimate, whether majority item parameters or subgroup parame-
ters (i.e., the majority or differential prediction condition) were used.

Conventional versus adaptive tests. Both the majority prediction version
of the adaptive test and the uniform conventional tests tended to produce a
smaller differential validity for a given degree of item bias than did the
peaked conventional test at the longer test lengths and higher levels of item
discrimination. The adaptive test and uniform conventional test produced very
similar levels of differential validity when majority prediction and a zero
prior ability estimate were used. However, the adaptive test produced higher
minority subgroup validities and therefore a smaller differential validity when
the prior ability estimate used for the minority subgroup was one standard
deviation below the mean of the majority subgroup.

The reason that using a negative prior led to higher minority subgroup
validity was that in this condition the test items were biased by one standard
deviation on the difficulty scale. This resulted in the minority testees
responding as though they were one standard deviation below their true ability
level. Therefore, the ~1.00 prior ability estimate more closely matched their
effective mean ability level.

Item discrimination. The influence of item discrimination on differential
validity also varied as a function of the testing strategy. In the majority
prediction condition, the level of item discrimination which led to the small-
est degree of differential validity appeared to be lower than might have been
suspected for both conventional and adaptive tests. For the peaked conventional
test, the lowest discrimination value led to the least differential validity.
However, with both the majority prediction version of the adaptive test and the
uniform conventional tests, the intermediate level of item discrimination led
to the least differential validity.

That differential validity was not directly related to level of item
discrimination may seem surprising, since both in this study and in Urry's (1969)
study, it was shown that validity increased with increased item discrimination
for the difficulty levels examined. The essential factor, however, is that
when validity is considered with regard to fairness (i.e., differential
validity), the effect of item bias must be considered. The presence of item
bias effectively increases the difficulty parameter (b) for the minority
subgroup while leaving the b level unchanged for the majority testees. Since
validity is a function of both b and item discrimination (a), the reported
effect in differential validity resulted.

It appears that when the same prediction parameters are used in a conven-
tional test for all subgroups, the usual practice of selecting items having the
highest discriminations will generally have the effect of increasing subgroup
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validity differences if test items are biased. The more biased the items are,
the larger will be the difference in subgroup validities. A reduction in
validity differences can be achieved by using intermediate levels of item
discrimination; of course, then the reduction in differential validity will
have been achieved at the cost of lowering the overall level of validity. 1In
some situations, particularly if the majority subgroup validity is relatively
high, such a tradeoff may be desirable.

Differential prediction in the adaptive test. The differential prediction
version of the adaptive test, however, provides a means of controlling the
level of differential validity while maintaining a high level of validity.

When this strategy was used, it produced both the smallest differential
validity and the highest overall validity for both subgroups. Apparently, in
terms of validity, fairness is most readily attainable by adopting the testing
strategy which has the greatest ability to adapt to the individual testee.
Among the testing strategies investigated in this study, this was the differen-
tial prediction version of the Bayesian adaptive test, in which test items were
selected for a given testee on the basis of the item parameters derived for the
testee's subgroup.

Cther Indices of Selection Fairness

In the context of this study, the (-index,based on Cleary's fairness
model,gave the degree of statistical bias in the estimation of a known value
of ability (8). The T-index, based on Thorndike's definition of fairness,
reflected the meaning of these mis-estimations in terms of the percentage of -
applicants who were predicted to exceed some qualifying point of ability-—-in
this case, the mean of the majority population.

The Cleary view of fairness tends to optimize selection from the vantage
point of the selecting institution, since it assures that the ablest candidates
will be selected. The Thorndike model tends to be more liberal from the view-
point of the minority subgroup. Even in situations in which the Cleary index
indicates a perfectly fair test, it has been previously shown by Schmidt and
Hunter (1974) that the Thorndike index may still indicate unfairness. This
result was replicated both in the previous study (Pine & Weiss, 1976) and in
the present study.

From the previous study it was shown that even within conventional tests,
the spread of item difficulties can have a strong effect on fairness at some
levels of item discrimination and for some test lengths. For the levels of
discrimination and test lengths most commonly found in practice, the general
finding was that the peaked test was fairer in terms of the C-index and the
uniform test was fairer in terms of the T-index, when majority prediction was
employed. The differential prediction condition indicated the conservative
nature of the (-index. By definition, in this condition all tests were perfectly
fair by the Cleary model; yet the T-index indicated the presence of substantial
unfairness, particularly for very short tests or for tests composed of highly
discriminating items. Furthermore, with differential prediction of ability,
the use of tests with uniform distributions of item difficulties was consis-
tently more favorable to the minority subgroup.

Conventional versus adaptive tests. In the present study Bayesian adap-
tive tests were compared to the same conventional tests used in the previous
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study (Pine & Weiss, 1976) in order to determine the effects of testing
strategy on test fairness. For the levels of item discrimination and test
lengths most commonly found in practice, the general finding was that the
adaptive tests were fairer than either the peaked or uniform conventional tests
in terms of both the (- and T-indices when majority prediction was employed.
The advantage of the adaptive tests over conventional tests was increased
further by adjusting the prior ability estimate used for the minority subgroup.

In the differential prediction condition using the C-index, all conven-
tional tests are perfectly fair by definition; therefore, they cannot be
improved by adaptive testing. Yet, at high levels of item discrimination, the
adaptive test approached this ideal level of performance. On the T-index,
there was an even greater advantage in favor of the minority subgroup
using adaptive tests, as compared to conventional tests,when differential
prediction was used rather than majority prediction.

Item discrimination. All testing strategies in the majority prediction
condition showed an overall improvement in fairness on the T-index as item
discrimination decreased. The (-index also displayed this relationship and
proved to be less affected by increases in item bias at low levels of item
discrimination. These findings are disturbing, since it does not seem logical
that "poor" items should have to be used in order to achieve fairness, particu-
larly since their use reduces overall validity.

However, this result is an artifact of using the majority prediction
parameters for both subgrouns with either conventional or adaptive testing
strategies. This can be seen in Figure 7. It is obvious from Figure 7 that
since the minority subgroup mean is predicted through the majority prediction
line, the mean predicted ability level of the minority subgroup will be highest
when the slope of the regression line (and therefore r) is lowest. Since the
levels of item discrimination examined in this report were directly proportional
to r (the correlation of observed and estimated ability levels), it follows that
the predicted mean ability levels of the minority subgroup will increase as
item discrimination decreases. Both the (- and T-indices indicated increased
fairness as the mean of the minority subgroup increased. Therefore, it follows
that fairness as measured by both the (- and 7T-indices should improve as item
discrimination is decreased.

Advantages of diffevential prediction. Another problem which occurs with
the use of majority prediction is that the test items which are optimal with
respect to reducing differential validity are not the same items that are
optimal with respect to the (- and 7T-indices of fairness. This dilemma can be
resolved with the adaptive testing model by using differential prediction.
Overall fairness was optimized in this case in a logical, consistent manner for
all three of the fairness indices. With differential prediction, fairness as
measured by the R-, (-, and T-indices was dramatically increased for all levels
of item discrimination and item bias. Furthermore, adaptive testing displayed
decreased sensitivity to increasing item bias with respect to each of the fair-
ness indices as item discrimination was increased.

The effect of differential prediction within the context of the conventional
test model could be observed only on the 7-index, since the R-index was un-
changed and (=0, by definition. Both the uniform and peaked tests showed a
marked improvement in fairness under differential prediction, although not as
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much as was found with the adaptive test. However, even when differential
prediction was employed, the peaked test still was most robust to increasing
item bias and fairness overall at the lowest level of item discrimination.
Consequently, it would appear that when using conventional tests, a high degree
of fairness can be obtained (both with respect to the T-index and differential
validity) by peaking item difficulties and using items with a relatively low

level of discrimination. This policy, however, would decrease the overall
level of test validity.

Figure 7
Linear Prediction of Minority Mean
Ability Using Majority Prediction Line
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The uniform conventional tests produced results which were much more similar
to those found with the adaptive tests. Differential prediction improved
fairness at higher levels of discrimination. This similarity between the uni-

form and adaptive tests may have resulted from both types of tests having a
uniform spread of item difficulties.
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Prior ability distributions. The prior ability distribution chosen to
begin the Bayesian ability estimation process also appeared to affect the
fairness of each test. Prior ability estimates which underestimated the true
ability caused an increased underprediction of the mean, compounding the degree
of underprediction caused by item bias. This underprediction was directly
reflected in the (- and T-fairness indices.

The choice of a prior ability estimate did not influence differential

validity in the same way as it did the ¢ and T measures. TFor the Rdiff index

(assuming the presence of item bias), prior ability estimates below the true
population ability levels actually improved fairness (i.e., reduced differential
validity). This was a result of the fact that the presence of item bias made

it appear as though the minority subgroup's mean ability level was lower than

it really wasj; consequently, the low prior ability estimate was effectively more
appropriate, producing a higher validity for that subgroup.

The conflicting results of the effect of prior ability estimates on test
fairness were not alleviated by using differential prediction. 1In the differen-
tial prediction condition, prior ability estimates higher than true ability
levels led to estimation bias, this time in favor of the minority subgroup.

The higher priors still, however, led to a less favorable result with respect
to differential validity.

There is a need for more research on the best procedures to follow in
choosing subgroup prior ability estimates in Bayesian adaptive testing. The
problem is that if different priors are used for each subgroup, based on avail-
able ability data, certain minority subgroups may be unfairly affected. This
might occur for subgroups that have tended to score lower on past tests——which
may have been biased. Lower mean prior ability estimates would be used for
members of these subgroups which would then lead to lower levels of estimated
ability with the Bayesian adaptive testing method. On the other hand, if
identical prior ability estimates are used for all subgroups and there is a
true ability level difference between the subgroups, those subgroups that are
overestimated will be given an unfair advantage. Furthermore, this advantage
will be much larger than the disadvantage in fairness that results from using
a prior ability estimate which underpredicts true ability. However, data from
the current study suggest that both of these undesirable outcomes can be
minimized by increasing test length.

The Bayestan Error of Estimate

In the present study the adaptive testing termination criterion was always
based on test length. However, the observed posterior standard deviation (s ),
which can be thought of as an estimate of the standard error of the final
ability estimate (SEE), has also been suggested as a test termination criterion
in the Bayesian adaptive test (Jensema, 1974; Urry, 1977). Therefore, it was
of interest to determine how test fairness is influenced under this alternative
method of test termination.

One apparent advantage of using Sm is that it would seem to provide a means

of reducing differential validity, since all subgroups would simply be tested
to the same estimated error level. Since validity bears an inverse relationship
to the standard error of estimate (Urry, 1977), all subgroups should attain
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nearly equivalent validities. The crucial factor, then, is how well Sm reflects

the actual standard error of estimate. For example, if it understates the
actual SEE, testing will be prematurely terminated, resulting in lower test
validity. The results of the present study indicate that this is exactly what
happens.

Even when the test items were unbiased, the ratio of the average S, to

the theoretical SEE decreased with increasing test length and levels of item
discrimination. When item bias was introduced, the ratio decreased with increas-
ing item bias. Consequently, the more biased the test items are, the more
likely it is that differential validity will occur when Bayesian adaptive tests
are terminated using the observed 8, The data also suggest that differential

validity can be expected to increase the longer the testing process is allowed
to continue.

In using the Bayesian adaptive testing strategy to reduce unfairness, it
might be possible to compensate for the reduction in validity by differentially
setting 8, for each subgroup. Appropriate levels for 8, could be estimated

from the data shown in Figures 5 or 6. One problem in devising such a compen—
satory method is that it could lead to a substantial difference in the average
number of test items taken by each subgroup; it has been shown both in the

present study and in previous studies that test length affects the other
fairness indices.

Advantages of differential prediction. When differential prediction was
used, the average 8, became a much better estimator of the theoretical value

and was not nearly as adversely influenced by item bias. At q=1.1 it was

quite robust with respect to increasing item bias; and even though the under-
prediction of error increased as item discrimination increased, the use of
items with high discriminations is likely to lead to comparable degrees of
underprediction for all subgroups. Moreover, with differential prediction,

all three of the fairness indices gave convergent implications for the fairness
of the adaptive test. Therefore, if Bayesian adaptive testing is terminated
on the basis of observed values of 8, it should be employed within the

differential prediction model studied here, in which items are sequentially
selected for administration on the basis of subgroup item parameter values.

CONCLUSIONS

All current interpretations of the fairness of a selection procedure depend
on the distribution of predicted criterion scores. Both in the present study
and in the previous study by Pine and Weiss (1976), it has been shown that the
distribution of predicted scores will vary as a function of item characteristics
and testing strategy, i.e., adaptive versus conventional. Therefore, even
assuming that a selection test is totally free of items biased against a
particular subgroup, measured ''fairness'" will vary as a function of the item
characteristics and strategy for selecting items and scoering a test. Thus, the

fairness of a test--and consequently a selection program using that test--can
vary even if it contains no biased items.
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If, in addition, a selection test contains some degree of bias in its
items, the situation is compounded. The results of these studies have shown
that the extent to which biased items influence selection fairness depends

on the testing strategy. Some strategies are more sensitive to the presence
of item bias than are others.

In comparing the Bayesian adaptive testing strategy to conventional
tests, it was found that the adaptive test was consistently fairer than the
conventional tests for tests of 30 or more items with discrimination levels of
a=.70 and higher. Furthermore, the differential prediction version of the
adaptive test produced almost perfectly fair performance on all fairness
indices at high levels of item discrimination. Within the Bayesian strategy
it was found that the choice of subgroup prior ability estimates affected
test fairness. These effects were minimized by using differential prediction
and by increasing test length. Finally, the use of observed values of the
Bayesian posterior error of estimate to terminate the Bayesian adaptive test
does not assure the reduction of differential validity and can lead to increased
unfairness.

One point of caution which needs to be made concerning the use of the
Bayesian adaptive testingmodel is that great care must be taken in choosing an
appropriate prior ability distribution for each subgroup. There are essen-—
tially two policies which can be followed for each subgroup: (1) using different
priors or (2) using identical priors. However, both of these options can
result in unfairness--against the minority subgroup in the former case and
against the majority subgroup in the latter. Obviously, a dilemma exists.
Until this dilemma can be resolved through further research, the use of
equivalent prior ability estimates for the majority and minority subgroups is
probably advisable, since this will result in the minimum adverse impact on
minority subgroups.

Future research efforts on the reduction of test unfairness should be
concerned with the problem of prior selection in population subgroups. In
addition, other versions of the adaptive approach to testing should be examined
to determine their effects on test fairness. There is also a need to
determine the kinds and extent of intergroup differences in test item diffi-
culties and discriminations that occur in live-testing situations. These
differences should then be incorporated into future simulation studies to
determine their interactions with testing strategies and their effects on
test fairness. Finélly, it is most important that the findings based on theo-
retical and simulation studies be verified in a live-testing situation.
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APPENDIX: SUPPLEMENTARY TABLES

Table A
Score Distribution Characteristics for Conventional Tests of Length 10, as a
Function of Discrimipation (a), Bias, and Group, for Uniform and Peaked Tests

Test Length

10 30 50 70 100
a Bias Group U P U P U P U P U P
.30
0.0 maj 38.4 56.8 45.4 47.4 41.6 43.8 44.0 46.2 44,0 49.8
.5 min 30.4 46.2 31.8 33.8 28.0 28.2 29.6 30.2 30.6 30.8
diff -8.0 ~-10.6 ~-13.6 ~-13.6 ~13.6 -15.6 ~-14.4 -16.0 -13.4 -19.0
1.0 min 21.6 37.4 20.4 21.4 18.0 17.2 18.2 19.0 17.2 19.2
aiff -16.8 -19.4 -25.0 -26.0 -23.6 -26.6 -25.8 -27.2 -26.8 -30.6
2.0 min 10.0 20.2 7.8 7.2 4.4 3.6 4.4 4.6 4.6 4.6
diff -28.4 -36.6 -37.6 -40.2 ~37.2 -40.2 ~-39.6 -41.6 -39.4 -45.2
.70
0.0 maj 40.6 53.0 50.2 45.0 46.2 49.4 48.0 49.8 48.2 49.2
.5 min 26.6 35.4 34.4 29.2 28.4 30.4 32.0 29.8 31.0 29.2
diff -14.0 ~-17.6 -~15.8 -15.8 -17.8 -19.0 -16.0 -20.0 -17.2 -20.0
1.0 min 16.4 22.8 19.6 15.0 14.8 15.6 16.2 15.4 15.4 14.8
diff =-24.2 -30.2 -30.6 ~30.0 -31.4 -33.8 -31.8 -34.4 -32.8 -34.4
2.0 min 4.6 6.2 3.8 3.6 2.8 3.6 2.4 3.4 3.0 3.2
diff -36.0 ~46.8 ~46.4 ~41.4 ~43.4 -45.8 ~45.6 -46.4 -45.2 ~46.0
It :
0.0 maj 40.0 52.6 47.2 46.8 47.8 47.6 T 47.8 48.4 48.8 50.0
.5 min 25.2 35.2 29.6 29.4 28.0 29.2 27.8 29.2 29.0 29.2
diff -14.8 -17.4 ~-17.6 -17.4 -16.8 ~-18.4 -20.0 -19.2 -19.8 -20.8
1.0 min 15.0 20.4 17.4 15.2 15.8 14.6 13.8 15.4 15.4 15.4
diff -25.0 -32.2 -29.8 -31.6 -32.0 -33.0 -34.0 -33.0 -33.4 -34.6
2.0 min 3.4 4.8 3.0 3.4 2.4 3.4 2.2 3.0 2.6 2.6
diff ~36.6 -47.8 -44.2 -43.4 ~45.4 ~44.2 ~45.6  ~45.4 =46.2 -47.4
Table B
Score Distribution Characteristics for Conventional Tests of Length 30, as a
Function of Discrimination (a), Bias, and Group, for Uniform and Peaked Tests
Test Length
10 30 50 70 100
a Bias Group U P U P U P U P U P
.30
0.0 maj 38.4 56.8 45.4 47.4 41.6 43.8 44.0 46.2 44.0 49.8
.5 min 52.6 46.2 40.6 42.6 48.4 47.8 45.0 42.0 46.8 45.4
diff 14.2 -10.6 -4.8 -4.8 6.8 4.0 1.0 -4.2 2.8 -4.4
1.0 min 41.8 37.4 49.2 47.8 47.2 44 .4 44 .4 46.2 46.0 44.2
diff 3.4 ~19.4 3.8 A 5.6 .6 N 0.0 2.0 -5.6
2.0 min 43.6 33.0 41.4 39.0 44,6 45.2 41.4 46.2 44.0 42 .4
diff 5.2 -23.8 -4.0 -8.4 3.0 1.4 -2.6 -2.0 0.0 ~7.4
.70
0.0 maj 40.6 53.0 50.2 45.0 46.2 49.4 48.0 49.8 48.2 49.2
.5 min 47.8 47.8 48.2 41.6 47.0 45.8 47.4 46.4 45.8 46.4
diff 7.2 ~-5.2 -2.0 -3.4 .8 ~3.6 -.6 -3.4 ~2.4 -2.8
1.0 min 49.8 46.0 45.0 41.4 47.0 44.8 45.6 41.8 47.6 42.8
diff 9.2 -7.0 =-5.2 -3.6 .8 ~4.6 -2.4 -8.0 -.6 -6.4
2.0 min 41.2 31.2 44.0 36.6 40.8 38.2 39.4 38.8 42.4 37.4
aiff .6 -21.8 -6.2 ~8.4 -5.4 -11.2 -8.6 -11.0 -5.8 -11.8
.1
0.0 maj 40.0 52.6 47.2 46.8 47.8 47.6 47.8 48.4 48.8 50.0
.5 min 46.0 43.6 43.8 42.0 45.6 44.0 48.2 43.2 47.4 45.0
diff 6.0 -9.0 -3.4 -4.8 -2.2 -3.6 A -5.2 -1.4 -5.0
1.0 min 48.4 36.2 48.8 39.6 42.6 39.6 46.6 38.4 45.6 39.4
diff 8.4 -16.4 1.6 -7.2 -5.2 -8.0 -1.2 -10.0 -3.2 -10.6
2.0 min 51.0 27.6 40.8 28.6 43.0 30.8 43.0 30.8 44.0 29.6
diff 11.0 ~25.0 -6.4 -18.2 -4.8 -16.8 -4.8 -17.6 -4.8 -20.4




Table C
Values of the C-Index for Uniform (U) and Peaked (P) Conventional Tests and
for the Bayesian Adaptive Test (BAT), using Majority and Minority Prediction,
and for Majority (maj) and Minority (min) Subgroups, and Subgroup Differences
(diff), as a Function of Item Discrimination (a), Degree of Item Bias, for Tests
of 16. 30, and 50 Items

Majority Prediction

Differential Prediction

10 Items 30 Items 50 Items 10 Items 30 Items Items
a Bias Group U P BAT U P __ __BAT U P BAT BAT BAT BAT
.30 maj . 000 .000 -.024 . 000 . 000 ~-.149 . 000 . 000 -.177 .024 . 149 -.177
.5 min -.124 -.124 -.171 -.258 -.255 -.394 -.317 -.328 -.492 . 045 .129 -.171
diff -.124 -.124 -. 147 -.258 -.255 -.245 -.317 -.328 -.315 .021 .020 . 006
1.0 min -.254 -.264 -.303 -.527 -.534 -.621 .635 -.664 -.790 .035 L1111 -.161.
diff -.254 -.264 -.279 -.527 -.534 -.472 .635 -. 664 -.613 .011 .038 .016
2.0 min -.509 -.530 -.586 -1.033 ~ -1.023 -1.118 1.262 -1.286 -1.353 . 002 .097 -.156
diff -.509 -.530 -.562 -1.033 -1.023 -.969 -1.286 -1.176 .022 .052 .021
.70 maj . 000 .000 -.044 . 000 . 000 ~-.141 . 000 . 000 -.154 . 044 .141 -.154
.5 min -.283 -.319 -.359 -.377 -.434 -.518 -.422 -.461 -.561 .074 .115 -.141
diff ~.283 -.319 -.315 -.377 -. 434 -.377 -, 422 -.461 -.407 .030 .026 .013
1.0 min -.586 -.623 -.651 -.801 -.837 -.885 -.879 -.894 -.963 .073 .105 -.141
diff -.586 -.623 -.607 -.801 -.837 -.744 -.879 -.894 -.809 .029 .036 .013
2.0 min -1.141 -1.142 -1.150 -1.533 ~1.524 -1.568 -1.675 -1.634 -1.682 .070 .121 -.156
diff -1.141 -1.142 -1.106 -1.533 -1.524 -1.427 -1.675 -1.634 -1.528 .026 .020 -.002
1.1 maj .000 .000 -.073 R . 000 . 000 -.103 . 000 . 000 -.119 .073 .103 -.119
.5 min -.361 -.411 -.434 -.433 -.452 ~-.509 -.462 -.462 -.541 .095 .100 -.121
diff -.361 -.411 -.361 -.433 -.452 -.406 -.462  -.462 ~.422 .022 .003 -.002
1.0 min -.739 -.780 -, 745 -.901 .861 -.896 -.946 -.882 -.946 .079 .097 -.123
diff -.739 -.780 ~-.672 -.901 .861 -.793 -.946 -.882 -.827 . 006 . 006 -.004
2.0 min ~1.480 -1.298 -1.227 -1.760 -1.470 -1.538 -1.778 -1.499. -1.599 .068 .100 -.121
diff -1.480 -1.298 -1.154 -1.760 -1.470 -1.435 -1.778 -1.499 -1.480 . 005 .003 -.002
Priors:
maj .073 -.103 -.119 .073 .103 -.119
—i.O min -1.079 -1.097 -1.123 .303 .190 -.204
maj -1.006 -.994 -1.004 .230 .087 -.085
-.25 min -.257 -.572 -.661 .255 .104 .054
maj -.184 . -.469 -.542 .328 . 207 .173
+1.0  min -.883 -.989 -1.028 .145 .122 -.149
maj -.810 -.886 -.909 .072 .019 -.030




Table D
Values of the T-Index for Uniform (U) and Peaked (P) Conventional Tests and
for the Bayesian Adaptive Test (BAT), using Majority andMinority Prediction,

and for Majority (maj) and Minority (min) Subgroups, and Subgroup Differences

(diff), as a Function of Item Discrimination (a), Degree of Item Bias, for

Tests of 10, 30, and 50 Items

Majority Prediction

Differential Prediction

10 Items 30 Items 50 Items 10 Items 30 Items 50 Items

a Bias Group P BAT U P BAT U P BAT BAT U P BAT U P BAT
.30 0.0 maj 38.4 56.8 45. 4 45.2 47.4 36.6 41.6 43.8 36.0 38. 56. 45.4 45.4 47 .4 36.6 41.6 43.8 '36.0
.5 min 30.4 46.2 34.8 31.8 33.8 23.6 28.0 28.2 21.8 52. 46. 44.6 40,6  42.6 37,2 48.4 47.8  36.0
diff -8.0 -10.6 -10.6 -13.6 -13.6 -13.0 -13.6 -15.6 ~-14.2 14, -10. -.8 ~4.8 -4.8 .6 6.8 4.0 0.0
1.0 min 21.6 37.4 26.0 20.4 21.4 15.8 18.0 17.2 12.6 41. 37. 45.2 49.2 47.8 38.8 47.2 44.4 35.6
diff -16.8 -19.4 -19.4 -25.0 -26.0 -20.8 -23.6 -26.6 =-23.4 3. ~-19. -.2 3.8 -4.0 2.2 5.6 -.6 -4
2.0 min 10.0 20.2 13.0 7.8 7.2 4.6 4.4 3.6 3.6 43, 33. 53.6 41.4 39.0 41.8 44,6 45.2 38.0
diff -28.4 -36.6 -32.4 -37.6 -40.2 32.0 -37.2 -40.2 =-32.4 5. =23. 8.2 -4.0 -8.4 5.2 3.0 1.4 2.0
.70 0.0 maj 40.6 53.0 42.0 50.2 45.0 37.4 46.2 49.4 36.8 40. 53. 42.0 50.2 45.0 37.4 46.2 49.4 36.8
.5 min 26.6 35.4 25.8 34.4 29,2 22.2 28.4 30.4 21.8 47. 47. 38.2 48.2 41.6 38.8 47.0 45.8 39.2
diff -14.0 -17.6 -16.2 -15.8 -15.8 -15.2 -17.8 -19.0 -15.0 7. -5. -3.8 -2.0 ~-3.4 1.4 .8 -3.6 2.4
1.0 min 16.4 22.8 15.2 19.6 15.0 12.8 14.8 15.6 11.2 49. 46, 39.4 . 45.0 41.4 43,4 47.0 44.8 41.0
diff -24.2 -30.2 -26.8 -30.6 -30.0 -24.6 -31.4 -33.8 -25.6 9. -7. -2.6  -5,2 -3.6 5.0 .8 -4.6 4.2
2.0 min 4.6 6.2 3.2 3.8 3.6 2.0 2.8 3.6 1.6 41, 31. 40.8 44,0 36.6 38.8 40.8 38.2 36.6
diff -36.0 -46.8 .-38.8 -46.4. -41.4° -35.4 -43.4 -45.8 -35.2 -21. -1.2  -5.2 -8.4 1.4 -5.4 -11.2 -.2
1.1 0.0 maj 4G.0 52.6 36.4 47.2 46.8 38.6. 47.8 47.6 38.8 40, 52. 36.4  47.2 46.8 38.6 47.8 47.6 38.8
5 min 25.2 35.2 21.6 29.6 29.4 21.0 29.0 29.2 22.4 46. 43, 37.2  43.8 42.0 40.6 45.6 44,0 40.0
diff -14.8 -17.4 -14.8 -17.6 -17.4 -17.6 -19.8 -18.4 =-16.4 5. -9, 8 -3.4 -4.8 2.0 -2.2 -3.6 1.2
1.0 min 15.0 20.4 11.8 17.4 15.2 12.0 15.8 4.6 12.0 48. 36. 37.8 48.8 39.6 40.4 42.6 39.6 40.0
diff -25.0 -32.2 -24.6 -29.8 31.6 -26.6 -32.0 -33.0 -26.8 8. -16. 1.4 1.6 -7.2 1.8 -5.2 -8.0 -.4
2.0 min 3.4 4.8 1.8 3.0 3.4 1.2 2.4 3.4 1.2 51. 27. 39.0 40.8 28.6 39.6 43.0 39.2
diff -36.6 -47.8 -34.6 -~44.2 -43.4 -37.4 -45.4 -44,2 -37.6 11. -25. 2.6 -6.4 -18.2 1.0 -4.8 16.8 N

Bayesian
Priors .4 .364 .386 .388 .364 .386 .388
-1.0 min .082 .110 .114 .316 .372 .370
diff -.282 -.276 -.274 -.048 ~-.014 -.018
-.25 min .202 .138 .138 . 540 .468 L448
diff -.162 -.248 -.250. 176 .082 .060
+1.0 min .106 .118 .116 .380 . 408 .382
diff -.258 -.268 -.272 .016 .022 -.006

_OE_





