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The Effect of Item Selection Methods on the Accuracy of CAT’s Ability Estimates  

When Item Parameters Are Contaminated with Measurement Errors 
 

Abstract 
For decades, most IRT studies that have involved ability estimates 

assumed that the item parameters are true values without measurement errors. The 
impact of this assumption on the accuracy of  CAT ability estimates was 
addressed in this study for the three item selection methods: maximizing 
information function (MIF), matching item difficulty (MID) or optimal difficulty 
(MOD) using the test-taker’s current ability estimate.  

When CAT abilities were estimated from item estimates rather than their 
corresponding true parameters and when the data-model fit condition was met, 
their accuracy was slightly overestimated on one side of abilities (θ > -.5) and was 
slightly underestimated on the other side (θ < -.5). This mixed result was 
consistently found for all three item selection methods. This finding was 
encouraging, but also were consistent with our initial speculation that when item 
estimates were used in CAT, CAT might not result in as accurate ability estimates 
as those having been reported in literature.  

 
Key Words: Computerized Adaptive Testing (CAT), Item Response Theory (IRT),  

Measurement Errors, Item Information, Optimal Item Difficulty
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I. Introduction 
A. Background 

In the ideal testing condition, an examinee is given a test that is adapted to his/her ability 
level. Without the aid of computers, the earliest application of adaptive testing was in the work 
of Binet on intelligence testing in 1908. The rationale behind his adaptive testing was that an 
examiner should select items from an item pool so that each individual is examined using items 
at his/her appropriate difficulty level.  

Recent advances in computer technologies as well as item response theory (IRT, Lord, 
1980) have led to the development of computerized adaptive testing (CAT). In the past three 
decades, researchers have strived to seek promising methods in ability estimation and in item 
selection for CAT. For example, Warm (1989) proposed the weighted likelihood estimator 
(WLE) ability estimation that weights the maximum likelihood estimation (MLE) function in 
order to correct MLE biased trait (θ) estimates, especially when they are estimated from small 
numbers of items. Additionally, Chang and Ying (1996) recommended using the global 
Kullback-Leibler (KL) information instead of the most commonly used maximum item-
information function (MIF) for the earlier-stage of CAT’s item selection (see a comprehensive 
study by Chen, Ankenmann and Chang, 2000). 

The MIF item selection method is based on the rationale that seeking items with the 
maximum information in the pool for an examinee can rapidly improve the examinee’s ability 
estimate. Currently, growing interest is focused on whether or not the MIF method is 
appropriately employed from the beginning throughout the end of CAT (e.g., Chang, Qian & 
Ying, 2001; Hau & Chang, 2001; Leung, Chang & Hau, 2002; Veerkamp & Berger, 1999). The 
reasons for this speculation are explained below. 

Theoretically, an item’s information is dependent on the value of an examinee’s ability 
parameter. The information value is most accurate when it is computed from an examinee’s  
“true” rather than “inaccurate” ability estimate. The value of any ability estimate in the early-
stage CAT is, however, poorly estimated and is not as precise as that estimated at the final stage. 
It is apparent that an early-stage item’s information estimate is not as accurate as one calculated 
during a later stage and should have correspondingly less effect in the process of seeking the 
“true” ability estimate.  

In general, an item with a higher discrimination parameter together with a lower guessing 
parameter will produce a larger information value for a given difference between estimated 
examinee ability and item difficulty. This fact leads the MIF CAT to over-administer higher 
discrimination and lower guessing items in the pool to examinees at the beginning of CAT. 
Afterward, they might take items having lower discrimination but greater guessing values at the 
final stages of CAT if the item pool is not sufficiently large. As a result, we might 
inappropriately use the most valuable items with sound statistical characteristics at the beginning 
of CAT and not make the best use of those items at the final stages (Hau  & Chang, 2001). 
Secondly, we are likely to overuse the higher discriminating items so that test security is 
threatened and item exposure rates are uneven. Finally, although the MIF CAT will result in the 
most accurate ability estimates, theoretically as well as empirically, this holds true only if item 
parameters in the item pool are assumed true values without contamination by measurement 
errors. If this condition is violated as usually happens in real testing situations, ability estimates 
may not be as accurate as those reported in literature. The reason is that the MIF CAT is more 
likely to administer highly discriminating items to examinees. As a result, such items may be 
contaminated with greater measurement errors than those items with low discrimination 
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parameters as demonstrated in Figure 1. This diagram is a plot of analytically based standard 
errors (for details, refer to Li & Lissitz, in press; Thissen & Wainer, 1982) of item discrimination 
as a function of both item difficulty and discrimination parameters given an item’s guessing 
parameter of 0.25 and a sample size of 1000. Consequently, the MIF CAT ability estimates 
derived from most highly discriminating items in the pool might not be as accurate as we expect 
because their potentially larger measurement errors are not taken into account.  

Other item selection methods are not as highly dependent on the discrimination 
parameters as the family of information methods are (e.g.,  MIF, KL information, weighted item 
information, Berger & Veerkamp, 1997). One is based on a classical adaptive testing rationale. 
This method selects the item with item difficulty that is closest to the test-taker’s current ability 
estimate. We call this the matching item difficulty (MID) item selection method. Another item 
selection method, similar to the MID, is to select the item based on proximity of its optimal 
difficulty (OD, refer to equation 3) value as a criterion, in stead of using the item difficulty value. 
An item’s OD value is defined as the location of the item’s maximum information given its item 
parameter estimates (Lord, 1980,  p.152). We call this item selection method as matching 
optimal difficulty (MOD). An example of  MOD in CAT studies can be found in Cheng and  
Liou’s study (2000), which showed that MOD CAT could result in comparable results with MIF 
CAT, although MIF CAT performed slightly better when item estimates were used in CAT.  
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Figure 1. Standard Error of Item Discrimination Shown as a Function of  

Item Difficulty and Discrimination Parameters for the 3PL Model.  
 

B. Research Purpose 
MIF (or item-discrimination-oriented) item selection has dominated CAT’s development 

since the beginning of  CAT  because it produces accurate ability estimates. But the MIF item 
selection method exhibits several potential problems as discussed earlier. Further, if error in item 
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parameter estimates is factored into the process of CAT’s ability estimation, the degree to which 
accurate ability estimation can be maintained is of interest. On the other hand, an empirical study  
conducted by  Li and Schafer (2003) indicated that both non-item-discrimination-oriented 
methods (e.g., MID and MOD)  were capable of mitigating some potential problems (e.g., test 
security) caused by MIF. This finding encouraged us to further compare the robustness of these 
two methods with the MIF method when they were all employed using item parameters that were 
contaminated with some degree of error. If one of non-item-discrimination-oriented methods 
performs well on this issue, it might become a viable choice. These questions provided the 
motivation for the present Monte-Carlo study. The ultimate goal of this research was to explore 
how accurate these three item selection methods are, in terms of  their corresponding estimated 
abilities, under a variety of simulation conditions, and especially when item parameters used to 
estimate CAT abilities are contaminated with measurement errors.  

 
II. Overview of  CAT Techniques   
A. 3PL Model 
 The commonly-used three-parameter (3PL) logistic IRT model was used to model the 
dichotomous scored items in this study. Under the 3PL model, the probability, Pji, of  the correct 
response on an item i for an examinee with ability θj is given by the following function (Lord, 
1980). 
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where  
the symbol of "exp” stands for the mathematical function of the natural logarithm exponential,  
ai is the item discrimination,  
bi is the item difficulty,   
ci is the lower asymptote parameter (also known as the guessing parameter), and  
D is a scaling factor (usually equal to 1.702). 
 The scaling factor D is included in the model to make the logistic function as close as 
possible to the normal ogive function (Baker, 1992). 
 
B.  Item Selections Used in this Study 

In this study, the item selection methods of MIF, MID, and MOD are operationally 
defined as:  

(a) MIF: select an item with a maximum Fisher information value from the item bank, 
(b) MID: select an item with a minimum absolute difference value between the test-taker’s  

current ability estimate and this item’s difficulty value, and  
(c) MOD: select an item with a minimum absolute difference value between the test-taker’s  

current ability estimate and this item’s OD value. 
 

 The Fisher information is computed at  the current ability estimate, that is: 
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where, Pi’(θ) is the first partial derivative of Pi(θ) with respect to θ. An item’s OD value is 
defined at where this item’s maximum information is located, based on the item-pool  difficulty 
scale, (Lord, 1980,  p.152). For the 3PL model, it is expressed as: 
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 For the case of 3PL data modeling, both FI and OD values are derived from the 3PL 
item’s parameters, a, b, and c. The difference is that the FI value depends on the ability (θ) scale; 
in contrast, the OD  does not. A FI value may be misleading, as indicated previously,  if it is 
computed from an ability estimate that is far away from its true value.      
  
C. CAT Ability Estimates  
1. Maximum Likelihood Estimator (MLE) 

Assuming that the local independence assumption holds, given an examinee with an 
ability, θ, who responds to a set of n items with the response pattern u, then the probability (or 
likelihood function) of obtaining this response pattern u can be modeled by: 

    Si,  )(Q)(P=)|uL(L ni
u-1

i
u
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where Qi(θ) = 1 – Pi(θ) and Sn  connote the n items that have been administered (or selected ) to 
the examinee during the CAT testing process. The log of this likelihood function is given by:  
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Several methods of  CAT ability estimation exist. For the maximum likelihood estimate 

of θ, MLE (θ),  the log likelihood function (Equation 5) should be partially differentiated with 
respect to θ, then set to equal zero and finally used to solve this equation 6 for θ using the 
Newton-Raphson method or some other suitable numerical strategy.  This equation is given 
below (Lord, 1980) : 
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where ∂ denotes partial differentiation. A problem for the MLE is that it is unable to 
estimate examinees’ abilities when they get all items right or wrong. This has become an issue 
especially at the early stage of CAT. Thus, this estimator was not considered in this research.  
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2. Bayesian Modal or Mean Estimator  

θ is a parameter that needs to be estimated. If the prior information f(θ) for the 
distribution (or  probability density) of θ together with the observed response pattern u,  are 
available,  we are then able to approximate the  posterior distribution of θ according to Bayes’ 
rule. The posterior density of  θ is: 
 

)u(f

)(f)u(L
)u|(f

−

−
θθ

=−θ                                                                                                                      (7) 

 
Where f(u)  is the marginal probability of u given by Bock and Lieberman (1970) and  
Bock and Aiken (1981): 
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f(u)  is irrelevant while finding the solution of the θ parameter. Hence, the posterior function can 
simply be proportional to a prior function times a likelihood function. That is: 
 

)(f)u(L)u|(f θθ∝−θ
−

                                                                                                                     (9) 

 
The relative influence of observed data (the input for the likelihood function) and prior 
information on the posterior function (related to the updated belief) depends on test-lengths, 
item-pool characteristics, and the magnitude of prior dispersion. As the prior becomes vague or 
diffuse, the posterior function is closely approximated by the likelihood function and 
consequently the Bayesian approach will result in the same solution as the likelihood approach. 
In contrast, if  the prior is very informative or specific, then it would have a relatively greater 
influence on  the posterior function.  

 For the maximum a posteriori (MAP) estimator , the estimate is the value that maximizes 

the posterior density function of  )u(f
−

θ . The 
∧
θ  can be derived by partially differentiating the 

log-posterior density function with respect to θ , setting this equation equal to zero (Equation 
10), and solving this non-linear equation:  

    

0)u(fln =−θθ∂
∂                                                                                                                            (10) 

 
 MAP is the mode of the posterior distribution. Another method to solve equation 10 is to 
find the mean of the posterior distribution of θ. This method is called the expected a posteriori 
(EAP) estimator. The mathematical expression for  this estimator can be found in Bock and 
Aitkin (1981) and its features in CAT has been well documented by  DeAyala, Schafer, and 
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Sava-Bolesta (1995). Wang, Hanson & Lau (1999) compared EAP with MAP estimation; EAP 
had slightly lower standard errors, but  was slightly more biased.  
 
 
III. Methodology 
A. Adding Errors in the Estimation of Item parameters 
 This study used the procedure illustrated below to add a measurement error in each of 
true (or population) item parameters. 
 
1. A Simulated Item Bank with True Item Parameters 
   In order to cover a variety of  possible combinations of the 3PL item parameters, a, b and 
c, we included  all possible combinations of 12 item discriminations (ranging from 0.60 to 1.70 
in increments of 0.1), 21 item difficulties (ranging from –2.5 to 2.5 in increments of  0.25) and 3 
guessing parameters (0.2, 0.3, and 0.4) into the item bank. Accordingly,  a simulated 756-item 
bank with true item parameters was developed.  
 
2. An Item Bank with Estimated Item Parameters 
 The item parameters in the simulated item bank were assumed to be true without 
measurement errors. The following steps were implemented to create an item bank whose 
parameters were derived with errors from the simulated bank; 

(a) Create Simulated Tests: The 756 items were divided into 12 simulated tests, where each 
test had 63 items.   

(b) Generate a  Group of  Simulees’ Abilities: The abilities of the 1890 simulees were 
randomly generated with the assumption that they follow a standard normal distribution, 
N(0,1). The sample size was set at 1890  to meet the requirement that the sample size to 
parameter ratio be 10:1. The ratio was defined by the sample size to the number of item 
parameters (De Ayala & Sava-Bolesta, 1999) and the  sample size of 1890 was derived 
from: 3 (3PL) x 63 (Number of test items) x 10. 

(c) Generate Simulees’s Responses to Test Items: The probability given by the true item 
parameters and an ability parameter was computed using Equation 1 and then compared 
to a random uniform number with the range [0,1]. When the probability is larger than the 
value of the random number, the corresponding item response was correct one, otherwise 
incorrect. This procedure was  repeatedly carried out for all 1890 simulees taking each of 
the 12 tests. Finally, 12 test datasets with an 1890 x 63  data matrix were obtained.   

(d) Estimate Item Parameters: We fit the 3PL model to each of the 12 test datasets to obtain 
item parameter estimates using the computer program BILOG (Mislevy & Bock, 1990), 
in which the MMLE (marginal maximum likelihood estimation) /Bayesian estimation 
method was chosen, the program default prior distributions for the slope, threshold and 
guessing parameters were used, and the convergence criterion was set at .0001. Since all 
12 test datasets were generated from the same group of 1890 simulees, the item estimates 
independently calibrated from the 12 tests have been placed on the same scale. 

(e) Transform Item Parameters: We transformed the metric of the estimated parameters  to 
the one defined by the population (or true)  parameters using matching test characteristics 
curves (Stocking & Lord, 1983). Thus, a 756-item item bank was established. 

3. 100 Item Banks with Estimated Item Parameters 
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 Up to this point, we have created two item banks, one with true item parameter values; 
the other with estimated item parameter values. The difference in item parameters between 
two item banks is the result of measurement error. However, the measurement error 
generated by the above steps is not a constant; it will vary if we repeat the steps again. 
Accordingly, we repeated the above steps 100 times to generate 100 item banks with 
estimated item parameters. 

  
B. True Ability Levels and Test Starting Points  
 We included 31 points on the true ability or θ scale, ranging from –3.0 to 3.0 in 
increments of 0.2. The initial ability of all simulated subjects at the beginning of the test was 
taken as a randomly drawn value from the uniform distribution with range [0,1]. The EAP ability 
estimator was used to estimate abilities, assuming the prior distribution of  examinee’s abilities 
to be distributed as  a standard normal distribution, N(0,1). 
 
C. Item Selections and Test Length   

 There were three  item selection methods implemented in this study (see the 
introduction) and four types of test length (TL). The lengths were 10, 20, 30 and 40 items. 

 
D. Algorithms in Simulating CAT 
 For each simulated examinee these procedures were followed: 

(a) Set the an initial ability estimate for the examinee. This was done by randomly drawing a  
uniform number with the range [0,1]. 

(b) Select the item from the first item bank (with estimated item parameters) using one of 
item selection methods. 

(c) Re-estimate abilities based on the examinee’s response(s) to the items that have been    
administered. 

(d) Repeat the steps b-c until the fixed n items have been administered.  
 

 Using the above steps, an examinee’s ability estimate was obtained. This estimate was 
the result of using item parameter estimates, instead of using the true item parameters. Up to this 
point, for each simulee, we know what items this simulee has taken and what true parameters 
values these administered items have. This set of information would make it possible to re-
estimate this examinee’s ability estimate using the true item parameters. This ability estimate 
using the true item parameters was obtained at the end of the adaptive test and did not influence 
item selection. Afterwards, two ability estimates existed for this simulee; one obtained from the 
item parameter estimates; one produced by the true parameters.  
 So far, the above steps have been implemented in the first item bank. They were then 
repeatedly implemented to the second, third … 100th item banks. Finally, each examinee had 100 
ability estimates based on item parameter estimates for each of the item selection methods and 
100 based on true item parameters. 
 
E. Data Analyses and Evaluation 

One hundred replications for each condition were conducted.  Afterward, the BIAS and 
RMSE (root mean squared error) for each of  the ability estimates were calculated by the 
formulas shown below.  
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      where θj is the true ability parameter, 
^

jθ  is the corresponding estimated ability parameter, 
and r is the number of replications, which was 100 in this study. 
 RMSE is a measure of total error of estimation that consists of the systematic error 
(BIAS)  and random error (SE). These three indexes relate to each other as follows (Rao, 2000): 
 

RMSE(θj)2 ≅ SE(θj)2 +BIAS(θj)2                                                                                             (13)   
 
As can be seen from Equation 13 either a large variance (SE2)  or a large BIAS will 

produce a large RMSE. It is apparent that an estimator will have much practical utility only if it 
must not only be highly precise (or small SE2), but also has small BIAS (Rao, 2000). The 
accuracy of an estimator is inversely proportional to its RMSE so that this RMSE index is the 
criterion of accuracy for an estimator (Rao, 2000). Accordingly,  this index was primarily used to 
compare the accuracy of ability estimates when they were estimated under various simulation 
conditions.  We also provided the BIAS results for reference if needed. 

 
 
IV. Results 
A. The Effect of  Measurement Errors in Item Parameter Estimates  on the Ability  

Estimate 
1. Maximum Fisher Information Method 

Regarding the MIF method, when test length was 10, the average RMSE (computed 
across 31 simulees) were .481 for both conditions of use of item parameters with and without 
measurement errors. When test length was 20, the average RMSE were .269 and .274 for use of 
item parameters with and without measurement errors, respectively.  When test length was 30, 
the average RMSE were .212 and .217 for use of item parameters with and without measurement 
errors. When test length was 40, the average RMSE were .180 and .185 for use of item 
parameters with and without measurement errors. These summary statistics seem to differ very 
little in the accuracy of MIF-based ability estimates when they were estimated either from the 
item estimates or from the true parameters. However, when we take a closer look of Figure 2, 
which shows RMSE as a function of true θ for MIF method for test length (TL) = 10, 20, 30 and 
40, we find that RMSEs results from the MIF/Item Estimates was less than those resulted from 
the MIF/True Parameters when ability parameter was larger than about -.5. This implies that 
when the MIF is  implemented in a real CAT testing program, the accuracy of its estimated 
ability reported in the literature might be overestimated for this range of ability estimates. This 
result is consistent with our initial speculation.  
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On the other hand, for an ability parameter that is less  than about –0.5,  we found that  
RMSEs resulted from the MIF/Item Estimates were larger than those resulted from the MIF/True 
Parameters. This implies that MIF tends to inappropriately inflate the amount of error for this 
range of low ability estimates. 
 
 
Table 1 
Descriptive Statistics of BIAS and RMSE  of CAT’s Ability Estimates for the Three Item 
Selection Methods (MIF, MID, and MOD) under Four Types of Test Length and Two Types of 
Item Parameters     

BIAS RMSE TL Method Error 
Mean SD Min Max Mean SD Min Max 

Yes .057 .373 -.611 1.065 .481 .227 .288 1.236 MIF 
No .025 .366 -.623 1.028 .481 .215 .297 1.205 
Yes .076 .609 -1.058 1.503 .685 .328 .347 1.665 MID 
No .056 .600 -1.061 1.473 .683 .319 .359 1.637 
Yes .035 .561 -1.061 1.178 .651 .261 .366 1.314 

10 

MOD 
No .018 .554 -1.064 1.159 .651 .254 .378 1.296 
Yes .010 .134 -.289 .324 .269 .070 .181 .476 MIF 
No -.028 .139 -.370 .295 .274 .070 .190 .461 
Yes .031 .296 -.505 .708 .420 .159 .276 .873 MID 
No .005 .292 -.541 .696 .418 .149 .279 .848 
Yes .011 .259 -.530 .534 .391 .127 .261 .690 

20 

MOD 
No -.007 .257 -.535 .559 .391 .120 .271 .692 
Yes .008 .092 -.208 .209 .212 .048 .150 .324 MIF 
No -.032 .102 -.311 .172 .217 .054 .161 .367 
Yes .023 .172 -.302 .410 .315 .101 .210 .610 MID 
No -.006 .184 -.413 .428 .316 .097 .218 .589 
Yes .000 .160 -.371 .256 .297 .069 .214 .471 

30 

MOD 
No -.019 .165 -.408 .290 .297 .067 .220 .471 
Yes .005 .063 -.144 .125 .180 .030 .137 .256 MIF 
No -.034 .074 -.260 .085 .185 .037 .139 .307 
Yes .012 .117 -.240 .288 .246 .065 .168 .446 MID 
No -.020 .135 -.372 .319 .249 .064 .171 .440 
Yes .001 .104 -.239 .186 .234 .052 .160 .345 

40 

MOD 
No -.021 .115 -.324 .222 .235 .054 .165 .383 
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Figure 2a. RMSE as a Function of True θ for MIF Method for the Conditions of Use of  
Item Parameters with and without Measurement Errors When Test Length = 10. 
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Figure 2b. RMSE as a Function of True θ for MIF Method for the Conditions of Use of  

Item Parameters with and without Measurement Errors When Test Length = 20. 
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Figure 2c. RMSE as a Function of True θ for MIF Method for the Conditions of Use of  

Item Parameters with and without Measurement Errors When Test Length = 30. 
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Figure 2d. RMSE as a Function of True θ for MIF Method for the Conditions of Use of  

Item Parameters with and without Measurement Errors When Test Length = 40. 
 

 
2. MID Method 
 The results  of the MID method are summarized in Table 1. As noted earlier, there is little 
difference in estimated abilities produced by item estimates or true parameters. As seen in 
Figures 3a to 3d, a similar result as that found for MIF was found.  The accuracy of  the 
estimated ability produced by MDO was slightly overestimated for those abilities that are larger 
than about -.5. For the abilities which are less than -.5,  we might report more measurement 
errors than they should have if MID was implemented in CAT.      
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Figure 3a. RMSE as a Function of True θ for MID Method for the Conditions of Use of  

Item Parameters with and without Measurement Errors When Test Length = 10. 
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Figure 3b. RMSE as a Function of True θ for MID Method for the Conditions of Use of  

Item Parameters with and without Measurement Errors When Test Length = 20. 
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Figure 3c. RMSE as a Function of True θ for MID Method for the Conditions of Use of  

Item Parameters with and without Measurement Errors When Test Length = 30. 
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Figure 3d. RMSE as a Function of True θ for MID Method for the Conditions of Use of  

Item Parameters with and without Measurement Errors When Test Length = 40. 
 
 
3. MOD Method 
 The results for the MOD method are summarized in Table 1. Again, there is little 
difference in estimated abilities produced by item estimates vs. true parameters.  
Further, the plot of RMSE against the true θ as shown in Figure 4 shows the same pattern as for 
the other two methods. As seen in Figure Figures 4a to 4d, the RMSE of  the estimated ability 
produced by MOD was underestimated for abilities larger than about -.5. For abilities less than -
.5,  we might overestimate the RMSE of the estimated ability if MOD was implemented in CAT.      
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Figure 4a. RMSE as a Function of True θ for OID Method for the Conditions of Use of  

Item Parameters with and without Measurement Errors When Test Length = 10. 
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Figure 4b. RMSE as a Function of True θ for MOD Method for the Conditions of Use of  

Item Parameters with and without Measurement Errors When Test Length = 20. 
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Figure 4c. RMSE as a Function of True θ for MOD Method for the Conditions of Use of  

Item Parameters with and without Measurement Errors When Test Length = 30. 
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Figure 4d. RMSE as a Function of True θ for MOD Method for the Conditions of Use of  

Item Parameters with and without Measurement Errors When Test Length = 40. 
 
 
B. Comparison Among MIF, MID and MOD Item-selection  Methods 
 Comparisons among the MIF, MID, and MOD item selection methods in terms of 
accuracy of CAT ability estimates were explored by plotting their RMSE  at different levels of 
ability. As seen as Figures 5a to 5d, MIF produced the lowest RMSE. The performance for MID 
and MOD was mixed. MOD performed slightly better than MID at some locations of ability, but 
did slightly worst than MID at others. 

At the early-stage of CAT (e.g., TL=10),  large RMSEs were found for high and low 
abilities when even the best MIF method was used. As the test length increased to 40, which is 
very close to a typical test length (e.g., 40 or 50) in real testing conditions, these three methods 
did not make much difference in assessing their corresponding RMSE, especially for almost 99% 
examinees whose ability values range between –2 and 2. [Note that we simulated examinees 
ability as a normal distribution, N(0,1).]  While MIF made a sizeable difference in estimating 
extreme high or low abilities, examinees with such extreme abilities are rare in the population.      



 24

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

True θ

R
M

SE
 θ

MIF/True Parameters,TL=10
MID/True Parameters,TL=10
MOD/True Parameters,TL=10

 
 
Figure 5a. RMSE as a Function of True θ for the MIF, MID and MOD Methods with True  

Item Estimates When Test Length  = 10 
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Figure 5b. RMSE as a Function of True θ for the MIF, MID and MOD Methods with True  

Item Estimates When Test Length  = 20 
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Figure 5c. RMSE as a Function of True θ for the MIF, MID and MOD Methods with True  

Item Estimates When Test Length = 30 
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Figure 5d. RMSE as a Function of True θ for the MIF, MID and MOD Methods with True  

Item Estimates When Test Length = 40 
 
V. Conclusions 
 As described in the introduction, MIF CAT tends to administer the most highly 
discriminating items in the pool to examinees. Its ability estimates appear accurate and stable, in 
part because of the assumption that the comparatively highly discriminating parameters of the 
items it selects are true, without the contamination by measurement errors. However, item 
parameters are contaminated with measurement errors in real settings and more highly 
discriminating parameters are likely to be contaminated with more measurement errors. 
Accordingly, the accuracy of ability estimates  reported by the popular MIF CAT may be 
exaggerated . This study was initially motivated by this speculation  
 When the presence of item parameters that were contaminated with measurement errors 
was incorporated into the MIF CAT algorithm, we found that the above speculation was not as 
serious as we originally thought possible. The accuracy of ability estimates was slightly 
exaggerated in a range of  abilities when they were larger than about –0.5. But we also found that 
in the opposite range of abilities (smaller than about –0.5),  the accuracy of ability estimates was 
slightly understated. This mixed result was found not only in the MIF CAT, but also in other two 
methods, MID and MOD. When the data-model fit condition was met, as implemented in this 
study, measurement-error seemed to not have a strong effect on the quality of CAT in terms of 
accuracy of ability estimates.  

This finding of no systematic measurement errors occurred when items were calibrated 
under data-model fit condition. Further, the measurement errors manipulated into this study 
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design had little impact on ability estimates as the test length increases. In the real testing 
situation, the model may not fit the data well and consequently quantifying the magnitudes of 
measurement errors in the item parameters can be much more complicated than the method used 
in this study.  Thus, in real CAT implementations, we should be cautious in relying on the above 
conclusion based on our data.       

Nevertheless, the above findings are encouraging and mitigate our initial speculation that 
when item estimates are used in CAT, CAT might not result in as accurate ability estimates as 
those having been reported in literature. We also found that the MOD CAT or MID CAT was 
almost as capable of recovering ability parameters as the MIF CAT when the number of test 
items is large (e.g., TL=40).  

The apparent value of MIF CAT over MOD and MID in this study should be considered 
as well on the basis of item-exposure rate (see Revuelta & Ponsoda, 1998). That was not 
addressed in this study but has been investigated by Li and Schafer (2003). That study helps us 
clarify how these three methods  compare and adds to the sufficiency of this study. 

 According to Li and Schafer’s study (2003), when an additional content-balance control 
(van der Linden & Reese, 1998) was imposed into MIF CAT, the correlation of item-exposure 
rate and the ai parameter was  .60 and about 55% of items from the pool were not administered. 
In contrast,  if the MOD was used under the same conditions as MIF, no correlation between  
item-exposure rate and the ai parameter existed and only about 1 % of items from the pool were 
never administered. The mechanism of MOD item selection does not depend on item parameter 
values and thus make use of more items in the pool without significantly reducing the precision 
of ability estimates. These desirable features should make this method more appealing in  real 
CAT testing applications in the near future, especially if more studies into this promising item 
selection method are explored.     
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