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Abstract 
  

Under a MIRT CAT’s (multidimensional computerized adaptive testing) testing 
scenario, an ability estimate in one dimension will provide clues for subsequently 
seeking a solution in other dimensions. This feature may enhance the efficiency of 
MIRT CAT’s item selection as well as its scoring algorithms compared with its 
counterpart, unidimensional CAT (UCAT). However, when practitioners are 
planning to employ MIRT CAT on a real testing program, interesting problems 
present themselves. For the case of simultaneously measuring examinee’s 
Reading and Mathematics abilities, will we administer to examinees Reading 
items first and Mathematic items next, Mathematics items first and Reading items 
next, or mixed items (e.g., a Reading item follows by a Mathematics item) ? Will 
the orders of administering different type of items to examinees make significant 
difference in terms of ability estimates and item exposure rates ? This sort of 
context effects in MIRT CAT never occurred in UCAT, but might happen in 
MIRT CAT. This issue is so critical and should be clarified before a real MIRT 
CAT program is implemented in place. The current research design intended to 
assess those context effects.  
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The Context Effects of Multidimensional CAT on the Accuracy of  
Multidimensional Abilities and the Item Exposure Rates  

 
I. Introduction 
A. Background of MIRT CAT 

The computerized adaptive testing (CAT) involves the selection of the most informative 
test items from an item pool, so that each individual’s latent trait is efficiently estimated with a 
short test. The present use of CAT heavily relies on unidimensional item response theory (IRT), 
simply assuming a single ability is necessary to account for examinees test performance on a test 
(Lord, 1980). This assumption is likely to make CAT  produce biased ability estimates for a test 
dataset which is assumed unidimensional, but actually multidimensional. Further, when an 
examinee  simultaneously takes several content-area (e.g., Reading and Mathematics) tests at a 
time as is usually required in the application of most academic programs, the cross-information 
(or correlation) of  an examinee’s knowledge among various content area can not be efficiently 
utilized in the process of CAT’s item selection and scoring for the unidimensional-based CAT 
(UCAT).  

On the other hand, the CAT based on the rationale of multidimensional IRT (MIRT, 
Reckase, 1985) might mitigate the problems that UCAT has encountered. Results from Li and 
Lissitz (2000) suggested that multidimensional IRT (MIRT) models can be applied to not only 
multidimensional data but also to unidimensional test data as well. It seems apparent that MIRT 
models are more flexible for fitting test data than unidimensional models. Further, when MIRT is 
accommodated  within the context of computerized adaptive testing (CAT),  the result (MIRT 
CAT) enhances the efficiency of adaptive item selection as well as scoring algorithms (Luecht, 
1996, Segall, 1996,  2000). The primary reason for such promising features has been documented 
by Segall (1996; 2000), who pointed out  that  “When the dimensions measured by a test or 
battery are correlated, responses to items measuring one dimension provide clues about the 
examinee’s standing along other dimensions” (Segall, 2000, p53). Such a unique characteristic, 
that can not be fulfilled in the conventional unidimensional CAT (UCAT), might make MIRT 
CAT more appealing, such as by increasing the  reliability for an examinee’s ability 
estimate(e.g., Luecht, 1996, Segall, 1996).   

Results from Luecht (1996) and Segall (1996) MIRT CAT’s studies indicated that a 
shorter MIRT CAT (about 25 % to 40%) could achieve about the same subscore reliability as its 
longer UCAT counterpart when multidimensional abilities are intercorrelated. Compared with 
UCAT,  Li and Schafer’s study showed that MIRT CAT increased the accuracy of ability 
estimates, especially for the low or high abilities, and reduced the rate of unused items in the 
item pool. Indeed, cross-information of  an examinee’s knowledge among various dimensions 
provides a better mechanism for choosing adaptive items for the examinee, whereas in multiple 
UCATs, cross-information among content areas is not utilized. 

However, when practitioners is planning to employ MIRT CAT on a real testing 
program, interesting problems present themselves. For the case of simultaneously measuring 
examinee’s Reading and Mathematics abilities, will we administer to examinees Reading items 
first and Mathematic items next, Mathematics items first and Reading items next, or mixed items 
(e.g., a Reading item follows by a Mathematics item) ? Will the orders of administering different 
type of items to examinees make significant difference in terms of  ability estimates and  item 
exposure rates ? This sort of  context effects in MIRT CAT never occurred in UCAT, but might 
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happen in MIRT CAT. This issue is so critical and should be clarified before a real MIRT CAT 
program is implemented in place.   

 
B.  Practical Problems of  MIRT’s Data Modeling 

Although MIRT or its application in MIRT CAT has promising features over 
unidimensional IRT from a statistical viewpoint, MIRT has not yet been implemented in real 
testing programs. One primary reason is that unique solutions for estimated item loadings cannot 
be attained. The loadings are the coordinates on the axes (or dimensions)  that define the space. 
Hence, rotating the axes will result in a new set of  loadings. In addition, the interpretation of 
each dimension together with the determination of  the number of dimensions for a given test 
dataset could be quite subjective,  as is the case in factor analysis. The current MIRT computer 
software, TESTFACT 4 (Wood, Wilson, Gibbons, Schilling,  Muraki & Bock, 2003), was 
programmed using the full information method. This program was designed to perform 
exploratory item-factor analysis although it might be used for a specific confirmatory factor 
analysis know as bi-factor analysis (Gibbons & Hedeker, 1992) which requires a factor pattern 
that should consist of one main factor plus group factors. This requirement might be limited to be 
used in some test data, but not suitable to all test data.    

The confirmatory item factor-analysis modes in the MIRT context could help resolve 
these practical problems (McLeod, Swygert& Thissen, 2001). The FACT computer program 
(Segall, 1998), implementing the full information confirmatory item factor analysis using 
Markov chain Monte Carlo estimation, might be a suitable method for calibrating interpretable 
MIRT item parameters. The FACT program is, however, currently undergoing further 
investigation and is not available to the public. Existing available confirmatory item-factor 
analysis programs such as NOHARM (Fraser & McDonald, 1988) that models item-covariances 
rather than the full information approach has therefore become our choice for dealing with 
MIRT’s item calibration. This program specifically allows constraints to be specified for the 
loading and/or covariances among the latent traits. Introducing the pattern matrices for those 
parameter matrices (e.g., indicating the values to be fixed at zero or at some other value) seems a 
flexible approach to seeking interpretable MIRT item parameters. 
 
C. Research Purpose 

As illustrated, UCAT might produce biased ability estimates when the condition of an 
under-fitted model occurs. Further, making use of ability estimates from other dimensions in 
item selection as well as in the scoring algorithms is precluded, making UCAT less efficient than 
MIRT CAT. With the compelling advantages of MIRT CAT (Segall, 2000), the intention in this 
study was to modify the current CAT to facilitate the process of locating Reading and 
Mathematics true abilities. The reason for choosing these two content areas as the example 
subject areas to be explored is that they are essential skills for students to be successful in all 
academic fields and they are often required to be taken at the same period of time in most testing 
programs. Of course, the methodology employed in these two content measures can be 
generalized to other content combinations (e.g., Reading and Science).  

However,  using MIRT CAT, instead of using UCAT, will present a unique and critical 
issue --- context effect, the accuracy of an examinee’s ability estimates might depend on what 
order of items (e.g., Reading, Mathematic items, or mixed items) is administered to examinees. 
Further, this context effect might also have impact on the issue of item exposure rate, the ratio of 
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the number of times an item has been administered to the total number of test-takers. The latter 
issue involves test security and becomes one of  key issues of  current CAT studies.     
    
II. Methodology 
A. Simulated Item Bank and Ability Parameters 
 We obtained a 765-item pool whose summary of item characteristics is presented in the 
full-version paper. Five hundred simulees were randomly selected from multivariate normal 
distribution,  MVN (0, Φ), where Φ is the population varaince-covarance matrix of the Reading 
and Math dimensions. The Φ is obtained from the NOHARM. The covariance value of  both 
content-area scores was .729 which is the off-diagonal value of Φ and the both diagonal values 
of Φ are 1. This sample was used  for evaluating the accuracy of  MIRT CAT’s ability estimates.  
Similarly, another five thousand simulees were generated and then  used for evaluating the 
exposure rate of  the item pool items. 
 
B. Ability Estimates and Item Selection 

The Bayesian model approach (Segall, 1996) was chosen for estimating multidimensional 
abilities. This method will incorporate the prior information of highly correlated Reading and 
Math measures into the likelihood function so that an ability estimate (e.g., Reading ) in one 
dimension will provide clues for subsequently seeking a solution in other dimensions (e.g., 
Math). The Φ matrix, as mentioned above,  was also used for the prior varaince-covaraince while 
estimating abilities. The initial abilities of all simulated subjects at the beginning of the test were 
taken as an vector that was randomly drawn from a multivariate normal distribution, MNV(0, 
Φ). The MIRT CAT stopped when the fixed test length was reached. 

The maximum DPI  (the determinant of the posterior information ) criterion (Segall, 
2000) together with the shadow-test approach (van der Linden, 2000) was chosen for item-
selection method in this study because the maximum DPI criterion selects items to maximize 
accuracy along all dimensions simultaneously (Segall, 2001), and the shadow-test approach 
ensures that content balance was achieved. The rationale of  DPI and the shadow-test MIRT  
CAT will be illustrated in the full-version paper.     
 
C. Simulation Conditions 

There were 29 constraints imposed to  assemble an on-line shadow test. These 29 
constraints (listed in full-version paper) corresponded to the 29 objectives of  the test 
specifications that were used for editing the CTBS Reading and Math tests. Hence, the number 
of items for each objective on the shadow test was constrained as in the original test.  

Three simulation conditions are listed in Table 1. The first condition allowed simulees to 
take the MIRT CAT test in which Reading items were mixed with Mathematics items; whereas, 
the second condition forced simulees to take Math items first, and Reading items next. The third 
condition, on the other hand, forced simulees to take Reading items first, and Math items next. 
The comparisons of results among these three conditions were used to explore which item order 
would result in the most accurate ability estimates and the most homogeneous item-exposure 
rates.  
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Table 1. Research Conditions being Simulated 
Conditions Item Order  Total Test 

Length 
Reading Test 
Length 

Mathematics 
Test Length 

Progress 

1 Mixed Items 51 25 26 Finished 
2 Math, Reading 51 25 26 None 
3 Reading, Math 51 25 26 Finished 

 
D. Evaluation 

One hundred replications for each condition were conducted. The BIAS along with the 
RMSE (root mean squared error) statistics of the ability estimates across these two simulation 
conditions were computed by the formulas shown below.  
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where θi is the true ability parameter, 
^

iθ  is the corresponding estimated ability parameter, and r 
is the number of replications, which was 100 in this study. 

 RMSE is a measure of total error of estimation that consists of the systematic error 
(BIAS)  and random error (SE). These three indexes relate to each other as follows (Rao, 2000): 
 

RMSE(θj)2 ≅ SE(θj)2 +BIAS(θj)2                                                                                               (3)   
As can be seen from Equation 3, either a large variance (SE2)  or a large BIAS will 

produce a large RMSE. It is apparent that an estimator will have much practical utility only if it 
must not only be highly precise (or small SE2), but also has small BIAS (Rao, 2000). The 
accuracy of an estimator is inversely proportional to its RMSE so that this RMSE index is the 
criterion of accuracy for an estimator (Rao, 2000). Accordingly,  this index was primarily used to 
compare the accuracy of ability estimates when they were estimated under various simulation 
conditions.   

 In term of  comparing item-exposure rates, the following indices (refer to Revuelta & 
Ponsoda, 1998) will be used to compare the three CAT algorithms: (a) the percentage of items 
never administered in the population, (b) the standard deviation (SD) of the variable of  the item-
exposure rate, (c) the minimum and maximum values of this variable. The distribution of  the  
item-exposure rates, grouped in several intervals, will be also computed for each CAT condition.           
 
E. Computer Program 
 The computer program MIRTCAT  was used for running the simulation conditions.  The 
MIRTCAT was coded by the MATLAB matrix language (The MathWorks, 2001), in which the 
0-1 linear programming was resolved from the callable library of LINDO API (LINDO Systems, 
Inc. 2001).  

  We expect this study will be finished by the end of December 2003. 
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