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Urry (1974a) has presented a graphic method to
provide approximations for the item parameters of the
normal ogive and Birnbaum logistic three-parameter latent
trait models. This method has since been further developed
(Urry, 1975) to provide a more accurate computational
procedure for estimating the three parameters, ¢; (item
discriminatory power), b; (item difficulty), and ¢; (item
coefficient of guessing). Programmed for the computer, this
technique produces parameter estimates quickly and
inexpensively.

Initial studies of this procedure employed large sample
sizes (NV=2000 and 3000 cases) and a relatively large
number of items (#=100). Under these conditions, the
procedure produces very accurate parameter estimates
(Urry, 1975). We are now in a position to examine the
effects of reduced numbers of cases and items on error in
the parameter estimates and on the accuracy of tailored
testing using those estimates. It is known a priori, of course,
that reduction in either the number of cases or the number
of items will, other things being constant, tend to increase
estimation errors. But it is not known at present how large
or practically significant such increases would be. The
present study, exploratory in nature, is addressed to these
questions.

METHOD

Based on suggestions by Lord (1968, p. 1016) and the
results of the previous study by Urry (1975), it was decided
to allow the number of items to vary from 50 to 100 and
the number of cases to range from 500 to 2000. The initial
100-item bank, from which the smaller banks were later
selected, was characterized by a; values ranging uniformly
from .80 to 2.20, b; values distributed uniformly from-1.9
to +1.9, and ¢; values from .02 to .24, also uniform in
distribution. These parameter values are not different from
what one might reasonably expect to find empirically given
prescreening of items (Urry, 1974a; Jensema, 1972). In the
reduced item samples, the a; values were chosen in equal
steps from .80 to 2.20. For example, there were five levels
of @; for the 50-item test and ten for the 100-item test. Ten
values of b; in equal steps between -1.9 and 1.9, inclusive,

!Computer processing for this study was done at the University of
Maryland Computer Science Center in conjunction with graduate
work by John Gugel. Arrangements for computer time were made
by Professor Charles Johnson of the Department of Measurement
and Statistics, College of Education, University of Maryland.
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were arranged within each level of a;. (an exception was the
55-item test, which had eleven values of b; in equal steps
between -1.9 and 1.9, inclusive, within each of its a;
values.) For different levels of g;, items were matched on b;
values. The ¢; values ranged from .02 to .24 in equal steps,
irrespective of a; and b;. Values of 0, representing simulated
subjects, were sampled randomly from MN(0,1). Then for
each 6, the simulation procedure described by Urry (1975
was used to generate a vector of responses (1 = correct; 0 =
incorrect) for the item bank in question using the known
item parameters. Parameter estimation was then carried out
using this simulated data.

Two indices were used to evaluate the parameter
estimates relative to the known parameters. First, the root
mean square error (RMSE) was computed for the estimated
parameters. The formula for this statistic, is;

€y

n
RMSE = 2<(p - ﬁ)2> %
1 n

where the p = known values of g;, b;, ¢;, or pyy, and
n =number of items involved in the particular
analyses.
Second, Pearson correlations between the known and
estimated parameters were computed, i.e., Top-

To illustrate the effects of error in the parameter
estimates on the accuracy of tailored testing, Owen’s
(1968) algorithm was employed. Specifically, tailored
testing was carried out on 100 simulated subjects using first
the known item parameters and then item parameter
estimates obtained on 1000 cases and 60 items. To increase
the number of items used in tailored testing to a more
realistic level, another identical set of 60 items was
parameterized on a separate, independent group of 1000
simulated subjects, and these “items” were combined with
the original 60 to produce a bank with 120 items. In the
case of the known parameters, both 60-item sets were
entered into the tailored testing bank. The known
parameters in this bank were used to generate the response
vectors of the 100 simulated subjects, and these vectors in
turn, were used in the tailored testing. Correlations between
estimated and actual 6 were computed at each of eight
termination rules for each condition of testing. This
allowed a comparison of correlations across the conditions
of testing, i.e., where (1) known or (2) estimated item
parameters were used in the tailoring process.



RESULTS AND DISCUSSION

Results produced by the parameterization procedure for
varying combinations of sample size and number of items
are shown in Tables 1 and 2. In both tables, “Raw Score
Estimates” refer to the parameter estimates prior to
application of the ancillary correction procedure, and the
columns headed “Final Estimates” refer to estimates after
application of the corrections. Table 1 includes the S.E. for
prg» the correlation between the continuum underlying the
item and 9, as well as for a;, b;, and ¢;. “Lost items” are
those for which the estimation procedure did not converge

because of insufficient cases in the tails of the distribution.

Looking at the S.E.’s for the final estimates in Table 1, it
can be seen that, in general, decreasing both sample size and
number of items results in increased RMSE’s. This effect
appears to be more pronounced for g; than for the other
parameters. Moving from 50 to 60 items (sample size
constant) appears to produce marked reductions in error
for a;, but beyond this, improvements in accuracy with
increases in number of items are smaller. The b; and c; were
estimated rather accurately throughout the range of both
independent variables, although variation in sample size
and number of items did have the expected effect. The last
column in Table 1 reveals a tendency for items to begin to
fail to converge during parameter estimation when sample

size is dropped as low as 500. Sample size appears more
crucial in this respect than number of items. Correlations
between final parameter estimates and actual parameters,
shown in Table 2, also pattern themselves as expected,
within the limits of sampling error. In examining these
correlations, one should bear in mind that in the case of
d; and to a lesser extent C}, restriction in range is operating
to lower the tabled values. The items parameterized
contained no values of @; lower than .80. This value of g;
corresponds to a biserial correlation of .62 between the
item and latent ability. Past studies (Jensema, 1972; Urry,
1974b) have shown that only about one third of the
items in conventional tests have q; values this large. No ¢;
greater than .24 were included; in practice ¢; does exceed
.24, although the range restriction here is probably less
severe than in the case of a;.

Results of simulated tailored testing using known
parameters and parameters estimated on a sample of 1000
with 60 items are shown in Table 3. The eight termination
rules, expressed as the standard error of estimate (o) are
seen in column 2. Column 3 translates these values to
reliability coefficients for 8, based on the relationship
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TABLE 1

Root Mean Square Errors (RMSE)
Before and After all Corrections

Raw Score Estimates

Final Estimates

RMSE

Items Cases a; b; ¢
50 2000 283 124 .086
50 1000 292 193 097
50 500 370 .164 097
55 2000 .385 195 091
55 1000 352 194 101
55 500 281 185 .098
60 2000 321 204 .091
60 1000 .343 231 .089
60 500 .360 .194 .080
70 2000 272 131 .095
70 1000 324 189 .095
70 500 .386 197 .096
80 2000 266 141 .092
80 1000 259 178 .092
80 500 319 224 091
90 2000 297 .180 .094
90 1000 341 171 .089
90 500 316 .184 .094
100 2000 290 138 .085
100 1000 286 137 .088
354 .189 .100

100 500

RMSE Lost
Pro a; b, < prg Items
.043 .395 137 .064 .053 0
.053 326 209 .078 .059 1
067 472 259 077 064 0
.061 .308 150 .057 053 0
050 315 .124 071 050 0
054 403 227 .086 .065 4
056 253 .140 065 .040 0
.059 322 144 .062 044 0
.070 342 179 .068 062 0
041 225 .166 067 040 1
.054 273 174 .074 045 1
.072 .351 187 .083 .058 4
046 214 150 072 .039 1
.048 261 .166 .073 047 1
.063 311 229 079 .048 6
049 244 .149 .069 036 0
051 .304 140 072 044 0
056 283 .144 .086 .049 2
049 223 131 .056 .036 0
.052 240 162 .062 039 0
061 276 .161 .083 .047 5
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TABLE 2

Correlations—Known Parameters vs. Estimated Parameters
Before and After All Corrections

Items Cases
50 2000
50 1000
50 500
55 2000
55 1000
55 500
60 2000
60 1000
60 500
70 2000
70 1000
70 500
80 2000
80 1000
80 500
90 2000
90 1000
90 500
100 2000
100 1000
100 500

Raw Score Estimates

Yad

.846
.888
745

731
158
.850

828
71
.768

834
813
715

873
850
.839

861
751
.804

837
.843
741

Final Estimates

*bb Teé T bb Teé
999 599 849 997 636
992 429 .908 990 492
993 428 780 989 454
995 488 891 995 646
995 428 870 995 546
992 .387 824 990 .376
996 491 .899 997 630
994 546 .842 995 588
994 .626 .801 995 668
997 471 922 997 632
996 468 828 .996 521
993 464 813 995 449
.996 535 914 997 574
.994 465 879 993 550
991 410 .823 989 502
996 483 871 996 568
995 518 .847 995 547
995 447 874 993 418
997 539 877 .998 690
996 470 863 .996 627
993 344 .824 994 420

The square root of this value is Pho > the correlation
between the latent ability estimates (f) and actual latent
ability (8). Validity coefficients of this sort are given in
columns 4, 5, and 7. Those in column 4 are theoretical
validities based solely on the termination rule chosen,
Those in column 5 were obtained by correlating the

produced using the known item parameters with known 8.
As expected they are essentially identical to the predicted
theoretical validities. Those in column 7 were obtained by
correlating the 8 produced using the parameter estimates
with the known 8. As expected, they are somewhat lower
than those in columns 4 and 5, but it can be noted that, as

TABLE 3

Validity Coefficients (rg4), and Average Number of Items (77) Required for
Tailored Testing to Various Termination Rules Where the Item
Parameters Were Known or Estimated

n 2) ) (C))
Termination Rules
# O¢ Pée LT
1 .54717 .70 .84
2 5000 5 .87
3 4472 .80 .89
4 .3873 .85 .92
5 3162 .90 95
6 .2828 .92 .96
7 .2449 .94 97
8 2236 .95 .97

(%) (6)

(7 (8)
Parameters Known Parameters Estimated

6o n "go n
864 2.43 792 2.26
904 331 821 2.89
932 4.00 821 2.89
935 491 864 3.70
955 17.03 895 5.30
962 877 921 657
969 1177 942 891
975 1451 952 1112
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the termination rule becomes more stringent, the
discrepancy decreases. At the most stringent termination
rule, the validity of the 6 derived using the parameter
estimates is only .023 lower than that based on the known
parameters. The reliabilities of the two @’s at this termina-
tion rule are .95 and .91, respectively.

Why are the termination rules not fully attained when
the parameter estimates are used? The tailoring algorithm
capitalizes on errors in the parameter estimates. As a
consequence, tailored testing using the estimated para-
meters terminates prior to actually reaching the pre-set
termination rule. That is, because of capitalization on error
in parameter estimates during the process of item selection,
the reliability levels implied by the Owen algorithm at
any stage during the tailoring process are somewhat
inflated. This leads to a too early termination of tailored
testing, and, when the obtained 0 are correlated with 6, it
becomes evident that the pre-set reliability level for
termination has not been met. In the present example, an
average of 14.51 items was administered when the known
parameters were used but only 11.12 when the parameter

106

estimates were used. This shrinkage problem can be
overcome by setting the reliability termination rule higher
than that actually required. In our present example, the
termination rule should be set at .95 in order to obtain 6 of
reliability .91.
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