A CoMPARISON OF THE ACCURACY OF BAYESIAN ADAPTIVE AND
Static TesTs Usine A CoRRECTION FOR REGRESSION

STEVEN GORMAN
DEPARTMENT oF THE NAvy

The vast changes in computer technology have made a strong impact upon the
field of ability measurement. The increased capabilities and decreased costs of
computer use have opened the door to application of latent trait theory. Two
Bayesian procedures for ability estimation have become popular--the Bayes modal
procedure (Samejima, 1969) and the Owen (1975) algorithm. Both Bayesian proce-
dures use a prespecified distribution, usually the Gaussian normal distribution,
as the prior variance of ability. The item characteristic curve (ICC; also
called the item response function) is employed as the likelihood function. The
product of the prior distribution and the likelihood function is the posterior

distribution of ability. These two procedures can be used in either convention-
al or adaptive mode.

McBride and Weiss (1976) have studied Owen”s Bayesian adaptive proéedure
and have determined that with this procedure, ability estimates regress toward
the mean. That is, high—ability examinees tend to achieve lower ability esti-
mates, and low—ability examinees tend to have higher ability estimates. Urry
(1977) has suggested a correction, namely, dividing the Bayesian regressed abil-
ity estimate by the test reliability. A second, potentially more serious, prob-
lem is the reliance upon accurate 3-parameter logistic item parameters. Urry
(1976) developed OGIVIA3, a computer program to estimate these item parameters.
The effectiveness of this estimation procedure for use in the Owen algorithm was
reviewed by Gugel, Schmidt, and Urry (1976). OGIVIA3 has been revised (Croll &
Urry, in prep.) and has been renamed ANCILLES.

The purpose of the present paper is to evaluate the effectiveness of two
Bayesian ability estimation procedures with a correction for regression using
known and estimated parameters. Specifically, the studies simulated the Owen
algorithm and Bayes modal testing methods in both adaptive and static mode with

a correction for regression using known parameters and the parameters estimated
using ANCILLES.

Study 1:
An Analysis of the Verbal Scholastic
Aptitude Test

Background and Purpose

Lord (1968) applied the 3-parameter logistic model developed by Birnbaum
(1968) to the Verbal Scholastic Aptitude Test (VSAT). Until Lord”s article,
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little research had been conducted using Birnbaum”™s model. However, since this
article, with the exception of a few articles involving the maximum likelihood
procedure (Bejar, Weiss, & Gialluca, 1977; Kolakowski & Bock, 1970, 1972; Wood,
Wingersky, & Lord, 1976), the overwhelming majority of latent trait research has
applied the work of Birnbaum to adaptive tests and not to conventional tests.
Samejima (1968) detailed the mechanics of a Bayes ability estimator based on a
response pattern of test items. She proved that with an assumed normal distri-
bution of ability as a prior distribution, and using the ICC as a likelihood
function, the mode of the posterior distribution will provide an absolute maxi-
mum, which can be used as an ability estimate. Urry (1976) incorporated the
Bayes modal procedure in the second stage of his item parameter estimation pro-
gram. Owen (1975) developed a Bayesian procedure for estimating ability; howev-
er, this procedure was developed for the adaptive mode. Bejar and Weiss (1979)
programmed the Owen algorithm for scoring static tests, but no data on its ef-
fectiveness were made available.

The purpose of this study was to investigate the efficiency of the Bayes
modal and Owen”s Bayesian ability estimation procedures relative to a conven-
tional rights—only scoring. In particular, the issues investigated are (1) con—
ditional bias, (2) conditional accuracy, and (3) precision of test scores.

Design of the Study

Artificial data were generated according to the 3-parameter logistic model:

= - - _ -1
P, (8) c, + (1 c;) [1 + exp(-1.7a_(8 b:))1] [1]
using the LVGEN program developed by Urry (1971). This program provided vectors
of responses, correct (1) or incorrect (0), for the simulated examinees (sims).
The test items used had the parameters of the first 80 VSAT items reported in
Lord (1968).

For the purpose of this study, it was assumed that the item parameters re-
ported in Lord”s study were the actual parameters and not estimated, as they
actually were. The 80 item parameters were administered to 2,000 sims from a
normal distribution (mean 0, variance 1) generated by the LLRANDOM Computer Pro-
gram (Learmonth & Lewis, 1973) in conjunction with the LVGEN program. The re-
sulting vectors of simulated binary responses were analyzed by the ANCILLES Pro-
gram; estimates of the 80 "known" VSAT parameters were the resultant output.
This allowed a comparison of the robustness of the Bayesian ability estimation
programs to inaccuracy in the item parameter estimates. An additional 2,000
normally distributed sims were administered the VSAT items. This permitted com-
putation of the correlation of known ability with the various ability estimates
and the mean and variance of raw scores so that a Z-transformation could be com-
puted. This allowed comparison of a simpler scoring procedure based on classi-
cal test theory with the two scoring procedures based on latent trait theory.

Five conditions of scoring the same item responses were examined: (1) Bayes
modal ability estimates based on known item parameters, (2) Bayes modal ability
estimates based on estimated item parameters, (3) Owen”s Bayesian ability esti-
mates based on known item parameters, (4) Owen”s Bayesian ability estimates
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based on estimated item parameters, and (5) ability estimates based on raw score
to Z-score transformations.

To properly address the evaluation mentioned above required examination of
the test score characteristics as a function of ability level. Therefore, the
ability distribution consisted of 100 sims at each of 11 equally spaced values
in the interval -2.5 < b < +2.5.

For each of the five simulated test administrations, conditional bias, con~
ditional accuracy, and conditional precision were estimated from the 100 obser-
vations at each ability level (8,).

Conditional bias. This statistic provided an indicator of the magnitude
and direction of the error between true ability and ability estimated by each of
the scoring procedures at various levels of the trait continuum where

H = - a — 2
bias belee 6, 6, 3 [2]
where :
be = average bias for each of 11 values of on the trait
continuum,
Ge = true ability of examinees for each value, and
@e = average ability estimates for each value.

Conditional accuracy. The accuracy of the test scores was provided by the
root mean square error computed for the 11 values using the formula
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where
Eile = root mean square error conditional upon ability level,
n = 100,
;5 = known ability level, and
Oe = the ability estimate.

Conditional precision. This statistic was provided by the test score in-
formation function. The information generated by a score about a given ability
level can be compared to the precision of measurement at that point. Samejima
(1977) stated that the inverse of the square of information can be considered as
the standard error of measurement when number of items and test information are
sufficiently large. Birnbaum (1968) provides a formula for information:
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where Ie (0') is the information about § provided by score X. Sim scores were

calculated at each of 11 equally spaced ability levels =2.5 < x < 42.5; these
test score means were used to estimate the slope by fitting a curve through
three consecutive values. Because test score means were required on either side
of the information point, information values could not be computed for the ends
of the continuum (-2.5, +2.5).

Results

Estimation bias. The comparisons between the two Bayesian procedures for
scoring static tests using estimated parameters and the raw score to Z-score
transformation are in Figure 1. The figure shows that the absolute value of
bias for the Z-score was much greater than for the two Bayesian procedures at
ability level -2.5. The absolute value of Bayesian score bias tended to be
equal to or lower than that of the Z-score along the entire trait continuum. Of

the two Bayesian procedures, the Bayes modal bias was greater at upper trait
levels.

Figure 1
Bias of Three Scoring Procedures, Using
Estimated Item Parameters in a Static Test
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Table 1 shows the bias values of the two Bayesian procedures under condi-
tions of known and estimated parameters, as well as the conventional Z-score
method. The Bayes modal scores using known parameters still suffered to some
degree from the regression to the mean effect, although deviations from zero
were mostly lower than the bias from either estimated Bayes or Z-score methods.
Improvements to the estimation of item parameters could decrease the bias of the
two Bayesian static procedures significantly.
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Table 1
Bias of Conventional Z-Score Method and Two Bayesian
Scoring Methods Using Estimated and Known Parameters
in a Static Test

Parameters
Estimated Known
Ability Bayes Bayes
Level Z-Score Modal Owen”s Modal Owen”s
-2.5 1.027 .789 .541 482 .366
-2.0 .621 .488 .253 . .260 .059
-1.5 . 300 \ .221 .022 .087 -.143
-1.0 .010 .077 -.062 .065 -.142
-0.5 -.097 .022 -.058 .051 -.083
0.0 -.200 -.056 -.081 -.019 -.064
0.5 -.126 -.058 -.035 -.023 -.008
1.0 .031 -.048 - .037 ~-.027 . 046
1.5 .220 -.013 .132 -.030 .104
2.0 .260 .023 .206 -. 044 .138
2.5 .130 .044 .188 -.060 .109

Figure 2
Root Mean Square Error of Three Scoring Methods
Using Estimated Item Parameters in a Static Test
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Conditional accuracy. Figure 2 displays the root mean square error (RMSE)
of ability estimation for the two Bayesian algorithms using estimated parameters
and the Z-score method. All three methods followed the same trend of having
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high RMSE values at the low—ability levels and diminishing asymptotically to a
value of about .2 at the trait level +.5. This phenomenon appeared to be a
function of the test itself, with its emphasis on more precise measurement at
the higher ability levels. The conventional scoring procedure tended to have
the highest inaccuracy, with two exceptions (ability levels =1.0 and +2.5).
Table 2 lists the RMSE values for the two Bayesian methods using known and esti-
mated parameters.

Table 2
Root Mean Square Error of the Z-Score Method
and Two Bayesian Scoring Methods Using
Estimated and Known Parameters in a Static Test

Parameters
Estimated Known

Ability Bayes Bayes
Level Z=Score Modal Owen”s Modal Owen”s
-2.5 1.048 .875 .686 .703 .537
-2.0 .652 .567 412 ~.486 .365
-1.5 . 386 .418 . 405 482 <463
-1.0 .263 . 325 .361 .370 <425
-0.5 .296 .284 .338 .300 .382

0.0 .328 243 .273 . 241 .288

0.5 .281 .203 .221 .191 .213

1.0 264 .195 .215 .185 212

1.5 .313 .176 .233 .160 <204

2.0 .314 .205 .293 .188 .239

2.5 .191 .266 .280 .252 .231

Conditional precision. The test score information values at the nine abil-
ity levels, =2.0 to +2.0, for the two Bayesian scoring methods using estimated
parameters and the conventional scoring procedure, are in Figure 3; numerical
values are in Table 3. The data in Table 3 coincide with two trends of the ear-
lier study (Lord, 1968, p. 998) on the VSAT. First, the data in Table 3 (as
well as in Table 2) illustrate the more precise measurement on the VSAT at upper
ability levels. Second, the data show that significant increases in precision
can be gained by using the Bayesian scoring procedures.

The original study weighted items based on the logistic model and found
this procedure provided greater information than conventional scoring. The av-
erage score information value for conventional scoring was 12.195; the average
for the Owen scoring was 13.800 and was 14.120 for the Bayes modal scoring, with
estimated item parameters used in the scoring procedures. Slightly higher aver-
ages (13.960 for the Owen and 14.503 for the Bayes modal scoring) occurred when
the known item parameters were available.

Fidelity. Fidelity coefficients, the correlations of the known ability of
2,000 sims from a normal population with their estimated abilities, were comput-—
ed from the various test scoring methods and are in Table 4. Although the in—
crease in the correlation is only roughly .02 for the two Bayesian methods over
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Figure 3
Test Score Information of Three Scoring Methods, Using
Estimated Item Parameters in a Static Test
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Table 3
Test Score Information of Conventional Z-Score Method
and Two Bayesian Scoring Methods Using Estimated and
Known Parameters in a Static Test
Parameters
Estimated Known
Ability Bayes Bayes
Level Z=Score Modal Owen”s Modal Owen”s
-2.0 1.910 ‘ 2.285 2.215 2.185 1.876
-1.5 2.775 2.713 2.817 2.796 3.177
-1.0 5.316 6.343 6.640 6.930 6.963
-0.5 12.545 10.645 10.189 9.986 9.407
0.0 13.963 15.200 15.484 14.807 14.725
0.5 16.876 23.884 22.631 26.225 24.184
1.0 25.307 30.190 29.836 29. 441 28.582
1.5 29.386 37.179 36.691 38.875 38.288
2.0 26.066 26.880 25.294 28.293 26.353

the conventional method, at this high level (.94 to .96) the result is highly
significant (p < .0001). The fidelity coefficient of the 80-item VSAT test
scored with either Bayesian method is comparable (via the Spearman-Brown proph—
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Table 4
Correlation of Known Ability with Ability
Estimates for a Conventional Z-Score
Scoring Method and Two Bayesian Scoring
Methods Using Known and Estimated
Parameters in a Static Test

Scoring Method r
Conventional Z-Score Transformation .941
Bayes Modal
Estimated Parameters .959%
Known Parameters . 960%
Owen”s Bayesian
Estimated Parameters .958*%
Known Parameters .958%

*Values significantly different from conven-
tional Z-score transformation r at p < .0001.

ecy formula) to a fidelity coefficient of a 120-item test scored conventionally.
Also of interest is the fact that the fidelity coefficients computed using
either Bayesian procedure with known item parameters were not significantly dif-
ferent from the fidelity coefficients computed from Bayesian scoring with esti-
mated item parameters. This attests to the robustness of the Bayesian scoring
procedure to errors in item parameter estimation.

Conclusions. It is apparent that improvements in the measurement of exam-—
inees on conventional tests can be realized by the use of mathematical scoring
procedures that are based upon latent trait theory. Bias seems to be dimin-
ished, and test score accuracy and precision are improved with these two Bayes-
ian scoring procedures, compared to the conventional scoring method.

Study 2:
An Analysis of the Effect of the
Correction for Regression and Parameter Estimation
Errors Upon Two Bayesian Adaptive Testing Procedures

Purpose

The present study simulated an adaptive test using both Owen”s Bayesian
procedure and the Bayes modal procedure. The research attempted to determine
the effect of item parameter estimation errors upon the test characteristics as
a function of ability level. In addition, this study investigated the effect of
a correction for regression applied to the ability estimates obtained using the
Owen algorithm. The Bayes modal procedure already incorporates this regression
correction.

Owen”s Bayesian Procedure and the Correction for Regression

The Bayesian adaptive ability estimation procedure has been well documented
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elsewhere (McBride & Weiss, 1976; Owen, 1975) and will not be reported here.
However, to understand the correction, a brief conceptual description is in or-
der. The procedure assumes a normal distribution of the ability estimates with
mean O and variance 1. The item bank is then scanned to identify the item that
will minimize the expectation of the posterior variance of the distribution if
administered. That item is then administered, and a new ability estimate (mean
of posterior distribution) and variance about that estimate are computed. The
ability estimate is then used as the prior mean, and an item is again selected
to minimize the expected value of the variance of the posterior distribution.
This procedure is repeated iteratively.

A correction for regression is applied to the final ability estimate. The
correction consists of dividing the final ability estimate by what Urry (1977)
refers to as the test reliability. This reliability is 1.0 minus the Bayesian
posterior variance, and this value obviously will differ for each individualized
test. Urry believes that more accurate measurement is attained by terminating
adaptive tests based on a fixed posterior variance, rather than a fixed number
of items. However, Urry (1977) concedes that this correction should be effec-—
tive for both fixed and variable-length tests. This study investigates the
fixed-length test only.

Bayes Modal Adaptive Procedure

The Bayes modal adaptive ability estimation procedure developed for this
study consisted of two algorithms——one to estimate ability and one to select
appropriate items to be administered. The ability estimation algorithm was
based on the Bayesian scoring procedure developed by Samejima, using the item
response function and an assumption of a normal distribution of ability. Urry
(1976) uses this procedure in the second iterative stage of his item parameter
estimation procedure. The item selection procedure chooses that item which pro-
vides the highest level of item information for the current ability estimate.
The item response function for all administered items is computed. The product
of all item response functions and the assumed normal density function is the
posterior distribution; the mode of this distribution is the ability level esti=-
mate. This value is then unregressed using the same correction as stated earli-
er. However, unlike the Owen procedure, the corrected estimate is then used as
the starting point for the next iteration of item selection.

Design of the Study

Two "ideal"” banks were generated, each consisting of 101 items at equal
increments of b = .05 over the range =-2.5 < b < +2.5. One bank used items whose
item discriminations were set at a = 1.6; the other, at a = .8. The item param-
eters were estimated by the ANCILLES program on a group of 50 items based on the
responses of 2,000 sims. The procedures differed from Study 1 in that the items
were scrambled with the parameters from item banks of another study (Gorman, in
prep.). The analysis was based upon three test characteristics as a function of
ability level--bias, accuracy, and precison-—as documented in Study 1.

Results

Conditional bias. Figure 4 displays the score bias from the 25-item adap-
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tive test employing the Owen algorithm, with and without the correction for re-
gression, and the Bayes modal procedure. The three lines represent the bias in
the adaptive procedures using the item bank with item discriminations of a =
1.6, based on estimated parameters. The Owen procedure with the correction pro-
vided the least bias.

Figure 4
Effect of Regression Correction Upon Bias of
25-Item Bayes Modal and Owen Adaptive Tests
(a = 1.6) with Estimated Parameters
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Table 5 shows the effect of regression upon the ability estimates from the
Owen procedure using known and estimated parameters. An interesting result is
that the regression phenomenon was more prevalent when known parameters were
used in the Owen scoring with a correction than with estimated parameters using
the same correctinn. This may be due to sampling errors in parameter estimation
working in the preferred direction on this criterion.

Using the less discriminating item bank (a = .8), the regression was more
extreme, but the correction using estimated parameters again adequately compen-
sated. The regression correction was less effective when using known parame-
ters.

The Bayes modal adaptive test did not fare as well as the Owen adaptive
test. This can be seen in Table 6, which lists the bias for the two item banks
under conditions of known and estimated parameters. With known parameters, the
bias was tolerable with the better item bank. The bias under the other three
conditions was significantly greater.

Conditional accuracy. Table 7 shows the effect of the regression correc—
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‘ Table 5
Effect of Regression Correction Upon Bias of the 25-Item
Owen”s Adaptive Test with Estimated and Known Parameters
for Two Item Banks

Item Bank Parameters
and Estimated Known
Ability Level Corrected Uncorrected Corrected Uncorrected

3;.8 Item Bank

-2.5 .063 .468 -.055 416
-2.0 .021 .351 -.167 .237
-1.5 -.036 .222 -.127 .179
-1.0 -.029 .146 -.124 .091
-0.5 -.053 .042 -. 067 .043

0.0 .008 .007 .008 .006

0.5 .049 -. 047 .102 -.019

1.0 .011 -.165 .075 -.143

1.5 -.027 -.283 .154 -.186

2.0 .046 -.306 .268 -.205

2.5 .036 -.403 .275 -.314
=1.6 Item Bank

T «2.5 .091 .326 -.008 .242
-2.0 .019 .207 -.077 .125
-1.5 .055 .193 .001 .151
-1.0 -.004 .093 -.046 .061
-0.5 -.040 .013 -.068 -.009

0.0 .031 .028 .007 .006
0.5 .115 .055 .071 .010
1.0 .054 -.046 .064 -.050
1.5 .071 -.077 .117 -.059
2.0 .054 -.140 .161 -.077
2.5 .041 -.221 .153 -.150

tion upon the root mean square error (RMSE) of the 25-item Owen adaptive test.

The average RMSE value for the Owen ability estimates using known item parame-—

ters without the correction was .225; using estimated item parameters with the

correction, .233; using known item parameters with the correcton, .241; and us-
ing estimated item parameters without the correction, .225.

The a = .8 item bank followed this same trend, only to a greater degree,
with the exception that the highest average RMSE value was with the Owen proce-
dure using known item parameters and corrected for regression. This result is
counter to the expected result. The reason for this may again be due to errors
in item parameter estimation favorable to the Owen procedure. Another trend for
both item banks was that the RMSE values were lowest about the mean and in-
creased in magnitude as a function of distance from the mean.

Table 8 lists the RMSE for the Bayes modal adaptive test. On the item bank
- with a = .8 using estimated parameters, the conditional accuracy was poorer than
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Table 6
Bias of the 25~Item Bayes Modal Adaptive Test
Using Estimated and Known Parameters,
with Two Item Banks

Item Bank
a= .8 a=1.6

Ability Estimated Known Estimated Known
Level Parameters Parameters Parameters Parameters
-2.5 .575 .213 . 324 . 115
-2.0 .382 .133 .232 .085
-1.5 .262 .101 .228 .156
-1.0 .094 .027 .143 .097
-0.5 . 049 .035 .058 . 047

0.0 .066 .043 .143 .059

0.5 .087 . 084 .099 . 066

1.0 -.049 -.013 -.067 -.002

1.5 -.067 -.101 -.002 -,038

2.0 -.195 -.092 -.208 -.058

2.5 -.343 -.080 -.251 -.038

Table 7

Effect

of Regression Correction Upon Root Mean Square Error

of the 25-Item Owen Adaptive Test with Estimated and
Known Parameters for Two Item Banks

Item Bank
and

Parameters

Estimated

Known

Ability Level Corrected Uncorrected Corrected Uncorrected

a=.8 Item Bank
- -2.5 .370 .556 .413 .532
-2.0 .423 497 454 417
-1.5 . 404 -403 . 384 « 347
-1.0 .432 .388 .433 <349
-0.5 .368 .305 . 387 .310
0.0 .352 .291 .390 .313
0.5 447 .370 . 420 .325
1.0 401 .372 445 .376
1.5 .351 404 416 . 357
2.0 .339 416 .531 411
2.5 .395 .512 .541 475
a=1.6 Item Bank
=2.5 .2907 4054 . 2440 .3181
-2.0 2411 .2973 .2481 2434
-1.5 .2629 .3020 .2202 . 2496
~-1.0 .1864 .1926 .2088 1927
-0.5 .2223 .1980 .2353 .2025
0.0 22297 .2072 .2133 .1906
0.5 .2351 .1945 .2386 .2034
1.0 .2142 .1953 .2399 .2118
1.5 .2069 .1923 .2512 .2060
2.0 .2333 +2452 .2670 .2033
2.5 .2487 .2988 .2861 .2558
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Table 8
Root Mean Square Error of the 25-Item Bayes Modal Adaptive Test
Using Estimated and Known Parameters, with Two Item Banks

Item Bank
a = .8 a=1.6
Ability Estimated Known Estimated Known
Level Parameters Parameters Parameters Parameters
-2.5 .783 445 .589 .393
-2.0 .593 431 .393 .327
-1.5 428 .373 .388 .279
-1.0 . 366 . 386 .290 . 245
-0.5 411 .384 .261 . 264
0.0 412 .351 .339 .290
0.5 426 414 .268 .233
1.0 .321 .327 .234 .228
1.5 .328 .395 172 .215
2.0 .320 .368 .269 .206
2.5 447 .340 .364 .210
Table 9

Test Score Information of Two 25-Item Bayesian Tests,
Using Known and Estimated Parameters, with Two Item Banks

Item Bank
Adaptive Test a= .8 a=1.6
and
Ability Known Estimated Known Estimated
Level Parameters Parameters Parameters Parameters
Owen”s Bayesian
-2.0 2.591 4,738 15.776 17.847
-1.5 5.519 8.359 14.786 22.501
-1.0 5.311 6.475 23.878 21.238
-0.5 7.975 8.726 21.079 21.571
0.0 9.808 9.009 25.752 28.516
0.5 5.181 6.974 26.434 21.809
1.0 5.425 6.021 22.470 21.041
1.5 8.975 9.519 26.369" 24.226
2.0 9.863 5.897 18.315 23.473
Bayes Modal
-2.0 1.325 4.210 5.067 9.898
-1.5 2.850 5.822 5.435 13.496
-1.0 4.476 5.689 8.919 13.241
-0.5 4.859 6.425 11.277 11.670
0.0 6.347 8.906 10.608 12.359
0.5 4.982 5.695 17.014 18.389
1.0 7.565 6.504 24.089 15.992
1.5 6.621 5.594 21.752 19.452
2.0 5.142 7.703 8.609 23.604
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with the Owen procedure. On the other hand, with the same item bank using known
parameters, accuracy was greater with the Bayes modal procedure. With the bet-

ter item bank, the Owen procedure was superior to the Bayes modal on this crite-
rion.

Conditional precision. Table 9 lists values of score information for
25-item tests with both Bayesian adaptive methods and two item banks. The item
parameter estimation errors rearranged the test score distribution and, hence,
its information. The Owen procedure provided more information about the mean
and dropped off somewhat at the extremes. The Bayes modal procedure provided
considerably less information; hence, the standard error of measurement was
larger at all ability levels.

Conclusions

The correction for regression effectively diminished the regression to the
mean effect. Fortunately, the errors of parameter estimation provided by ANCIL-
LES worked in favor of less biased measurement. The accuracy of the Owen adap—
tive fixed-length test with this correction was somewhat poorer with parameters
estimated by ANCILLES than with known parameters. This drop in accuracy did not
appear to be severe enough to discount the Owen procedure for adaptive testing.
The Bayes modal adaptive procedure as implemented in this study needs further
work to equal or surpass the Owen algorithm, even with more accurately estimated
parameters. '
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