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Introduction 

Computerized adaptive tests (CATs) are individualized tests that are administered in an 

automated environment. CATs are used for estimating the ability of a student or for making a 

decision on, for instance, the most appropriate training program for that student. It has been 

shown that, compared to traditional linear tests CATs yield a considerable gain in efficiency. 

In the literature (see, e.g., Wainer, 1990 and Eggen & Straetmans, 2000), it has been reported 

that halving the average number of items needed is feasible, while at the same time the 

accuracy of the ability estimate or the decisions taken is maintained. CATs make use of item 

banks which are calibrated using item response theory (IRT) (Hambleton & Swaminathan, 

1985). The gain in CATs is realised by selecting, on the basis of the results on previously 

administered items, the most informative item from an available item bank. During testing, 

the optimal item is chosen after every item for every student and thus the optimal test is 

assembled and administered. 

CAT-tailored testing has a number of frequently mentioned advantages: the gain in 

measurement efficiency goes hand in hand with the fact that each student is challenged at his 

or her own level because items which are too difficult or too easy for a given student will 

never be administered. Initially, the intended optimality, and by that the item selection 

method, was based solely on a measurement theoretic or psychometric criterion. The criterion 

of maximum item information at the current ability estimate is in common use (Van der 

Linden & Pashley, 2000). The increasing number of CAT applications has resulted in more 

consideration giving to content-based and practical requirements or conditions in item 

selection algorithms. Applying content control (Kingsbury & Zara, 1991) and exposure 

control (Eggen, 2001) is routinely possible. In modern CATs, items that are psychometrically 

optimal are selected from an item bank in which is care taken to fulfil these practical 

conditions.  

The aim of the present study was to determine whether it is possible to come towards 

tested persons even more by not only fulfilling the practical conditions, but also by releasing 

the psychometrically optimal selection. This is because that psychometrically optimal 

selection of items has the consequence, that for an individual student, items will always be 

chosen which he or she, at his or her thus far known ability level, has a 50% probability of 

answering correctly. Thus, as a rule, students taking  a CAT  will answer about only half of 

the items correctly. Although in the scoring of a student the difficulty of the items is taken 

into account, it can be the case that CAT tests are perceived as very difficult for each 

individual student and this could have possible negative side effects, for example, enhanced 
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test anxiety and, consequently a possible lower test performance. This could especially be the 

case for tests which are administered in primary and secondary education, where traditionally 

tests are constructed in such a way that the average student has, on average, a somewhat 

higher probability (60 or 70%) of correctly answering the items. 

One approach for reducing possible negative effects on the difficulty of the items is 

self-adaptive testing (Rocklin & O� Donnell, 1987}. Self-adapted tests (SATs) are CATs in 

which the difficulty level of each item is chosen by the examinee rather than by the CAT 

algorithm. SATs have been studied rather extensively in recent years. The meta-analysis by 

Pitkin & Vispoel (2001), comparing SATs with CATs, gives an overview. In general, test 

anxiety reduction is reported in SATs and there is also a little gain in the average performance 

of examinees if SATs are compared to CATs. The reduction of anxiety as well as a possible 

larger bias in the ability estimates in the SATs as a consequence of self-selection of the items 

are possible explanations. Compared to CATs, SATs are less reliable: more items are needed 

to reach the same measurement precision. Finally, it can be mentioned that, for students a 

SAT is more time consuming to take a sat than a CAT, and that implementing a sat in practice 

still has a number of issues that are not completely clear. 

In the present study the possibilities for using CATs with selection methods in their 

algorithms which lead to higher (or lower) success probabilities than 50% were explored. 

Changing the CAT algorithm for that reason was also proposed in a study by Bergstrom, Lunz 

& Gershon (1992). They successfully applied an algorithm which chooses easier items, but 

only for the case of the one-parameter logistic IRT model. In this study, for both the one- and 

the two-parameter logistic IRT model, two CAT selection methods, choosing items with 

varying difficulties, were developed and the consequences for the measurement efficiency 

evaluated. 

 

Item selection in CAT 

Computer adaptive tests presuppose the availability of an IRT-calibrated item bank. 

The algorithms for adaptive tests operate on the basis of the item parameters from an IRT 

model. The IRT model used in this study is the two-parameter logistic model (2pl). In this 

model, the probability of correctly answering item i, also called the item response function, is 

given by 
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Here, iβ  is the location parameter of the item. This parameter is associated with the difficulty 

of the item. It is the point on the ability scale at which the student has a 50% chance of 

correctly answering the item. Parameter iα  is the item's discrimination parameter. In case the 

discrimination parameter for all items is the same i aα = , we have the special case of the one-

parameter logistic model (1pl). In a calibrated item bank, estimates of the values (of iα  and) 

iβ  for each item have been filed in the bank. After each item has been administered, the next 

item is selected from the item bank. An item is selected that best matches the ability 

demonstrated by the candidate up to that point.  

Usually the (Fisher item) information is used for selecting. In the case of the two-parameter 

model, this function is given by 
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This item information function expresses the contribution an item can make to the accuracy of 

the measurement of a person as a function of his or her ability. This becomes clear if we 

realize that the estimation error of the ability estimate can be expressed as a function of the 

sum of the item information of the items administered: )�(/1)�(
1

k

k

i
ik Ise θθ ∑

=

= . 

Items are selected according to the following procedure: after the ability estimate kθ�  has been 

determined, the information for each item that has not yet been administered is computed at 

this point; the item whose information value is highest is then selected and administered. 

 

The item information function 

For dichotomous items, the Fisher item information is a single-peaked function of the 

ability. In the two-parameter model, it shows that, for each item, the information reaches its 

maximum at the value of the location parameter (difficulty) of the item ( iβθ = ). In addition, 

it is clear that the discrimination parameter has a great influence on the information. The 

information is larger as ia  is larger. 
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Figure 1. Item information functions : 1 2 0β β= =  and 1 21, 2α α= =  
 
 

 

 

 

The relation between the information in an item and the probability of succeeding on an item 

in the 1pl and the 2pl is given in Figure 2. 
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One can see that an item gives maximum information at success probability of 0.50. At other 

probability levels, there is always less information. 

 

Item selection on the basis of success probability 

For each item, ability levels can be defined at which there is a certain success probability on 

an item. This is what we call the probability points of an item. For instance, the p-60 point of 

an item is the ability level at which there is a probability of 0.60 to answer the item correctly.  

The p-points are easily determined. 

Consider the probability of correctly answering an item 
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For a given probability, the ability pertaining to that point is then determined from: 
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from which it follows that 
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Then the p-x point (with a probability of x) of an item is defined as 
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It is easily seen that the p-50 point of an item equals the difficulty parameter iβ .  

If the item selection in a CAT takes places on the basis of success probability, this 

can be achieved as follows. Select the item for which the distance between the current ability 

estimate and the _ip x  point is minimal: 

min _ii items
p xθ

∧

∈
− . 
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Performance of item selection based on nearest p-point 

To evaluate the performance of the item selection methods, simulation studies were 

conducted. First, the results of a simulation study with an item bank calibrated with the 1pl 

will be given, followed by a study with an item bank calibrated with the 2pl. 

 

The one-parameter model item bank 

The 1pl item bank consists of 300 items with β ~ N(0,1). The CAT algorithm used 

starts with an item of intermediate difficulty (one item randomly selected from 114 items with 

0.5 0.5β− ≤ ≤ ) and has a fixed test length of 40 items. In the simulation, samples of 4000 

abilities were drawn from the normal distribution : θ ~N (0,1). The selection methods at the 

different success probabilities were compared. As baselines in the comparison, the 

simulations are also conducted with random selection of all items, and the optimal maximum 

information selection at the current ability estimate. The results of the simulations are given in 

Table 1. 

 

Table 1: simulation 1pl CAT: selection nearest p-point. 
 

Selection 
method 

Mean error 
µ

1
1/ ( )

n

i i
i

n θ θ
=

−∑  
mean ¶( )kse θ  (sd) mean % correct (sd) 

Max info 0.006 0.328 (0.015) 49.7 (8.6) 
P_10 0.041 0.435 (0.009) 22.4 (14.5) 
P_20 0.048 0.384 (0.045) 27.3 (12.4) 
P_30 0.035 0.352 (0.024) 33.5 (10.3) 
P_40 0.016 0.334 (0.015) 41.1 (8.8) 
P_50 -0.013 0.328 (0.012) 50.0 (8.5) 
P_60 -0.016 0.333 (0.017) 58.1 (9.2) 
P_70 -0.029 0.351 (0.024) 65.4 (11.0) 
P_80 -0.043 0.379 (0.044) 71.4 (13.5) 
P_90 -0.034 0.424 (0.098) 75.2 (15.6) 
Random 0.007 0.383 (0.078) 50.0 (19.9) 

 
First it is noted that there is, on average, a small discrepancy between the known abilities and 

the estimated abilities, and the effect seems to be systematic: when the items with a success 

probability lower than 0.50 are chosen, there is a overestimation of the ability; when selection 

takes places with higher success probabilities, the ability is generally slightly underestimated. 

This effect is in line with the known small bias of the ability estimator used (Warm, 1989), 

but the effect is opposite to the bias in the maximum likelihood estimator of the ability as was 



 8

reported in Pitkin & Vispoel (2001) in case a test is not optimally assembled at an ability 

level.  

The selection methods show in the results on the percentages correct an effect in the 

desired direction. Selecting at a success probability higher or lower than 0.50 does not 

necessarily lead to the same percentage of correct answers of the simulated examinees. The 

more extreme the probability is, the larger the discrepancy between the selection percentage 

and the percentage correct. This can be explained by the fact that only a limited number of 

extremely difficult and extremely easy items are available in the item bank. 

If we look at the mean standard errors of the ability estimates with the selection 

methods, the expected effect can be seen. In the 1pl model, selection at maximum information 

is equivalent with selection of the item at the nearest p-50 point. Non-optimal selection, at 

other success probabilities, has an expected negative effect on measurement precision. The 

effect with the current item bank is symmetric around the p-50 point selection: selection at the 

nearest p-(50+x) point leads to about the same loss in precision as selection at the nearest p-

(50-x) point.  

The performance of selection methods can be compared better if the mean standard 

errors are considered as a function of the test length. In the next figures the results for the 

selection methods with a success probability of higher than 50% are plotted. 
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Figure 3 
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Figure 4 
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It can be seen that the easier the selected items, the greater the loss in measurement precision 

is. The loss in precision when items are selected at the nearest p-60 and p-70 point is rather 

small. Selecting at p-80 is as bad as random selection, while selection at p-90 is even worse. 

 

Table 2 gives the number of items needed on average with a selection method to achieve 

measurement precision which is equivalent with a test of 30 randomly drawn items from the 

bank. 

Table 2. 1pl bank; selection on p-points; equivalence with random test of 30 items 

Selection method Number of items 
Max info 22 
p-60 23 
p-70 25 
p-80 30 
p-90 37 
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The two-parameter model item bank 

The 2pl item bank consists of 300 items with β ~ N(0,0.35) and ln (1,0.3)Nα :  The CAT 

algorithm used starts with an item of intermediate difficulty (one item randomly selected  

from 113 items with 0.17 0.17β− ≤ ≤ ) and has a fixed test length of 40 items. In the 

simulation, samples of 4000 abilities were drawn from the normal distribution : θ ~N 

(0,0.35). The selection methods at the different success probabilities are compared in Table 3. 

 

Table 3: simulation 2pl CAT: selection nearest p-point. 
 

Selection method Mean error 
µ

1
1/ ( )

n

i i
i

n θ θ
=

−∑  
mean ¶( )kse θ  (sd) mean % correct (sd) 

Max info 0.001 0.085 (0.013) 49.0 (11.9) 
P_10 0.011 0.117 (0.033) 26.5 (18.5) 
P_20 0.008 0.116 (0.020) 28.5 (14.1) 
P_30 0.005 0.114 (0.013) 34.1 (10.6) 
P_40 0.001 0.110 (0.010) 41.6 (8.9) 
P_50 0.001 0.111 (0.008) 49.7 (8.5) 
P_60 -0.009 0.110 (0.009) 58.0 (9.4) 
P_70 -0.006 0.115 (0.015) 64.9 (11.8) 
P_80 -0.009 0.114 (0.018) 70.8 (15.0) 
P_90 -0.012 0.124 (0.033) 74.5 (17.6) 
Random 0.001 0.132 (0.033) 49.7 (19.5) 

 

The results for the mean percentages correct are about the same as in the case of the 1pl item 

bank. The same is true for the systematic bias in the ability estimates, although there is hardly 

any bias. The results on measurement precision show that selecting on higher or lower p-

points has a very negative impact compared to maximum information selection. One sees that 

the more extreme the success probabilities are, the larger the loss in precision is , but in any 

case the loss is considerable, which is even clearer from Figure 5. 
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Figure 5 
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Table 4 gives the number of items needed on average with a selection method to get 

measurement precision which is equivalent with test of 30 randomly drawn items from the 

bank. 

 

Table 4. 2pl bank; selection on p-points; equivalence with random test of 30 items 

 
Selection method Number of items 
Max info 10 
p-50 22 
p-60 21 
p-70 25 
p-80 23 
p-90 26 

 

It is seen that selecting at the nearest p-60 point doubles the number of items needed 

compared to maximum information selection. So, selecting at the nearest p-point of an item 

works quite well in an item bank based on the 1pl model, but for item banks calibrated with 

the 2pl model, the results are very poor. 
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Alternative method for selecting with higher or lower success probabilities.  

The problem encountered with selection on success probability is due to the fact that, 

in selection, only the success probability of an item is considered, but not the values of the 

information function of the items. In the 1pl model, this has no consequences owing to the 

fact that, in that case, all information functions have the same shape; they only differ in the 

point where they reach their maximum ( iθ β= ). This implies that the differences between, 

for instance, a p-50 point and a p-60 point of the item is constant for every item. In the 2pl 

model, however, the (absolute) value of the information plays an important role. Neglecting 

this and selecting only on success probability has negative consequences. 

What goes wrong is illustrated in Figure 6 which shows the item response curves and 

the information functions of two items with the same difficulty but with different 

discrimination parameters. For the first item, the discrimination parameter is 1iα = (dotted 

curves); for the second item, 2iα = . On the ability axis at point 1, the coinciding p-50 point 

of  

Figure 6: Item response curves and information function of two item in 2pl. 
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higher for item 2. 
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In order to overcome this problem, a new selection method was developed which 

takes account of the success probability and of the absolute value of the information. The idea 

is not selecting items with maximum information at the current ability estimate, but selecting 

the item with maximum information at a lower or a higher level of the ability than the current 

ability estimate. If easier items (with higher success probabilities) are wanted, one chooses 

items which are optimal (have max info) at an ability level which is below the current ability 

estimate. If harder items are desired, the items are selected at an ability point above the 

current estimate.  

Suppose the current ability estimate is $θ , then easier or harder items are selected by 

searching at an ability level of $ yθ − ,with y  positive for easier items and negative for harder 

items. The value of the shift on the ability can be deduced from the desired success 

probability. In the 2pl model, it yields  

 

exp ( )( )
1 exp ( )

i i
i

i i

yP
y

α θ βθ
α θ β

+ −
=

+ + −
 . 

 

From that it follows  

( )( ) ln
1 ( )

i
i i

i

Py
P
θα θ β
θ

+ − =
−

 . 

 

And in order to get a certain success probability, the shift on the scale is  

1 ln
1

i

i i

Py
Pα

=
−

 . 

 

So, for selecting items with a desired success probability of 60%, items are selected which 

have maximum information at  

 
^ 1 ln1.5

i

θ θ
α

= −  . 

 
In the one-parameter model, this selection method is equivalent to selecting items on p-points 

nearest to the current ability estimate. In the two-parameter model, however the selection is 

quite different. Applying the selection methods in the simulation studies on the same 2pl item 

bank gives the results in Table 5.  
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Table 5: simulation 2pl CAT: selection at shifted ability level 
 

Selection method Mean error 
µ

1
1/ ( )

n

i i
i

n θ θ
=

−∑  
mean ¶( )kse θ  (sd) mean % correct (sd) 

Max info 0.001 0.085 (0.011) 49.0 (12.2) 
P_10 0.010 0.100 (0.018) 28.6 (16.1) 
P-20 0.006 0.091 (0.012) 33.5(14.2) 
P_30 0.004 0.088 (0.012) 38.8(13.4) 
P_40 0.001 0.086 (0.013) 43.8(12.6) 
P_50 -0.003 0.085 (0.013) 49.4(12.3) 
P_60 -0.004 0.085 (0.012) 55.1(12.2) 
P_70 -0.002 0.088 (0.012) 60.9(12.6) 
P_80 -0.008 0.092 (0.015) 65.4(14.1) 
P_90 -0.011 0.101 (0.015) 71.7(15.6) 
Random 0.003 0.133 (0.031) 50.5(19.6) 

 

The results for the mean % correct are about the same as with selecting on nearest distance to 

p-points. The same is true for the systematic bias in the ability estimates, although there is 

hardly any bias with the new selection method. The results on measurement precision show 

that selecting easier or harder items is possible with the new selection method without a large 

loss in precision. This result is also seen from Figure 7. 
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Figure 7 
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It is clear that selecting easier or harder items with the new selection method does not cause 

much loss in measurement precision. If one aims at a success probability of 60%, there is 

hardly any loss; the more the items are chosen, the larger the loss in efficiency. But at all 

success probabilities, the random selection is far outperformed in contrast to the results with 

the selection on the p-points. This result will become clearer in Table 6. 

It gives the number of items needed on average with a selection method to get a measurement 

precision which is equivalent with a test of 30 randomly drawn items from the bank. 

 

Table 6. 2pl bank; selection shifted ability level; equivalence with random test of 30 items 

 
Selection method Number of  items 
Max info 10 
p-50 10 
p-60 10 
p-70 11 
p-80 12 
p-90 16 
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The new selection method seems to perform without any large loss in measurement precision: 

with the current item bank and algorithm it is possible to reach a percentage correct of 60% at 

the cost of, on average, 1 item compared to the optimal test.  

 

Simulation with item selection applying exposure control  

Because standard some form of exposure control is applied in the selection algorithm in 

modern CATs, it was investigated whether the new algorithm still works when exposure 

control is added to the CAT algorithm. The results of the same simulations, but combined 

with the application of the Sympson-Hetter exposure control with an maximum exposure of 

0.3 (see e.g. Eggen, 2001), are given in Tables 7 and 8. 

 
Table 7: simulation 2pl CAT: selection at shifted ability level and exposure control 

 
Selection with SH 0.3 Mean error 

µ
1

1/ ( )
n

i i
i

n θ θ
=

−∑  
Mean ¶( )kse θ  (sd) mean % correct (sd) 

Max info 0.002 0.098 (0.010) 49.0 (10.0) 
P_50 0.001 0.098 (0.008) 49.5(10.0) 
P_60 0.002 0.100 (0.011) 54.5(11.4) 
P_70 -0.017 0.104 (0.013) 55.5(12.8) 
P_80 -0.008 0.106 (0.011) 59.3(14.4) 
P_90 -0.005 0.111 (0.016) 60.0(15.6) 
Random 0.003 0.133 (0.031) 50.5(19.6) 

 
Again there is hardly any bias and the differences in the percentages correct seem to be less 

than in selecting without exposure control. The discrepancy between the desired and the 

achieved percentages correct is larger when exposure control is applied. With respect to 

measurement precision, the results are similar to selecting without exposure control. The 

number of items needed to get an equivalent to a test with 30 randomly selected items is given 

in Table 8. It is clear that applying exposure control on average costs 2 or 3 items .  

 

Table 8. 2pl bank; selection shifted ability level and exposure control; equivalence with 

random test of 30 items 

Selection method with SH =0.3 Number of items 
Max info 12 
p-50 12 
p-60 13 
p-70 14 
p-80 15 
p-90 18 
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Simulations with an infinitely large item bank. 

A possible explanation for this discrepancy between the desired and the achieved percentages 

correct is that there is a mismatch between the items available in the item bank and the desired 

percentages in the population. One possible solution for this could be enlarging the size of the 

item bank. In order to check this, simulations were conducted with a very large item bank. 

The 2pl item bank consists of 3000 items, 1000 with α =2, α =3 and α =4 and the 

difficulty parameter from a uniform distribution β ~ U(-1.1,1.1) The CAT algorithm used 

starts with an item of intermediate difficulty and has a fixed test length of 40 items. In the 

simulation, samples of 4000 abilities were drawn from the normal distribution : θ ~N 

(0,0.35). The selection methods for different success probabilities are compared in Tables 9 

and 10. 

 
Table 9: simulation 2pl CAT large item bank; selection at shifted ability level.  

 
Selection Mean error 

µ
1

1/ ( )
n

i i
i

n θ θ
=

−∑  
Mean ¶( )kse θ  (sd) mean % correct sd) 

Max info -0.001 0.083 (0.002) 50.1 (7.6) 
P_10 0.053 0.144 (0.031) 10.9 (5.7) 
P_20 0.026 0.106 (0.014) 20.1(6.5) 
P_30 0.015 0.091 (0.007) 30.2(7.0) 
P_40 0.005 0.085 (0.004) 39.6(7.5) 
P_50 0.000 0.083 (0.002) 50.0(7.7) 
P_60 -0.004 0.085 (0.004) 60.1(7.7) 
P_70 -0.015 0.091 (0.007) 70.2(6.9) 
P_80 -0.027 0.106 (0.013) 79.7(6.4) 
P_90 -0.056 0.143 (0.031) 88.9(6.0) 
Random -0.003 0.145 (0.015) 50.4(16.0) 

 
We see here the same results as reported before, except that the desired percentages correct 

are now in line with the percentages that are achieved. 

 

Table 10. 2pl large bank; selection shifted ability level; ; equivalence with random test of 30 

items 

Selection method Number of items  
Max info 11 
p-50 11 
p-60 12 
p-70 13 
p-80 17 
p-90 29 
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Discussion 

In this study, it was shown that, in CATs, it is possible to select items with a higher or lower 

success probability. The selection methods based on the minimal distance between the current 

ability estimate and the p-points of the items only works satisfactorily if the item bank is 

calibrated with the 1pl model. This selection method yields bad results when it is applied on 

an item bank which is calibrated with the 2pl model. 

The method introduced, in which items are chosen that have maximum information 

at an ability lower or higher than the current ability estimate, also performs well in item banks 

calibrated with the 2pl model. With item banks of a practical size (300), a little loss in 

measurement precision is the price of a (somewhat) easier (or harder) test. The method is also 

effective if the selection is combined with the application of exposure control. Getting very 

high or very low percentages correct was seen to be possible with a larger item bank. In that 

case, in principle, any desired percentage correct could be reached, but extreme values of the 

success probabilities are combined with a considerable loss in precision. For practical 

purposes, selecting, aiming at percentages correct of 60 or 70 (or 40 or 30), seems to be 

possible without a large loss in precision. 

Knowing the effect of selecting with other success probabilities in mind, one could, 

for CAT applications, build item banks which are more suitable for that purpose. The item 

banks studied here are in a sense optimal for a CAT with maximum information item 

selection: the mean difficulty of the items is equal to the mean of the population. If one 

knows, for instance, that one wants an easy CAT, one could try to construct a bank which is, 

on average, easier for the population. 

Finally, it can be mentioned that all the selection methods and the results are 

symmetric around the p-50 points. For the selection methods, this is only true for the 1pl and 

2pl model. Knowing that the symmetry disappears, it is worthwhile investigating the 

application of the selection method if the 3pl model, including a guessing parameter, is used. 
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