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PROCEEDINGS OF THE FIRST CONFERENCE ON
COMPUTERIZED ADAPTIVE TESTING

FOREWORD

The plan for a conference devoted to the state of research in the field of computerized adaptive testing grew out of a
suggestion made in late 1974 by Frederic M. Lord of Educational Testing Service. As one of the principal psychometric
architects of the latent trait theory of mental abilities, which underlies the work being done in this field, Dr. Lord observed
that it was now time to bring together as many as possible of the people doing this work, for an overview of the state of the
art. It was then decided that the appropriate sponsors of such a conference were the Navy, whose Office of Naval Research
funds computerized adaptive testing projects in military and educational organizations, and the U.S. Civil Service
Commission, where psychologists in the Personnel Research and Development Center have been carrying out research in the
area for a number of years. Accordingly, representatives of these two offices met in March, 1975 to take the necessary steps
to organize the conference. Members of the organizing committee were: Glenn L. Bryan, Director, Office of Naval Research;
Marshall J. Farr, Director, Personnel and Training Research Programs, ONR; Joseph L. Young, Assistant Director, PTRP,
ONR; William A. Gorham, Director, Personnel Research and Development Center, U.S. Civil Service Commission; Richard H.
McKillip, Chief, Research Section, PRDC; Vern W. Urry, Frank L. Schmidt, and John F. Gugel, Personnel Research
Psychologists, PRDC.

The principal objectives of the conference were defined as exchange of information, discussion of theoretical and empirical
developments, and coordination of research effort. It was decided that the conference should be invitational, because of its
highly technical subject matter, and that invitations would be sent to those persons known to be interested in the subject.
Nominations were then made of researchers who should be asked to present papers and to act as discussants. From the list of
nominations, the committee selected those nominees it believed would represent the broadest range of effort from theory to
practical application and would also represent organizations in the public, private, and military sectors. Dr. Lord and Bert F.
Green, Jr. of Johns Hopkins University agreed to serve as discussants.

Edmund F. Fuchs was appointed conference coordinator to implement these decisions, and the conference was held as
planned on June 12 and 13, 1975, in Washington, D.C. Sixty-eight persons attended. Fourteen papers were read, and the
discussants, who had studied the papers in advance, commented upon them.

Informal discussion during and after the conference and replies to a short questionnaire given to the attendees indicated
that the objectives were successfully met. In general, attendees felt that a follow-up conference would be desirable, to pursue
further the potential of computers for the measurement of human abilities. Two announcements were made at the conference
sessions concerning ways of establishing a continuous exchange of information among researchers.

Cynthia L. Clark
Editor
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GRADED RESPONSE MODEL OF THE LATENT TRAIT THEORY

AND TAILORED TESTING

INTRODUCTION

There will be no doubt about the usefulness of the latent
trait theory in tailored testing, or the computer assisted
adaptive individual testing. This is a pilot study for actual
tailored testing, using full and partial information given by
a set of graded response items. The purpose of this study
is: 1) to find out how tailored testing using mostly
dichotomous items can provide us with good estimates of
ability compared with non-adaptive testing in which we use
the full information given by the graded item responses;
and 2) to find out possible branching effect of a graded
item when we use one as the initial item in tailored testing.
Actual data used in this study are: 1) the empirical results
of paper-and-pencil tests, and 2) a hypothetical test with
response patterns calibrated by the Monte Carlo method.
The data analyses were partly made in such a way that we
treat the data as if they were collected in actual tailored
testing situations. For this reason, we call it simulated
tailored testing. Terminology will be used in the same way
as in Samejima’s two Psychometrika Monographs (cf.
Samejima, 1969 and 1972).

RATIONALE

The consistency of the maximum likelihood estimator
when the likelihood function is given by the product of
identical probability density functions or probability func-
tions has been proved by Wald (Wald, 1949) and the proof
has been shown in a simplified form by Kendall and Stuart
(Kendall and Stuart, 1961, Chapter 18). In the latent trait
theory, this situation corresponds to the case where all the
items are equivalent, ie., when the sets of operating
characteristics of item response categories are identical for
all the items, either on the dichotomous or graded response
level. This, of course, is a fairly restricted case, and, in
practice, we usually have to handle the sets of operating
characteristics which are not identical.

The proof can easily be expanded to the case in which
the probability density functions, or the probability func-
tions, are not identical, but observations increase in number

FUMIKO SAMEJIMA
University of Tennessee

following a relatively mild restriction. Let &;, £&,,...be a
set of independent random variables having identical distri-
bution with the mean u. The strong law of large numbers,
which is used in the above proof, states that for any given
positive numbers € and 6, there exists an /V such that

%. gi-ulze] <bforeveryn>N. (2-1)
i

prob. | |
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Let us define two positive integers, m and 7, and consider n
such that

n=mr, (2-2)

where r is a fixed number, however large it may be. Let
211, 212, .y Slr’ Ezl,..., Ezr,... be a set of
independent random variables, which are classified into
disjoint subsets, A; = {11, £12,... 81, Ay ={ba1,
£30,... Szr}, .... Let us assume that within a subset Aj
the r random variables are not necessarily identically
distributed, but among the subsets we can always corre-
spond, without overlapping, one random variable from each
subset Aj (G =23,...) toeachelement of A; which has an
identical distribution with that of the element of A; with a
specified mean. Let w (k=1,2, ... 1) be the mean of &,

If we define random variables such that

i
=1 .
=5 2 &y, (G=12,...) 2-3)
] r k=1 ] (

then these random variables are independent and identically
distributed, with the mean such that

EG)=1 5 # =k (24)
k=

~

Thus the strong law of large numbers is applicable for {;, if
not for Ejk- Using this mild restriction, we can write



Efoo prob. [log L ,(8) <logL,(6)] =1  (2-5)

where § is the maximum likelihood estimator of the true
parameter 8 , which leads to the completion of the proof of
the consistency of the maximum likelihood estimator. The
same restriction enables us to prove the ultimate
uniqueness of the maximum likelihood estimator, the
asymptotic efficiency and normality of the maximum
likelihood estimator, with the asymptotic variance

{-E [5%; log L (0)]}7" . (2-6)

We notice that (2-6) is the reciprocal of the test
information function, 1(8). Thus if we can reasonably
assume that there are at most a finite number of non-iden-
tical sets of operating characteristics and the number of
items given to an examinee increases by repeating 7 items
whose sets of operating characteristics are the same as these
sets, but possibly arranged in different orders, the maxi-
mum likelihood estimator ultimately distributes normally
with the true value 0 as its mean and the reciprocal of the
test information function as its variance. For this reason,
when n is large, /(8) can be considered as a good measure of
accuracy of estimation.

Let us consider the meaning of the information function
when 7 is relatively small. In an extreme case where n=1,
the test information function /(#) equals the item informa-
tion function 7,(6). It has been shown that, as long as the
model satisfies the unique maximum condition, like the
normal ogive or the logistic model, the item response
information function I, (8) is positive for the entire range
of 6, except, at most; at enumerable points of 6 (cf.
Samejima, 1973). Under that condition, the basic function
Axg(G) such that

_
Ay g(f)) =% log Py g(G) (2-7)

is strictly decreasing in @ , and the item response informa-
tion function is given by

~_ 2 i
I, (0) 2 4, 0. (2-8)

Thus the item information function, which is given as the
expectation of ng(G), such that

Mg
Ig(e) =E[1xg(0)] =xgz;0 ng(e) ng(H), (2'9)

can be considered as the expected steepness of the basic
function Ay (6) for item g. If we consider the response
pattern information function, /1,(9), such that

a2
I0)= 33 I0ePyO)= 2 L 0),  (210)
*g

this is a measure of the steepness of the left hand side of
the likelihood equation which is set equal to zero. The item
response information function [, (8), therefore, is the
share or contribution of each respgnse X, to the response
pattern V' of which x, is an element, and the test
information function /(#), which can be written as

1(6)= E[I(0)] = IE/IV(G)PV(@), (211

where %:/ means the sum over all the possible response
patterns, is the expected steepness of the left hand side of
the likelihood equation which is set equal to zero. Since we
can interpret the steepness of the left hand side of the
likelihood equation as a measure of accuracy of estimation,
the test information function can be considered as a
measure of accuracy of estimation even if n is relatively
small. Following the same logic, the item information
function Ig(G) can be considered as the expected contribu-
tion to the accuracy of estimation by adding item g to the
test. For this reason, the item information function will be
given an important role in the selection of item-and-way-
of-dichotomization in the present study of behavior of
maximum likelihood estimates in a simulated tailored
testing situation.

Suppose that we have collected testing data of » items,
each of which is scored into graded categories, O through
my (> 1). It has been shown that the item information
function assumes much greater values for a graded item
than a dichotomous item, and the problem of attenuation
paradox _is_ameliorated for a graded item (cf. Samejima,

1969, Chapter 6). Thus it is obvious that, if we rescore each
of the n items dichotomously, choosing one of the m

category borders for dichotomization, then the accuracy of
estimation of 6 will be lowered. A question will be raised
here: how much accuracy of estimation can we still
maintain if we tailor a set of »n optimal dichotomized items
to an individual subject, instead of giving a set of n
uniformly dichotomized items to all subjects? To find this
out, we can select an initial item out of all the n items more
or less arbitrarily, and treat it as if it had been presented
first. If we convert the initial item to a dichotomous item
by choosing one of the m, borders for dichotomization, the
examinees’ item scores for that item, which range 0 through
Mg, will be converted to either 0 or 1, depending on the
category border used. Following the normal ogive model of
the graded or dichotomous response level (cf. Samejima,
1969, Chapter 9; 1972), the first estimate, 9, will be



obtained. If the item score is 0, then #, will be - oo, if it is
mg on the graded response level or 1 on the dichotomous
response level, then 6, will be oo, and, otherwise, it will be a
finite value. When 0, is negative infinity, the next item and
the way of dichotomization will be chosen by searching the
least value of bx, among those of the remaining (n—1)
items, and, when 0, is positive infinity, the greatest by g is
searched and used. When §, is a finite value, then the item
and border which make the item information function for
the dichotomized item maximum at 8 =8, is chosen and
treated as the second presentation.’ In this way, the second
estimate, 0,, will be obtained, and the process will be
repeated until we get the nth estimate, 6,,.

This simulated tailored testing situation is different from
the actual tailored testing situation, in the sense that the
selection is more limited in later presentations of items. In
the ordinary case, we start with a large set of dichotomous
test items, and the number of items is reduced by one after
each tailored presentation. In the present simulated tailored
testing situation, however, the number of items is reduced
by myg, after the presentation of item g, and at the last
presentation selection is made only out of n, possibilities,
where h is the remaining item. This will make the
estimation more inefficient in later processes. and should be
kept in mind when observations are made for the results of
the data analysis.

EMPIRICAL DATA AND THEIR ANALYSIS

A test of 18 items was constructed for research
purposes, each of which is to be scored in a graded way. It
consists of two subtests, figural (FGR) and numerical
(NMB), the former having ten items and the latter having
eight items. The initial instructions for each subtest, and
also a hypothetical NMB item, which was made for
illustrative purposes are shown in Appendix A.

The test was administered to 446 subjects, mostly
college and summer school students in the United States
and Canada, in March through July, 1974, to get the
complete data of 406 subjects. In some sessions FGR was
presented first, and in some others NMB was presented
first. Each session required approximately 90 minutes,
including initial instructions and five minutes’ break be-
tween the two subjects. The number of subjects in each
session varied from one to 36, but in many cases it was less
than ten. A time limit is set for each item, and is between 2
and 6 minutes, except for the last NMB item for which it is
13 minutes. When there is one more minute left for each
item, the instructor calls, “One more minute to go.” The
full item score, m,, is 3 for each of the FGR items and also
for each of the first seven NMB items, and it is 7 for the
eighth NMB item. For the FGR items, 1 is given for the
completion of A and B, 2 for that of A through D, and 3

for that of A through E (cf. Appendix A). For the first
seven NMB items, the score is given in accordance with the
number of correct answers in each item, and for the last
item the score is given in a similar way as it is for a FGR
item.

It turned out that the tenth item in FGR was too
difficult for most subjects, and it was excluded in the
analysis of the data, to leave nine items for the subtest
FGR. It also tumned out that frequencies for some item
score categories were too small, so suitable recategoriza-
tions were made to leave three item score categories for
items 4, 6, 7 and 8 in FGR, two for item 9 in FGR, and five
for item 8 in NMB, making every frequency, at least, as
large as 18. For the 17 item variables, which are assumed
behind the item scores, the multivariate normality was
assumed, and the polychoric correlation coefficient (cf.
Tallis, 1962) was computed for each pair of the item
variables, using Lieberman’s program (Lieberman, 1969).
The principal factor solution was applied for the resulting
correlation matrix using the SPSS factor analysis program
with iteratively estimated communalities, to obtain eigen-
values: 5.859, 1.757, 0.902, 0.745, 0.578, etc., which
prove the existence of a strongly dominating first principal
factor and a moderately dominating second factor. Several
different factor rotations were made, both orthogonal and
oblique, for these two factors, and the results uniformly
showed the two clusters, one for each of the two subsets of
items, i.e., figural and numerical. Table 1 shows the results
of both varimax and quartimax rotations, along with the
original factor loadings for the two principal factors. For
this reason, each subset of items, i.e., F1 through F9, for
FGR or N1 through N8 for NMB, was analyzed separately,
and the first principal factor for the figural set of items,
whose eigenvalue turned out to be 3.029 or 60.2% of the
total sum of communalities, was named the figural ability,
and the first principal factor for the numerical set, whose
eigenvalue was 4.132 or 79.5% of the total communalities,
was named the numerical ability. The item parameters for
the operating characteristics, which follow the normal ogive
model on the graded response level (cf. Samejima, 1969 &
1972), were calculated, using the formulas:

g ="’g/[l'p.s;'z]l/z G-,
and
bxg = 'yxg/pg forxg = 1, 2; L ’mg 5 (3'2)

where pg is the factor loading of item g and vy is the
normal deviate corresponding to the proportion” of the

subjects who got the item score X, or greater. These



TABLE 1

Factor Loading Matrices of the Seventeen Items for the First Two Common Factors for the Original
Principal Factors, After They Were Rotated Using Varimax and Quartimax Rotations.

) Without Varimax Quartimax
Item Rotation Rotation Rotation
First Second First Second First Second
Factor Factor Factor Factor Factor Factor

F1 485 371 .106 601 611 .005
F2 612 455 .143 749 762 017
F3 S77 .386 163 675 .692 050
F4 424 154 .207 400 429 .139
F5 432 .286 125 503 S16 040
Fé6 433 321 102 529 539 .013
F7 .358 174 146 .370 .389 .083
F8 .381 274 113 440 452 .039
F9 502 .106 .298 418 461 225
N1 .683 -.344 736 .208 326 691
N2 150 -165 .664 .386 490 591
N3 580 -.346 662 .138 245 630
N4 776 -.193 .702 .383 493 630
N5 524 -.410 .663 .052 .160 .645
Né 581 -.396 .696 102 215 .669
N7 .826 -.133 .698 461 570 613
N8 537 .086 337 426 476 262

parameter values are presented as Tables 2 and 3 for the
figural and the numerical abilities respectively.

Since there is no way of knowing each examinee’s true
ability score, the maximum likelihood estimate, 8, was
obtained from his response pattern of graded item scores,
and was treated as the best possible estimate of his true
ability score. Also the test information function, which is
given by Equation 2-11, was calculated for each subtest, and
it turned out that the subtest NMB is far more informative
than the subtest FGR. Figure 1 presents the test informa-
tion function of the subtest NMB. Taking the interval,

[-0.1, 1.0], in which the values of the test information
function are no less than 7, we let the computer search the
best possible way of dichotomization of each item, to make
the test information as large as possible for this interval,
and the resulting test information function is drawn by a
dashed line in Figure 1. A similar trial was made for the
least informative way of dichotomization, and the resuiting
test information function is shown by a dotted line in the
same figure. Selecting all the subjects whose 0 are located in
the above interval, the maximum likelihood estimate was
calculated for each of these 138 subjects, using both the

TABLE 2

Item Parameters For the Subtest FGR

Item Discrimination Difficulty Indices b,
Index &

g ag Xg = 1 Xy = 2 Xy = 3
1 0.8972 -1.0042 -0.3356 0.0833
2 1.3196 -0.7468 -0.3532 -0.0465
3 1.0160 -1.2464 -0.5137 0.1476
4 0.5775 -0.7984 0.1730
5 0.5940 -1.1081 0.7169 0.9554
6 0.6558 -0.0337 3.1045
7 0.4293 0.4722 3.2345
8 0.5644 -0.7988 2.5679
9 0.5483 2.0052




TABLE 3

Item Parameters For the Subtest NMB

Item Discrimination Difficulty Indices b,
g Index g
ag xg=1 xg=2 xg=3 xg=4
1 1.18738 -0.58387 0.02422 0.69302
2 1.27938 0.91100 1.21130 1.69291
3 0.90123 -1.97011 -1.61105 -0.87804
4 1.44248 0.06765 0.32693 0.84445
5 0.80989 -0.99294 -0.15721 1.00489
6 0.93783 -0.48721 0.47768 1.71261
7 1.58894 0.02918 0.36308 0.72073
8 0.53530 0.14401 0.52872 1.90170 2.89123

most informative and the least informative ways of dichoto-
mization. Figure 2 shows the sets of these estimates plotted
against 0. We can see a substantial difference between the
two scatter diagrams.

A question will be raised here: what will the scatter
diagram be if we tailor the way of dichotomization for each
individual subject? To answer this, a program was written
to treat the data as if these eight items had been presented

()

0.0 i 1 Iy 1 Fl I I

Figure 1. Test information functions for the subtest NMB, when
the graded scoring strategy is taken ( ), when the
most informative dichotomous scoring strategy is taken
for the interval [-0.1, 1.0] (— - — — — ), and when the
least informative dichotomous scoring strategy is taken
for the interval [-0.1, 1.0] (----).

in tailored testing selecting both item and way of dichoto-
mization, as was described at the end of the preceding
section. Using the most informative dichotomized item, N7
with the category border 2, the least informative dichoto-
mized item, N3 with the border 1, and a medium
informative item, N1 with the border 2, the resulting
scatter diagrams are shown in Figure 3. We can see that in
all these cases extremely scattered points are rare, com-
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Figure 2. Maximum likelihood estimates obtained by dichotomizing
NMB items for the interval [0.1, 1.0], plotted against &,
those obtained from the original response patterns of
graded item scores for the 138 subjects whose 6 are in the
interval [-0.1, 1.0]. A. Using the most informative way
of dichotomization, B. Using the least informative way of
dichotomization.
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Figure 3.

Maximum likelihood estimates obtained by simulated tailored testing plotted against 8, those obtained from the original response
patterns of graded item scores for the 138 subjects whose 6 are in the interval [~0.1, 1.0]: A. Using the most informative
dichotomized items, N7 with the category border 2, as the initial item, B. Using the least informative dichotomized item N3 with the
category border 1 as the initial item, C. Using a dichotomized item of medium information, N1 with the category border 2, as the

initial item.

pared with Figure 24, i.e., the case of the most informative
dichotomization for the group of these 138 subjects to say
nothing about the comparison with Figure 2B. This can be
interpreted as a benefit obtained by tailoring an individual
test for each examinee.

A second question will be raised here: is there any
substantial gain if we use a graded test item, instead of a
dichotomous one, as the initial item in tailored testing?
Since the number of items is as small as eight, it will be of
benefit if the use of a graded item gives a substantial
branching effect at the beginning of tailored testing. To
find this out, using the most informative and the second
most informative graded items, N7 and N4, as the initial
items respectively, the same simulated tailored testing
procedure was applied to obtain the maximum likelihood
estimate for each individual subject. The results are shown
as Figure 4. To observe the possible branching effect, in the
first case the total 138 subjects were divided into two
groups, one consisting of the subjects whose graded score
for N7 are either 3 or 0, i.e., best or worst, and the other
consisting of those who obtained either 2 or 1. ie.,
intermediate scores. We can see an obvious branching effect
by comparing Figures 4A and 4B.

10

Similar analysis was made for the other subtest, FGR
and the results are presented as Appendix A. Since the
maximum test information for FGR is a little more than 4
compared with that of NMB which is almost 8, there is a
general tendency that diagrams are more scattered, but,
other than that, similar tendencies as in NMB were
observed. The interval of ability taken for these observa-
tions was [-0.8, 0.1]; there are 123 subjects whose 0 are in
this interval, and the test information function for this
interval is greater than 4, with an approximate maximum of
4.251 at 6 =-0.3. The initial items used for the simulated
tailored testing are: F2 with the category border 2 (most
informative), F6 with the category border 2 (least informa-
tive), F3 with the category border 3 (medium), F2 (most
informative graded) and F3 (second most informative
graded).

Figure 5 presents two examples to illustrate how the
maximum likelihood estimate converges in the simulated
tailored testing, for NMB, using the five different initial
items which were described in a previous paragraph. It may
be suggested that the number of items, cight, is not
sufficient for all the cases. It should be recalled, however,
that in the present study the selection of item-and-way-of-
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Figure 4. Maximum likelihood estimates obtained by simulated tailored testing plotted against ¢, those obtained from the original response
patterns of graded item scores, for the subjects whose ¢ are in the interval [-0.1, 1.0]: A. Using the most informative graded item,
N7, as the initial item, for subjects whose item scores for N7 are extreme, i.e., either 0 or 3, B. Using the most informative graded
item, N7, as the initial item, for subjects whose item scores for N7 are intermediate, i.e., either 1 or 2, C. Using the second most

informative graded item, N4, as the initial item.

dichotomization is more and more limited in later presenta-
tions of items. And yet each dichotomized response pattern
as a whole is a selection out of the 8,748 possibilities.

1.8

1.0

0.6

0.4

0.2

MONTE CARLO DATA AND THEIR ANALYSIS

To make further observations in the present simulated
tailored testing, a hypothetical test of 24 items was used,

0.8

0.4 |

Figure 5. Two examples to show how the maximum likelihood estimates converge in the simulated tailored testing. Initial items are: N7, most

informative graded item (

); N4, second most informative graded item (- — —); N7-2, most informative dichotomized item
); N1-2, medium informative dichotomized item (- - - -); and N3-1, least informative dichotomized item (- - -).
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following the normal ogive model of graded response level.
The item parameters were given within the range of those
of NMB, so that this hypothetical test can be considered as
an expansion of NMB in a rough sense of the word. Table 4
presents the item parameters of these twenty-four hypo-
thetical items, which have uniformly four item score
categories each. The test information function was obtained
following the formula (2-11), and is presented as Table 5.
As we can see from this table, this hypothetical test is most
informative around ¢ = -0.3. For this reason, one hundred
response patterns for these twenty-four test items were
calibrated by Monte Carlo method on this level of ability,
and were used as those of one hundred hypothetical
subjects. Figure 6 presents the cumulative frequency ratio
of 8 for these response patterns, in comparison with the
normal distribution function with 4 =-0.3 and ¢ = 0.2128,
ie., 1/4/22.081. We can see that these two curves are close,
and this indicates that the maximum likelihood estimate
with these parameter values already distributes almost nor-
mally for the 24 items. As before, the most informative and
least informative dichotomizations of the items were
searched, and the resulting maximum likelihood estimates
were computed for each of these one hundred hypothetical
subjects. Figures 7A and 7B present the cumulative fre-
quency ratios of these estimates together with the normal
distribution functions with u =-0.3 and the values of the

standard deviation obtained by 1/4/f(-0.3), which turned
out to be 0.2407 and 0.3685 respectively. Since in the

present situation the ability level is fixed at -0.3, the
difference between the two standard deviations, 0.2128 and
0.2407, should be interpreted as the minimized reduction
caused by adopting the dichotomous scoring strategy, and
the one between 0.2407 and 0.3685 should be attributed to
the two different ways of dichotomization. It is also
noticed that the discrepancies between the normal curve
and the cumulative frequency ratio are more conspicuous in
these two dichotomized cases compared with Figure 6.
Figure 8 shows the same cumulative frequency ratios
compared with N(-0.3, 0.2128), for the maximum like-
lihood estimates obtained by the simulated tailored testing.
with the five different initial items: (23-2), the most
informative dichotomous; (3-3), the least informative di-
chotomous; (14-3), a medium informative dichotomous;
(24), the most informative graded; and (23), the second
most informative graded; respectively. The mean square
errors for these five cases are 0.064, 0.068, 0.055, 0.056
and 0.058 respectively. If we take the square roots of these
values, they are 0.253, 0.260, 0.234, 0.236 and 0.240,
which are comparable to 0.2407, ie., 1//f(-0.3) for the
result of the most informative dichotomization case. This is
understandable because in that case the dichotomization
was, indeed, tailored for the level of § = -0.3. To find out
about the branching effect of the initial graded items, four
more cases were added using four different dichotomized
initial items of various information levels, and the results
were arranged in Table 6 in the order of information levels

TABLE 4

Item Parameters of 24 Hypothetical Test Items

Item Discrimination Difficulty Indices b X
g Index g
4 Xp = 1 Xg = 2 Xg = 3
1 0.50000 -0.70000 -0.50000 0.20000
2 0.50000 -2.00000 -0.80000 -0.20000
3 0.60000 0.30000 0.80000 2.10000
4 0.60000 0.0 0.40000 1.30000
5 0.70000 -1.30000 -0.20000 0.40000
6 0.70000 0.20000 0.90000 2.00000
7 0.80000 -0.50000 0.80000 1.90000
8 0.80000 -1.10000 -0.90000 -0.10000
9 0.90000 -0.20000 0.40000 0.60000
10 0.90000 -1.60000 -1.00000 0.20000
11 1.00000 - 1.80000 -1.10000 -0.60000
12 1.00000 0.10000 1.40000 1.60000
13 1.10000 -0.10000 0.80000 1.10000
14 1.10000 -1.00000 -0.50000 0.0
15 1.20000 -1.20000 -0.20000 0.80000
16 1.20000 -1.70000 -0.80000 -0.50000
17 1.30000 -0.30000 0.50000 1.40000
18 1.30000 -0.60000 0.40000 0.80000
19 1.40000 -0.90000 0.30000 1.10000
20 1.40000 -0.40000 -0.10000 0.60000
21 1.50000 -1.90000 - 1.60000 -1.20000
22 1.50000 -1.50000 -0.40000 0.90000
23 1.60000 -0.80000 - 0.40000 0.80000
24 1.60000 -1.40000 -0.60000 0.40000
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of initial items. We can see from this table that, with the
exception of (14-3), the values of the mean square errors
are greater for the cases in which we used dichotomized
items as the initial item, than those for the cases in which
graded items were used, although the differences are small.
To make a more detailed observation, two cases, in which
(24) and (14-3) were used as the initial item respectively,
were picked up, and these values were calculated for the
maximum likelihood estimates when 4, 6, 8, 12, 16, 20 and
24 items were used respectively in the simulated tailored
testing. The result is presented as Figure 9, in the form of
the comparison of the corresponding square roots of the
mean square errors. We can see that the branching effect is
conspicuous for the cases of fewer items, namely, 4, 6 and
8, and disappears with the addition of more items. This can
be interpreted that when we add more items the effect of
the initial item becomes negligibly small. Note, however,
that in the present simulated tailored testing situation the
selection of item-and-way-of-dichotomization becomes
more and more limited in later presentation of items.

TABLE §

Test Information Function of the Hypothetical Test of
24 Grade Items

Ability Information
Function

7] I(9)
-1.5 16.317
-1.4 17.250
-1.3 18.119
-1.2 18.915
-1.1 19.628
-1.0 20.252
-0.9 20.784
-0.8 21.220
-0.7 21.562
-0.6 21.813
-0.5 21.979
-0.4 22,065
-0.3 22.081
-0.2 22.034
-0.1 21.930
0.0 21.776
0.1 21.574
0.2 21.326
0.3 21.030
0.4 20.681
0.5 20.273
0.6 19.800
0.7 19.256
0.8 18.636
0.9 17.938
1.0 17.164
1.1 16.318
1.2 15.409
1.3 14.449
1.4 13.452
1.5 12.435
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Figure 6. Cumulative frequency ratio of maximum likelihood esti-
mates obtained from the original response patterns of
graded item scores for the 100 hypothetical subjects
(—————) and the normal distribution function (---)

with the parameters 4 = -0.3 and 0 = 0.2128

os

Figure 7. Cumulative frequency ratio of maximum likelihood esti-
mates obtained from converted response patterns:
A. Using most informative dichotomization of items at
6 = —0.3, for the 100 hypothesized subjects ( ) and
the normal distribution with the parameters u = —0.3 and
o = 0.2407 (- — ), B. Using least informative dichoto-
mization of items at 6 = —0.3 for the 100 hypothetical
subjects ( ) and the normal distribution function
with the parameters u = —0.3 and ¢ = 0.3685 (— - ).




Figure 8. Cumulative frequency ratio of maximum likelihood estimates obtained by simulated tailored testing, for the 100 hypothetical
subjects (— — —) and the normal distribution with the parameters g = —0.3 and o = 0.2128 (— — —): A. with the most informative
dichotomized item (23-2) as the initial item, B. with the least informative dichotomized item (3-3), as the initial item, C. with a
medium informative dichotomized item (14-3) as the initial item, D. with the most informative graded item (24) as the initial item,
E. with the second most informative graded item (23) as the initial item.

TABLE 6

Mean Square Errors and Other Indices for the Variability of the Maximum Likelihood Estimates in
the Simulated Tailored Testing Using Different Initial Items in NMB.

Mean
Initial Ig (-0.3) Square VMSE 1/MSE
Item Error
3-3 0.104 0.068 0.260 14.767
5-1 0.260 0.069 0.263 14.430
10-3 0.479 0.060 0.245 16.723
Dichoto- 14-3 0.740 0.055 0.234 18.281
mous 18-1 1.018 0.066 0.258 15.051
23-1 1.287 0.063 0.250 15.938
23-2 1.615 0.064 0.253 15.580
Graded 23 2.074 0.058 0.240 17.332
24 2.127 0.056 0.236 17.980
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Figure 9. Comparison of the square roots of the mean square errors
of the maximum likelihood estimates in simulated tai-
lored testing with the graded item (24), plotted with x
and the dichotomized item (14-3), plotted with o, as the
initial item, calculated for 4, 6, 8, 12, 16, 20, and 24
items.

DISCUSSION AND CONCLUSION

Through the observations of two types of data, it has
been made clear that tailored testing, in which we use
dichotomous test items only, can provide us with much
more accurate estimation of ability than non-adaptive
testing, and that accuracy is almost comparable with that of

15

graded response level. We also have observed that the
branching effect by using a graded item as the initial item is
conspicuous when we use a relatively small number of
items. When the number of items increases in tailored
testing, however, the effect of the initial branching, or the
amount of information given by the initial item, seems to
Thave a less effect on the final estimation. On this point, we

need a further study by using a larger number of items in
the original set of items, and also an item with more score
categories as the initial item.
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APPENDIX A

1. INSTRUCTIONS FOR THE FIGURAL SUBTEST

There are 10 items in this part of the test. In each item, nine
figures are arranged in three rows and three columns, two of which
are missing, as shown below. These figures are arranged according to
some rule, and you must find that rule by observing the seven
figures shown in the array.

=

Below this array, twelve figures are given, and you are to choose the
right figures for the missing ones in the above array, A and B.

Next, we add an additional column as shown above. You are to
choose the right figures for C and D out of the same twelve choices.

After you have followed the above two steps, then you are to
draw the right figure for E in the additional column. This figure may
or may not be one of the twelve choices.

Don’t turn the page until you are
told to do so by the instructor.

2. INSTRUCTIONS FOR THE NUMERICAL SUBTEST

There are 8 items in this part of the test. In each item, a specific
rule is given, and you are to read the instruction carefully so that
you will understand and be able to handle the rule. They are
numerical items, and in all of them you must use calculations.

In each item, be sure that you understand the rule correctly. If
you have time, check the calculations, and be sure that the (positive
or negative) sign attached to your answer to each problem is a
correct one. Try to solve each problem correctly and as quickly as
possible.

Once you have started a calculation, continue the calculation
until you get the answer. Don’t leave it unfinished and start another.

Are there any questions?

Don’t turn the page until you are
told to do so by the instructor.
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3. ITEM 1, NUMERICAL SUBTEST

The following square array of numbers is named E.
1 2
E = " 3 4 "

The first column of E, " é " , is called e, , and its second column,
" % " iscalled e, .

Each number in a column is called an element. In the above
example, 1 and 3 are elements of the column e,, and 2 and 4 are
elements of the column e, .

The operator © indicates that you should subtract from each
clement of the column which comes next to the operator the
corresponding element of the column which follows, square the
resulting value, and then multiply all the results.

Example: Qe e, =(1-2>x(3-4)2="1

Consider the above example(s), and be sure that you understand
the operation.

Following this rule, compute each of the three numbers shown
on the next page for the square array A, which is given below.

3 5 -2
A= -4 9 -7
-6 -1 8
(i) Qa, a,
() Qa, a, =
(iii) Qa, a, =

If you have already finished the above, confirm that you have
used the operation correctly. Also check the calculations, and be
sure that the (positive or negative) sign attached to your answer to
each problem is correct.

Don’t turn the page until you are
told to do so by the instructor.




APPENDIX B

Seven Figures for the Subtest FGR, Corresponding to Figures 2 Combination of Figures 7 and 8 for NMB, and F3 for Figure B9.
through 9 for the Subtest NMB. Intial Items Used for Simulated These Values Are Plotted for the 123 Subjects Whose 8 Arc in the
Tailored Testing Are: F2-2 for Figure B3, F6-2 for Figure B4, F3-3 Interval {-0.8, 0.1].

for Figure BS5, F2 for Figure B6, Which Corresponds to the
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INCOMPLETE ORDERS AND COMPUTERIZED TESTING

A computerized adaptive testing system has three main
aspects, and consequently it can differ in three main ways
from a noncomputer system. First, there is the test item.
Full utilization of a computer allows an enormous broaden-
ing in the type of problem that can be presented to the
individual. Typing out objective questions to him is the
most obvious thing to do, but it is far from the only thing,
and is perhaps far from the best thing. There is perhaps
even a greater extension of the possible types of examinee
response, as we can see not only from what is described
here but by borrowing from CAI techniques. Moreover, we
can easily incorporate speed of response into the scoring;
we can determine not only whether the person can give the
answer, but whether he can give it in ten seconds. But the
greatest difference between computerized adaptive testing
and ordinary testing is in the extent and nature of the
decision process that goes on between items.

It is with the latter aspect that 1 will be concerned here
today; the approach suggested here is quite different
conceptually than others such as the branching and the
Bayesian methods, so the paper will trace its origins. Tests
try to order persons, so we will first consider the basic
nature of orders and then how orders can be constructed
from incomplete data. Testing will be shown to be a type of
ordering process which utilizes incomplete data; computer-
ized adaptive testing develops orders from highly incom-
plete data. We will give a simple example of how a
computer program based on these concepts works. Finally,
some of the ways in which these concepts form the basis
for a test theory will be suggested.

Our approach to a model for computerized testing has
its origins in quite a different area, computer-interactive
judgment methods. In order to demonstrate the relation
between testing and ordering, let us consider for a moment
a simple order. A simple order is defined, and please let me
use quite informal language, as a set whose members display
a relation between elements which demonstrates asym-
metry and transitivity. Now what that means is that, if we
have a matrix which records the existence of the relation as
a 1, or its non-existence as a 0, between a pair of elements
of the set, the matrix must display the triangular form
shown in the first figure. Paired comparisons judgments of
some stimulus property of course often display a close
approximation to this form. For example, suppose we used
the five indicated letters, presented them in pairs, and asked
a child which came first in the alphabet. Then we record his
judgment as a 1 if he responds that the row letter comes
before the column letter and a O if he says the reverse. If he

! Preparation of this paper was supported in part by the Office of
Naval Research, Contract No. 150-373.
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vV W X V z
v —1 111
w 0 111
x 00 -11
y 000 — 1
z 00 00 -

Fig. 1. Complete adjacency
transitivity and asymmetry.

matrix for a simple order showing

knew the order of the alphabet, then the data would be as
shown.,

An interesting property of such paired comparisons
matrices is that they need not be complete. Suppose we do

not ask about all pairs, but do assume that the data is
asymmetric and transitive. Then we may be able to
complete the matrix by performing matrix algebra on the
elements which we do have. This is illustrated in the second
set of figures. The lefthand one shows an incomplete
dominance matrix, one which incidentally would typically
be found by the kind of interactive ordering program we
developed, and the right one shows that matrix multiplied
by itself. We see that in this instance the square of the
obtained matrix shows exactly the same triangular form as
the complete matrix in Fig. 1. Actually, the data matrix
could be even more incomplete than this one and still yield
a complete order. The necessary part of the matrix is the
supradiagonal chain of ones which corresponds to the
judgments concerning the letters which are next to each
other in the alphabet. As long as we have these, then the
matrix can be completed; we just have to raise it to a high
enough power. Of course, when dealing with human
judgments with their inconsistency, we have to build in
some safeguards and redundancy in the process.

The reason for going through that exercise is that the
model we propose for computerized testing is exactly the

VW XYy z vV W X Yy z VW Xy z
v — 1 11 v - 1 1 v — 1 11 2
w 0 - 1 1 w - 1 w 0 111
X 0 -1 x 0 — 1 x 00 - 11

0 0 -1 y 0 — y 000 -1
z 00 0 - z 0 0 - z 000 0 -

Fig. 2. Sufficient adjacency matrix A, its square A% and the sum A,
+ A}, showing that the latter has the same qualitative form as A.



same! We say that tests order people. In what sense is that
so? In what sense is the relation between people one which
is asymmetric and transitive? It is superficially obvious that
if examinees are given different scores, then the relation
between the scores is asymmetric and transitive. That is just
a property of numbers, in fact the one which served as a
model for ordering in the first place. But it is a property
which is just as true of the testees’ zip-codes, or their social
security numbers, or their football jersey numbers, as it is
of their test scores. What is it about test scores that makes
the order empirically meaningful rather than arbitrary?

Test scores start out from binary relations between
people and items. How is it that we are allowed to derive
from such relations numbers which give us an order of
people, in the same sense that we can assign numbers to
stimuli that give their order? Where is the asymmetric,
transitive relation?

A long time ago, Louis Guttman gave part of the answer
(Guttman, 1941). He said that items order persons if the
score matrix displays the form we have come to call the
Guttman scale, but should more fairly call the Guttman
Loevinger scale since she invented an almost identical
concept and developed it in a superior way (Loevinger,
1947). But Guttman’s answer is not completely satisfactory
to the formalist. The score matrix is rectangular, not
square; item responses are defined as right or wrong by fiat
and have no chance to be other then asymmetric. The
transitivity of a Guttman scale is indirect.

The most important part of the answer to the questions
concerning the legitimacy of items as orderers of persons
lies in the realization that the score matrix is only part of a
larger matrix of relations. The relations matrix is really
items-plus-persons by items-plus-persons, not just items by
persons. We think of the response of a person to an 1tem as
indicating a dominance relation between the person and
the item. Habitually, we put a one in the score matrix if the
person gets the item right and a zero if he gets it wrong. But
that is because, being people, we identify with the persons
dimension of the matrix. If instead we were items, in some
through-the-looking-glass world, we would use the opposite
notation, giving the ifem a one if the person got it wrong
and a zero if the dumb thing allowed itself to be gotten
right by the person.

a b1l 2 3 a b 12 3
a 011 a 1
b 0 0 1 b 00
111 1 01 2
2 01 2 001
300 3 0 00
S N

Fig. 3. Complete (showing rights and wrongs) score matrix S for two
items a, b and three persons, 1, 2, 3 for scalable data; and S2
showing item-item and person-person dominance.
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Taking the point of view of neither items nor persons
but rather of test theorists, we must take a less chauvinistic
stance and play fair in our scorekeeping. The score matrix is
expanded. In the expanded matrix, we give a one to the
winner of the contest between item and person and a zero
to the loser, regardless of which is which. Such a matrix is
given at the left of Figure 3. In the lower left corner of the
matrix we have the usual binary score matrix which shows
which items were defeated by which persons. The matrix
here is of the Guttman form. In the upper right we have
the same matrix from the item point of view, giving a one
each time an item defeats a person. Since the score matrix
is complete here, the upper right matrix is the transposed
complement of the lower right one.

There are two other sections of this expanded score
matrix and these are left blank. These sections correspond
to the item-item and person-person relations, which are not
observed directly. In the case of pairwise judgments, we
found above that an incomplete matrix could be completed
by squaring the observed matrix. Let us do that in the
present case. The result is shown in the right side of the
figure. It is two triangular matrices, one for items and one
for persons. Thus, treated in this formal fashion, we see
that a GL scale does give two asymmetric transitive
relations, one for items and one for persons. We will return
to these two order matrices in another context.

We can put the two orders together. This is illustrated in
Figure 4; the matrix on the left is simply the sum of the
two matrices from Figure 3, that is S + S2. The matrix on
the right of Figure 4 contains exactly the same elements,
but they have been rearranged, that is, pre- and postmulti-
plied by a permutation matrix P, into the order which is
implied here, a joint order of persons and items, which is
seen to in fact be a simple order because of the triangular,
i.e., asymmetric and transitive form of the matrix. This
answers those querulous questions about where the order is
in the case of test data. If the data are a Guttman scale,
then the score matrix, expanded and operated on in the
manner indicated, does indeed define an order in the rather
strict sense of the existence of a relation on a set, a relation
which is transitive and asymmetric.

Let me say that for illustrative purposes here the matrix
operations have been carried out in ordinary arithmetic.

a b1l 2 3 1 a 2 b 3

a 01t 011 1 111 2

b 06 00 01 a 0 - 111

11101 2 200 -11

201001 b 000 -1

300000 30000 —
S+8§?2 P(S + S2)P

Fig. 4. S + S? in its original segregated form (left) and reordered
form (right), the latter showing qualitative asymmetry and transi-
tivity like a simple order.



Because the relations are logical rather than arithmetic, we
should have been doing the matrix multiplication with
Boolean arithmetic. The only thing that changes in the
present context is that all numbers greater than one in the
matrices should be set equal to one.

So far, we have not referred directly to anything having
to do with “computerized adaptive testing,” but the
relevance of the above theoretical sketch is quite direct.
Just as the score matrix itself is a kind of incomplete
matrix of dominance relations that can be completed by

the powering operation, an even more incomplete set of

relations is all that is really necessary to define the joint

a 0o 1 o+ o0* oO*
b o 0 1 0% o
c 0 o* o o0 1  o*
d 0* 0+ 0 0 1
1 1 1
2 0 1 1 0
3 0o 1 1
4 0o 1
5 0

A

b 0 0 1 1 0

c 0 0 0 1

d 0 0 0 0

1 0 1 1 1 0
2 0 0 1 1 1
3 0 0 0 0 1 1
4 0 0 0 0 1
5 0 0 0 0 0

AA +DB)

person-item order. If we happen to ask each person only
the hardest item he can answer correctly and the easiest
item he would miss, those 2n relations—actually, 2n-2 is
enough—are sufficient to define the complete joint order of
items and persons. This subset of relations can quite simply
be shown to correspond to the relations between adjacent
elements in the order, the supradiagonal string of ones we
saw in the incomplete paired comparisons matrix of Fig. 2.
In fact, if you look at the righthand matrix of Figure 4, the
string of ones just above the diagonal there denotes exactly
this set of item-person relations. In the 1975 Bulletin article
(Cliff, 1975) 1 illustrated the way in which such a set of

a 0 1 1* 1*

b 0 0 1 1* 1*
c 0 0* 0 0 1 1*
d 0* 0* 0 0 1

3 0* 0 1 1

a 0 1 1* 1* 1*
b 0 0 0 1 1* 1*
c 0 0 0 1 1*
d 0 0 0 0 1

3 0* 0 1 1 0

A(A + I)(4)

Fig. 5. Illustration of completion by powering. Starred entries are derived by implication.



relations could be used to reconstruct the complete score
matrix. That process is reproduced here in Figure 5 where
the matrix powering is carried out.

Unfortunately, there is a problem; we do not know the
right items to ask a person until after wethave asked them.
The routine by which the computer searches for the right
items to ask is one of the two main aspects of the
processing part of computerized adaptive testing, the other
main aspect being how it damps out error. In our research,
what we are doing is carrying over some principles which
we have previously found to be effective in the paired
comparisons ordering case.

The next set of figures illustrate the operation of a
prototype program of the kind we have in mind, written by
Jerry Kehoe. First, the program asks each person two items
at random. The entries in the lefthand matrix of Figure 6
show the results of these preliminary rounds and the
righthand one shows the powered matrix which contains
the implications of these responses as well as the responses
themselves. So far these are very few. The computer then
decides which items to ask which persons next by seeing
which are closest together in the order so far determined.
This process of presentation, powering, and selection would
go on for several rounds. The next figure shows the score
matrix for an intermediate round on the left and the
implications on the right. Now the powering process is
having some effect. The next one shows the final score
matrix on the left and the implications on the right where

items persons

a b ¢ d e f g 1 2 3 4 S5 6

5 1 1
6 0 o0

we see that not only has the score matrix been completed
by implication but there are now complete simple orders of
persons and items. )

We incidentally do not have a name for this method. We
would like to call it the Extended Transitivity System, or
ETS, but those initials have been preempted.

You can see that the savings are not very great in this
instance; each person must be asked most of the items. This

impression is primarily a function of the size ol the data
matrix here. The savings are much, much greater with large
matrices. An upper bound for the number of item-person
relations that must be observed for # persons and x items is
log,(n + x)!. For 200 persons and 200 items this number is
about 2886. That means we would need to ask each person
only 15 items to get the complete order; moreover, this
upper bound is quite a generous one in the present instance,
a couple fewer might well be sufficient.

Thus the method will work if the responses form a
Guttman scale. It works surprisingly quickly and requires
surprisingly little space in the computer, primarily because
the programs take advantage of the binary nature of the
data to store responses as single bits and then to carry out
many of the calculations on whole words, that is, 32
elements at a time are processed in raising the matrix to the
next power.

[t is really no surprise that it works with errorless data.
The_crucial guestions are_how_well will it work with the
kind of inconsistent items and persons that the real world

items persons

5 1 1

6 0 0 0

Fig. 6. (Left) Initial item responses matrix S, showing both person dominances and item dominances. Blank entries indicate item-person pairs
not yet observed. (Right) S + S?, showing the implied item-item and person-person dominances.
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items persons items

a b ¢ d e f g 1 2 3 4 5 6 a b ¢ d e f
a 1 1 a 1 1 1% 1*
b 0 1 1 b 0 1
c 0 0 1 c 0 1 1*
d 0 1 d 1 1*
e 0 0 1 e 0* 0 0 1
f 0 0 £ 0* 0 0* 0* 0
g 0 0 1 g 0 0 0* 0* O
1 0 1 1 1 0 1 1 1* 1%
2 1 1 1 2 1 1 1* 1*
3 0 1 1 3 0 0 1
4 0 0 1 4 0* 0o 0 1 1*
5 0 1 1 5 0* 0 0 0 1
6 0 O 0 6 0 0 0 0* 0 O

1*

1*

1*

1*

1*

1*

0*
0*

0*

0
0*

0

o*

0*

0
0
0*

0*

persons
3 4
1* 1%
1
1
1
0
0 o*
0 0*
1 1
I 1
0
0 0*

1*

1*

1*

1%

1*

0

1*

1*

1%

1*

1*

Fig. 7. (Left) intermediate item response matrix S. (Right) S + () +SG) + §(+) + §(5)_Starred (*) entries are derived by indirect implication,

ie., from SC) S(4) or s(s),

a b ¢ d e f g 1 2 3 4 5 6 a b ¢ d e f
a 1 1 1 a 1 1 1 1 1*
b 0 1 1 1 1 b 0 1 1 1 1
c 0 0 1 1 c 0 0 1 1 1
d 0 0 o0 1 d 0 0 0 1 1*
e 0 0 o0 1 e 0 0 0 O 1
f 0 0 1 f 0 0 0 0* 0
g 0 0 0 g 0 O O O 0 O
1 0 1 1 1 1 0 1 1 1 1% 1%
2 0 0 1 1 1 2 0 0 1 1 1 1*
3 0 0 1 1 1 1 3 0 0 0 1 1 1
4 0O 0 o0 1 4 0* 0 0 O 1 1*
5 0 1 1 S 0% 0* 0 0* 0 1
6 0 O 0 1 6 0 0 0 0* 0* 0

1*

1*

1*

1

1

0*
0*
0*

0*

0

O*

0*

0*

3 4
1* 1%
11
11
0 1
0 0
0 o*
0 o*
11
11
1
0
0 0
0 0*

1*

1*

1*

1*

0

1*

1*

1*

1*

1*

Fig. 8. (Left) Final response matrix S, showing 26 of the 42 item-person combinations which were used. (Right) § + S() + 8G) + g(#) 4+ 5(5)

with starred (*) elements indicating those entered by indirect implication.
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faces us with, and what advantages does it offer over other
approaches? The answer to the first question must await
the opportunity to test it first with artificial stochastic data
and then with real data. How well it will do in practice
relative to the other approaches that have been reported
and which we are hearing about during these two days must
await even further data.

A priori, the methodology here appears to offer at least
one potential advantage, the avoidance of extensive pre-
testing to determine item characteristics. Such pretesting
presented problems, even to paper and pencil testing. There
was the security problem, the question of comparability of
populations, the differing contexts, the expense itself. In
the computerized situation, these all become more acute.
The present process avoids pretesting since items and
persons are processed in parallel.

This method does require a substantial number of
persons being tested simultaneously, however; but this is
only initially true. Once a substantial set of person-item
relations has been built up, additional persons can be
processed individually as they appear, being fit into the
previously determined order by means of their responses to
the items. Under that mode of operation the amount of
additional computer processing would be quite small.

It also seems to me that this way of thinking about
tailored testing makes it easier to think of testing as
integrated into a total personnel process. After all, it could
be that the item selected for a person at a given point could
be something like, “You have been assigned to welders’
school. Come back when you have completed the course.”
The ““item” in that case is successful completion of the
course.

But to me, the most promising aspect of this method is
theoretical. It furnishes the basis for a test theory which I
think is more appropriate to the computerized testing
context. If what is wanted from testing is an order of
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persons, and norms after all just tell the individuals’
positions relative to some benchmark persons, then surely
we want the order to be consistent and complete. How do
you tell if the order is consistent and complete? You look
at the person-person relation matrix and see if it is
asymmetric and transitive. It is easy to think of indices
which would reflect the degree to which that matrix has
those properties. Indeed, 1 had intended to spend my time
here today talking about them, but the results of our study
are not quite ready for presentation yet. Such indices
furnish analogues of the familiar Kuder-Richardson for-
mulas which are central to basic test theory, and in fact are
related to them in the case of complete data. They have the
additional property of being readily generalizable to the
incomplete or computer-adaptive case. Thus if we go about
computerized testing in the way described here, we can at
least have appropriate evaluational indices built into the
system. Other tailored testing schemes rely on external
information from traditional modes of testing to get their
biserial correlations, item difficulties, reliabilities, and so
on. Here, analogues of these indices will come out of the
interactive process itself.
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ADAPTIVE TESTING RESEARCH AT MINNESOTA—
OVERVIEW, RECENT RESULTS AND FUTURE DIRECTIONS '

Adaptive Testing and Error Reduction

The general objective of our research program on
adaptive testing is to view it from a perspective which
identifies several sources of potential error in test scores,
and to study adaptive testing as a means for reducing these
errors of measurement.

The first general source of error that we have been
concerned with for some time is the error that results from
the mismatch of item difficulties in an ability test with the
individual’s ability. Obviously, the testee’s ability is not
known at the start of testing. But the different strategies of
adaptive testing that have been proposed can be viewed as
different ways of matching item difficulties with testee
ability and sequentially estimating the testee’s ability.
Consequently, one of our major focuses is to determine the
best, or at least better, ways of adapting item difficulties to
individual abilities.

We are approaching this in two complementary ways.
First, we have been doing live computerized testing. Since
late 1972 we have tested more than 5,000 subjects on a
variety of strategies of adaptive testing. But live testing
cannot provide the answer to all the questions concerning
which strategies are best under which conditions, because
there are too many questions to be answered. Therefore, we
are using computer simulation to supplement and extend
the results that we obtain from live testing.

Our general strategy is to implement an adaptive testing
strategy in live testing to obtain some data with an
arbitarily structured live adaptive test—data such as
characteristics of score distributions and test-retest
reliabilities. Then, our ultimate goal is to build a computer
simulation model which will accurately reflect the results
that we obtain from live testing. With the computer
simulation model we can then very rapidly study different
variations of the adaptive testing strategy. The next step is
to verify the simulation results in live testing.

Thus far we have not yet developed a simulation model
which completely reflects how live testees respond, but we
are making progress toward that goal. The computer

'Early development work on this research was supported during
1969 and 1970 by grants from the General Research Fund of the
Graduate School, University of Minnesota. Research reported in this
paper was supported since early 1972 by Personnel and Training
Research Programs, Office of Naval Research, Contract No.
N00014-67-A-0113-0029, NR 150-343. Special thanks are due to
John DeWitt, our project programmer, without whom this research
would have been almost impossible.
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simulations are necessary because of the rapidity with
which we can study various alternatives. The live testing is
necessary, obviously, because it’s people who take tests and
not computers using hypothetical items or hypothetical
subjects. So it is necessary to re-verify the results of the
computer simulations to make sure that they still reflect
what real people do given the variations we have made in
the strategies studied in the simulations.

The second main focus of our research is a concern with
the psychological effects of adaptive testing. Here we are
concerned with identifying the psychological aspects of
testing and the test environment which can introduce error
into test scores. These variables include guessing, test
anxiety, boredom, frustration, and racial or ethnic group
effects.

Guessing can obviously artifically increase test scores;
frustration, anxiety, motivation and other factors can result
in test scores lower than true ability. All of these, therefore,
are sources of error in test scores which are due to 1he
Ppsychological effects of testing.

We are also concerned with the psychological effects
that will result from the man-machine interface. This, from
our experience, is going to be an important problem in
computerized adaptive testing. There are different kinds of
computer systems on which we can implement adaptive
testing and each of those computer systems has its positive
and negative effects on testee behavior. There are different
kinds of terminal devices for adaptive testing and each kind
of terminal device displays in different ways and at
different speeds. All of these variations in the man-machine
interface are going to be new problems for us to consider in
the years to come. Past research has demonstrated that
answer sheets in paper and pencil testing sometimes had an
effect on test scores. Similarly, research in adaptive testing
will need to study different kinds of CRTs, different kinds
of computer systems and different display speeds as part of
the psychological effects of computerized testing.

A third source of error that we are concerned with has
been briefly discussed this morning by Dr. Samejima; this is
error that results from not extracting enough information
from a testee’s response to a test item. 10 dale, mMosl
psychometric research has been concerned with binary or
O-1 scoring. But, as Dr. Samejima has indicated, we can get
more information out of a test response if we treat it as a
graded item. Our research extends that reasoning to
continuous responses using the continuous case of latent
trait theory. The continuous case is operationalized by
probabilistic responding.




This aspect of our research is concerned with integrating
probabilistic responding with adaptive testing. Probabilistic
responding, like adaptive testing, can result in horizontal
information functions. This implies that if we put adaptive
testing and probabilistic responding together we will have
extremely powerful methods of reducing errors in test
scores due to the incomplete use of test responses.

The fourth source of error that we are studying is the
error that results from deviations from unidimensionality.
Latent trait theory, as it is usually used in testing, is based
on the assumption of unidimensionality, although there are
multidimensional latent trait models being developed. But
dimensionality that is defined on a group, such as the
unidimensionality of latent trait theory, does not
necessarily hold true for an individual. That is
dimensionality defined by factor analysis or other methods,
when applied to an individual, assumes that the individual is
the typical or average member of the group on which the
dimensionality was defined. Thus, in the testing situation,
when a set of “unidimensional” items is administered to an
individual, the resuilt may be a set of responses that are not
unidimensionally determined.

Consequently, our research is concerned with
individual-item pool interactions—the interaction of one
individual with a set of ‘“‘unidimensional” items. We are
studying item response protocols of this nature to
determine if meaningful deviations from unidimensionality
do occur for specific individuals. If they do, we will then
attempt to develop interactive testing models that will take
account of intra-individual multidimensionality in an
adaptive testing situation.

The focus of our research effort, as you can see, is with
the individual. We are concerned with identifying those
sources of error in test scores which result in the over- or
under-estimation of each individual’s ability .

Recent Results

Most of our recent results are concerned with the
psychometric effects of adaptive testing, or the comparison
of branching strategies. Thus far we have reported initial
results from both live testing and computer simulation on a
simple two-stage test (Betz & Weiss, 1973, 1974; Larkin &
Weiss, 1975) and a pyramidal branching strategy (Larkin &
Weiss, 1974, 1975). Below, I will report some results from a
flexilevel test (Betz & Weiss, 1975) and some data on my
stratified adaptive test (Weiss, 1975). Mr. McBride will
present some data using Owen’s (1975) Bayesian adaptive
testing strategy.

In general, the findings that we have to date show that
adaptive tests have higher test-retest stabilities—a very
practical and useful criterion—when controlled for number
of items and memory effects. Adaptive tests also tend to
show, in simulation studies, better distributions of ability
estimates. That is, ability estimates better reflect the
distribution of generated ability. And, in general, adaptive
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tests give information functions which are less variable
throughout the ability range, in support of Lord’s
theoretical findings (see Weiss & Betz, 1973).

Flexilevel ability testing. Figure 1 shows the item
structure for Lord’s (1971a,b) flexilevel test. In this testing
strategy there is one item at each of a number of difficulty
levels; item 19 is the most difficult item and item 18 the
least difficult item. Everyone starts the flexilevel test with
an item of median difficulty. Items with odd numbers
increase in difficulty as they deviate from the median, and
items with even numbers decrease in difficulty.

Figure 2 shows the paths taken by three different people
through a ten-stage flexilevel test. Starting with the first
item, a correct response leads to the next more difficult
item which has not yet been administered. An incorrect
response leads to the most difficult of the unadministered
easier items. Figure 2a shows a high ability testee going
through a flexilevel test, Figure 2b is for an average ability
testee, and Figure 2c¢ is for a low ability testee.

Our live-testing study of flexilevel testing (Betz & Weiss,
1975) used a flexilevel test in which each testee would
answer 40 items, requiring a 79-item structure. That test
and a conventional peaked paper-and-pencil type test,
administered on a computer to control for novelty effects,
was administered to 130 individuals. The same tests were
then used in a computer simulation study. That study used
10,000 “‘subjects’ sampled from a normal distribution of
ability, and an additional 1600 subjects, 100 at each of 16
levels of ability. From these simulation data we calculated
information functions, and test-retest or parallel forms
reliability. From the live-testing study we calculated
test-retest reliabilities, and other data describing score
distributions.

The major result from the live-testing study was that
flexilevel test scores were no _more stable on retest than
scores on the conventional test; test-retest stabilities for the
two were virtually identical. The major result from the
simulation study is shown in Figure 3, which displays
information functions for the conventional and flexilevel
tests. Figure 3 shows two findings which were not predicted
by test theory.

First, test theory (e.g., Lord, 1971c) predicts that the
conventional test will always result in higher levels of
information, i.e., better measurement, than any adaptive
test at the median of the ability distribution. Figure 3
shows that the flexilevel test had higher levels of the
information function at the median (0=0) of the ability
distribution. The second prediction from test theory (Lord,
1971b) was that the flexilevel test should yield a relatively
horizontal information function. Figure 3 shows an
information function for the flexilevel test which is quite
divergent from horizontal. In fact, the standard deviations
of the information functions show that the flexilevel test
had a larger standard deviation than did the conventional
test; that means that the flexilevel test tended to be less
equi-precise than the conventional test, at different levels of
the ability distribution.
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A comparison of the results from the computer
simulation study and the live-testing study showed
differences in the test-retest reliabilities. This result was
expected because of the memory effects in live testing.
There were also differences between the two studies in the
shapes of the generated score distributions. These
differences demonstrated that the simulation model was
not yet adequate enough to reflect the results of live testing
and that it needs some revision so that it will enable us to
extrapolate from live testing through computer simulation
and back to live testing.

Another interesting result from this simulation study
relates to the methodology of computer simulation itself.
The design of the study was one in which we repeated the
computations for a hundred samples of a hundred subjects
each in order to study the sampling distribution of the
simulation results. This was done to examine the generality
of findings from computer simulation studies which use
100 or fewer simulated subjects (e.g., Jensema, 1974; Urry,
1971). We found that estimates of validity, the correlation
of generated ability with estimated ability, based on
samples of 100, ranged from .87 to .95, with a mean of 91.
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In certain inter-strategy comparisons different conclusions
about the relative utility of a testing strategy might be
drawn based on validities of .87 or .95. Thus, simulation
studies should be based on samples of more than 100 in
order to arrive at stable conclusions.

Two-stage testing. Figure 4 shows a computer report
from what we have called a continuous second-stage
two-stage test. This adaptive testing procedure was
developed by Brad Sympson of our research staff; we later
discovered that Fred Lord had independently developed the
same testing procedure. In Fall 1975 we tested a number of
college students on this continuous second-stage test.

The major problem with two-stage tests as they have
been used in the past (Weiss, 1974) is that of routing errors
made in branching from the routing test to the
measurement test because of errors of measurement in the
routing test. To solve this problem, we developed a
measurement test stage which consists of a number of very
short measurement tests. The example shown in Figure 4
used a I4-item routing test and 25 4-item measurement
tests, each at a different level of difficulty. Using this
adaptive testing procedure, when an individual completes
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the routing test his score is determined and that score is
used to choose an appropriate measurement test. Then, to
reduce routing errors, a number of measurement tests on
cither side of the chosen measurement test are also
administered to the individual. In the example shown in
Figure 4, the individual’s score on the routing test
estimated his ability at 1.4 standard deviations above the
mean. Consequently, the most appropriate measurement
test was estimated to be number 18, which had items at
difficulty about 1.4 standard deviations above the mean.
But, to compensate for possible errors of measurement in
the routing test, he was also administered items in
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measurement tests 14 through 17 and 19 through 22, fora
total of 36 measurement test items. These items varied in
difficulty from about .25 to 2.25 S.D.’s on the difficulty
continuum.

Following a design that we have used in a number of
other studies, we did a test-retest live-testing study with this
continuous second-stage two-stage test (in which each
testee completed 50 items) and a 50-item conventional
peaked test, over about a five-week period, with 104
testees. To keep scoring method the same for both testing
strategies, maximum likelihood scoring was used for both
the two-stage and conventional test.



The study was designed also to equate the two testing
procedures for 1) item discriminations; 2) memory effects;
and 3) number of items. Memory effects were equated by
first determining the number of items each individual
repeated on retest of the two-stage test. Then the retest of
the conventional test was structured to have the same
number of repeated items by inserting the appropriate
number of new items.

The test-retest correlation was .94 for the continuous
two-stage test and .66 for the equivalent conventional test.
since the dilference in stabilities was considerably larger
than found in our previous studies of conventional vs.
adaptive testing strategies (e.g., Betz & Weiss, 1973, 1975;
Larkin & Weiss, 1974), we carefully examined the
distribution of conventional test scores derived from the
maximum likelihood scoring. Six testees were found with
very low ability scores, apparently due to guessing on the
conventional test. Data for these testees were eliminated
and the test-retest correlations were recalculated. The
stability correlation for the two-stage test was .93 and the
conventional test .89. This result was similar to that
obtained in other comparisons of conventional and adaptive
strategies, showing a higher test-retest correlation for the
adaptive test than for the peaked conventional test. This
result was obtained when both testing strategies were
equated for item discriminations and memory effects.

Stradaptive ability testing. The stradaptive testing
strategy (Weiss, 1973) is based on a series of peaked tests,
each one differing in terms of difficulty. Figure 5 shows the
distribution of item difficulties for a hypothetical
stradaptive test. In Figure 5 there are nine strata, each of
which is a peaked test peaked at a different level of
difficulty.

Figure 6 shows an example of an individual moving
through a stradaptive test. Testing begins with an item at
some point on the difficulty continuum; the entry point is
estimated by prior information about the testee. The
individual shown in Figure 6 began with the first item at
stratum 5, an item of average difficulty. Since he answered
that item correctly, he was administered the first item at
stratum 6, which consisted of slightly more difficult items.
Following the same branching rule—a more difficult item is
administered following a correct response, and a less
difficult item following an incorrect response—the
stradaptive test continues until the termination criterion is
reached. The test is terminated when a stratum is identified
at which the individual is responding at or below chance
level (i.e., 20% or less correct) based on a minimum of five
items administered at that stratum. The individual shown in
Figure 6 answered five items at stratum 8 and none of them
were answered correctly. Consequently the test was
terminated since further testing was likely to provide little
additional information on the testee’s ability level.

Scoring of the stradaptive test results in both ability
level scores and consistency scores. Ability level scores
reflect the individual’s position on the ability scale;

consistency scores reflect the variation in item difficulties
encountered as the individual goes through the stradaptive
test. Figure 7 shows the stradaptive test response record for
an inconsistent individual. This person started the test with
a relatively difficult item at stratum 8 but answered some
easy items incorrectly (e.g., items 8 and 26) and some
difficult items correctly (e.g., items 1 and 17). The result
was a response record which varied widely across six strata.
A comparison of the consistency scores for Figure 7 with
those of Figure 6 shows the former to be uniformly higher.
Thus, the testee depicted in Figure 7 was more inconsistent
in his interaction with this item pool than was the
individual in Figure 6.

Our live-testing test-retest study of the stradaptive test
was based on about 200 subjects. Over an average five-week
period the test-retest reliability for the best method of
scoring the stradaptive test was .90; the test-retest
reliability for a conventional test using the number of items
administered on the average in the stradaptive test (28
items) was .86. This result showed about the same
difference in favor of the adaptive test as we have obtained
with other adaptive testing strategies.

I had hypothesized earlier (Weiss, 1973) that consistency
scores should reflect something about the dimensionality
that results from an individual’s interaction with an item
pool. To extend this hypothesis, if an individual = is
responding unidimensionally his scores should be more
reliable than an individual whose interaction with an item
pool is multi-dimensional. In operationalizing this
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‘hypothesis, consistency scores were used as an indicator of
dimensionality, and test-retest stability as an estimate of
reliability. Specifically, testees were divided into five
sub-groups on the basis of their time 1 consistency scores,
and test-retest reliabilities were computed separately for
each of the five sub-groups. The results are shown in Table
1 for consistency score 11, the standard deviation of items
encountered.

As Table 1 shows, the highest test-retest stabilities were
observed for the very high consistency group for all ten
methods of estimating ability within the stradaptive test.
The clearest pattern emerged for ability score 1. On that
score, the stability for the highly consistent testees was .94,
and that for the very low consistency group was .65, with
stabilities for the intermediate groups decreasing with
decreasing consistency. The possible utility of consistency
scores as a moderator variable is that it might permit us to
make more stable predictions for some groups of indivi-
duals (consistent testees) than for others (inconsistent
testees). Particularly noteworthy is the test-retest reliability
of 98 for the very highly consistent testees on ability
scores 8 and 9.

If these results can be replicated over longer periods of
time, the consistency score might prove to be a very useful
and powerful moderator variable derivable from a stradap-
tive testing response record. It appears to be powerful
because it also moderates the test-retest reliability, but not
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TABLE 1

STRADAPTIVE and Conventional test Test-Retest Correlations as a
Function of Consistency Score 11 on Initial Testing

Status on Consistency Score 11

Very Very
High High Average Low Low

Mean Consistency Score 517 625 706 .815 1.038
Number of Testees in Interval 27 30 41 43 29
Stradaptive Ability Score: 1 .940 .849 .847 .768 652

2 895 721 799 778 151

3 956 .813 .878 .826 .708

4 934 .840 .846 131 .664

5 .896 722 793 156 741

6 950 798 .886 820 704

7 970 .844 .902 851 758

8 981 927 915 .853 .869

9 983 939 907 899 .889

10) .951 792 .882 .822 718

Conventional Test 979 .890 918 .826 .878

as systematically, on the conventional test administered at
the same time. Table 1 shows a test-retest reliability of .979
on the conventional test for the highly consistent group
using the consistency scores derived from the stradaptive
test. But consistency scores are not derivable from a
conventional test so it is necessary to implement this
finding within the framework of the stradaptive testing
strategy.

Figure 8 shows a number of “subject characteristic
curves,” which are derivable from the stradaptive test.
These curves, which reflect the individual’s consistency of
interaction with a stradaptive test, are based on a plot of
proportion correct for each individual at each stratum of
the stradaptive test. For example, the plot for “William W.”
shows that he answered all items correctly at both stratum
5 and stratum 6, about half correct at stratum 7 and none
correct at stratum 8. Since proportion correct decreases
monotonically with increasing item difficulty this indivi-
dual appears to be interacting with this item pool unidimen-
sionally; William W. is a highly consistent individual. By
way of contrast, the subject characteristic curve for “Carol
C.” does not decrease monotonically, reflecting an inconsis-
tent individual who answers items correctly at a variety of
difficulty levels.

To be useful, these subject characteristic curves must be
stable across time. To investigate their stability across an
average five-week retest interval we computed canonical
correlations between proportions correct at initial test and
at retest. The complete redundancy analysis showed that
67% of the variance in retest subject characteristic curves
was predictable from initial testing. This is equivalent to a
squared multiple correlation of .82 for predicting individual
proportion correct at Time 2 from a best-weighted linear
combination of proportions correct at Time 1. These results
imply that subject characteristic _curves are reasonably
stable and that they may represent a stable trait of the
individual. But, certainly, more research is needed.
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Proportion correct at each stratum, by individual

In addition to this live-testing study of the stradaptive
test, we also have some recent data from a computer
simulation study. Items with constant discriminations, and
difficulties rectangularly distributed between normal ogive
difficulty values of -3.33 and 3.33 and grouped into nine
equally wide strata were used for the stradaptive test. Items
with constant discriminations and with difficulties rectan-
gularly distributed between -.33 and .33 {(equivalent to the
middle stratum of the stradaptive test) were used for the
conventional test. 1000 Ss were generated with abilities in
the given interval at each of 13 intervals of 6. Major
findings are shown in Figure 9 and Table 2.

Figure 9 shows the information functions for the
stradaptive and conventional tests at two different levels of
item discrimination. At both levels of item discrimination,
the information function for the stradaptive test was more
horizontal than that of the conventional test, with the
difference more pronounced at the higher level of item
discrimination. In confirmation of Lord’s theoretical pre-
dictions, the conventional test has a higher information
function than the stradaptive test at the center of the
ability distribution, but the range of superiority diminishes
with increasing item discriminations. However, the informa-
tion function for the stradaptive test increases with ability
level, and for the lower discriminating items, the stradaptive
test at 6222.5 yields a higher information function than the
highest value reached by the conventional test.
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TABLE 2

Score—Ability Correlations of the Stradaptive Bayesian Score and
the Conventional Test Score for Tests of 10 to 60 Items, as a
Function of Item Discrimination

Discrimination (a)

No. Items 0.5 1.0 2.0

10
Strat .689 .840 919
Conv 703 851 .888

20
Strat 798 918 963
Conv 811 .908 .906

40
Strat .869 955 .983
Conv .887 938 918

60
Strat .920 971 .989
Conv 917 .950 926

-3.0 -2.0 -1.0 0 1.0 2.0 3.0

0
(Generating Ability)
Figure 9

Information Functions for 60-Item Tests

Table 2 shows validities—correlations of ability estimate
and generated ability—from the simulation data on conven-
tional and stradaptive tests. Validity correlations are shown
as a function of both item discriminations and number of
items. These results show a slight superiority in validities
for the conventinal tests when item discriminations are low
(a=.5), and there are 40 or fewer items in both tesis; a
similar result is found for 10-item tests composed of items
at a=1.0. In all other conditions, the stradaptive test yields
higher validity, with sizable differences appearing as
number of items increases and discriminations increase. For
60-item tests at a=2.0, the validity of the stradaptive test
was 1=.989, while the conventional test validity was only
.926.

Thus, the data from both the live-testing study and the
simulation study of stradaptive tests show that the stradap-
tive test yields scores which are more equi-precise across the
ability range, and have higher validities and reliabilities than
conventional tests under certain conditions. Further. the

stradaptive test consistency scores appear to be powerful

moderator variables which may have important practical
applications in testing individuals.

Psychological effects of computerized administration.
One of the psychological variables that has been unsystem-
atically manipulated in computerized testing studies has
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been feedback or knowledge of results. In computerized
testing we now have the capability to tell an individual
whether his answer was correct or incorrect after each item
in a test. But it is possible that such immediate knowledge
of results might have an effect on test scores. Thus, we
designed a pilot study to systematically manipulate feed-
back and study its effects on test scores.

We administered two tests on the computer to a group
of inner-city high school students. The group was racially
mixed, consisting of both white students and black stu-
dents. Both a conventional test and a pyramidal adaptive
test were administered to each student, and half the group
received the conventional test first and half received the
adaptive test first. In addition, half the group received
feedback after each item and the other half received no
feedback after each test item. We analyzed the data for the
conventional test only—thus, the dependent variable in this
analysis was number correct on the conventional test. The
design was a 2x2x2 analysis of variance. The independent
variables were 1) race—black and white; 2) feedback—
immediate or none; and 3) order—conventional test admin-
istered first or second in the pair.

In order to make the feedback relevant to the high
school group, we had previously asked a subgroup of
students from the same school to generate a set of
statements which would, to them, indicate that they
answered an item correctly. We used six such statements, in
pseudorandom order, including “right on,” “that’s cool,
now try this one.”” and ““all right, how about this one.” This
was done on the hypothesis that feedback can have an
effect only if it is meaningful or relevant to the testee.

The results for the three-way analysis of variance are
shown in Table 3. The only significant main effect was for
race. Mean scores for the blacks was 17.74 and that for the
whites was 27.92, on the 40-item test. Neither order nor



TABLE 3

Mean Test Scores for Blacks and Whites on the 40-item Test in Two Orders and With and Without Feedback

Total
Feedback _No Feedback Group
Group N Mean N Mean N Mean

Blacks—First 8 26.38 [ 13.83 14 21.00

Second 7 13.86 6 14.67 13 14.23
Whites—First 15 26.07 14 30.93 29 28.41

Second 15 30.00 19 25.53 34 27.50
Blacks 15 20.53 12 14.25 27 17.74
Whites 30 28.03 33 27.82 63 27.92
First 23 26.17 20 25.80 43 26.00
Second 22 24.86 25 22.92 47 23.83
Total 45 25.53 45 24.20 90 24.87

3—Way Anova

Source of Mean
Variation DF Square F Est. P
Order 1 105.76 1.36 .25
Race 1 2,013.26 25.84 <.00
Feedback 1 81.74 1.05 .31
Race x Order 1 161.54 2.07 .15
Order x Feedback 1 28.74 37 55
Race x Feedback 1 170.40 2.19 .14
Order x Race x Feedback 1 599.46 7.69 <.01
Error 82 77.92

feedback effects were significant, nor were any of the
two-way interactions. The three-way order x race x
feedback interaction was significant at p<.01.

Figure 10 shows the means for the three-way inter-
action. As is indicated in Figure 10, under conditions of
immediate feedback, when a conventional test was adminis-
tered first, the mean of the black students (26.38) was not
significantly different from the mean of the white students
(26.0) who completed the conventional test under the same
set of conditions. This result implies, if it can be replicated,
that race differences observed in test scores may be a
function not of differences in ability but of differences in
the psychological effects of the conditions of administra-
tion. Although these findings do not completely replicate
those of Johnson & Mihal (1973), they do support their
general conclusion that conditions of test administration
might affect motivational conditions, which in turn reduce
race group differences to nonsignificant levels.

There is some data in our results which suggest that the
three-way interaction results might be due to motivational
effects. In addition to analyzing test scores, we also
anlayzed the proportion of items skipped on the conven-
tional test under the two experimental conditions and for
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the two racial groups. These results showed that blacks
skipped more items than whites, in general, but when the
conventional test was administered first to the black
students and they received feedback, they skipped almost
no items. This is also the same set of conditions under
which the test scores for the blacks were not significantly
different than those of the whites. This appears to be a
motivational effect since when the blacks are given feed:
back the “test becomes relevant to them; and when it
becomes relevant they can answer the questions just as well
as the whites.

Future Plans

Based on these preliminary findings we plan to continue
to investigate the nature of feedback effects, and the effects
of other psychological variables, on test scores. We also plan
to continue to study various branching schemes in an
attempt to develop optimal branching schemes which result
in maximum reduction in psychometric error at all ability
levels. Our general goal, as I indicated eatlier, is to explore
all aspects of computerized ability testing in an effort to
make maximal use of the computer as a vehicle for making
each individual’s test score as error-free as possible.
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ADAPTIVE TESTING RESEARCH AT MINNESOTA —
SOME PROPERTIES OF A BAYESIAN SEQUENTIAL ADAPTIVE

MENTAL TESTING STRATEGY!

Adaptive or tailored testing subsumes a number of
different strategies for adapting the difficulty of test items
to the ability of the examinee. One of the most elegant of
such strategies is a Bayesian sequential technique proposed
by Owen (1969) and studied empirically by several inves-
tigators including Wood (1969), Urry (1971) and Jensema
(1972).

Owen’s technique is a general one for the sequential
design and the analysis of independent experiments with a
dichotomous response. Its application in mental testing is
to the problem of estimating ability by means of sequential
selection, administration and scoring of dichotomous test
items. The mathematical details of the method arise out of
latent trait theory, with the item characteristic curves all
assumed to take the form of the normal ogive. The
properties of the normal ogive item characteristic function,
and its logistic approximation, have been described by Lord
& Novick (1968) and Birnbaum (1968), respectively.

Owen’s procedure involves the individually tailored
sequential design of a test by appropriate choice of
available item parameters® (ag, by, c,) and estimation of
ability via a Bayesian-motivated approximation. At each
step m in the ability estimation sequence, a normal prior
distribution on ability () is assumed, with parameters
(0% ,,,), where m indicates the number of items already
administered in the sequence. A test item to be adminis-
tered at step m+/ is-selected so as to minimize a quadratic
loss function on 8. With ¢,=0 (ie., no guessing) and
discrimination parameters 4, constant over items, the
appropriate item is the available one which minimizes the
absolute value of the difference (b,-u,,). With ¢,>0 the
optimal difference is somewhat negative, that is, optimal
difficulty is somewhat “easier” than examinee’s ability.
Following item administration at step m+1, the parameters
My s o? m of the prior distribution are updated in accord

! Research reported herein was supported by the Personnel and
Training Research Programs, Psychological Sciences Division, Office
of Naval Research, under contract No. 00014-67-A-0113-0029, NR
No. 150-343.

Portions of these results were presented at the Spring meeting of
the Psychometric Society in Iowa City, Iowa, April 1975.

A complete report of these results is in preparation (McBride &
Weiss, 1975a).

2As most commonly used, @, and b respectively are the
discrimination and difficulty paraméters of t%e normal ogive model.
C, is the guessing parameter, the probability that an examinee will
réspond correctly to the item when he does not know the answer.
The subscript g indexes items.

#m+l = E(e IO) =I“Lm

JAMES R. MCBRIDE
University of Minnesota

with the examinee’s performance on the item. In the case
of a correct answer:

et = EOI) =, H1-c,) 0%y $(D)
VL + 0%, [ ey + (1= ) D-D)

(1)

g

and

- ¢ 1-cg (D
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Following a wrong answer

—Im @> &)
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and
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In the above equations (taken from Owen, 1975)
#(D) is the normal probability density function

®(D) is the cumulative normal distribution function, and

(3

_1+02

D= (b, - u,,) =+ 0
g

A= Cg + (lhcg) ¢(_D)



My, sy and 02m+1, the parameters of the Bayes posterior
distribution on @ are used as the parameters of the next
step’s prior. At each step the prior distribution is taken to
be normal, an assumption which is not strictly correct after
the first item (Owen, 1975). Testing may be terminated
when 0%, becomes arbitrarily small or when m becomes
arbitrarily large, or when some other criterion has been
reached. At termination the latest M,y is the estimator of 6,
and 02m is a measure of the uncertainty of the estimate.
Urry (1971) and Jensema (1972, 1974) have interpreted
0?,, as the squared standard error of estimate (S.E.E.) of
;. Owen (1975) gives a theorem showing that as m — oo,
My 0.

Practically speaking, of course, the number of items
administered will never approach infinity; but if the pool of
available items is sufficiently large and appropriately
constituted, 02m will diminish rapidly, permitting valid
estimation of 8 in a very small number of items. Urry
(1971, 1974) has specified the requirements for a satisfac-
tory item pool for implementing Owen’s testing procedure
and has shown in computer simulation studies that Owen’s
sequential test can achieve in from 3 to 30 items the
validity of a much longer conventional test, with the
average number of items diminishing as their discriminatory
power increased.

Validity, i.e., the correlation of test scores with the
simulated underlying ability, is only one criterion by which
to evaluate a proposed adaptive testing strategy. Since the
Bayesian sequential test scores are actually estimates, in the
same metric, of underlying trait level, the accuracy of the
estimates is also an interesting datum. By “accuracy” here
is meant the closeness of the estimates to actual ability,
which may vary systematically with ability level. Another
interesting property of estimates is bias, or error of central
tendency. Two kinds of bias should be of some con-
cern: 1) unconditional bias, or group mean error of
estimate; and 2) conditional bias, or mean error of estimate
at a given level of the parameter being estimated. As a
matter of convention, then, in the following the term
“accuracy” will refer to mean absolute error of estimate,
(1/N) 2'6,~0;; “bias” will refer to mean algebraic error of
estimate (1/N) 2 (0,-0,); and “conditional bias” will refer
to mean algebraic error of estimate at a given value of 6,
(1/N) Z(9;-616).

The purpose of the present paper is to report the results
of a series of simulation studies designed to investigate the
influence of item pool characteristics on some properties of
the Bayesian sequential test other than the correlational
validity of the trait estimates. These properties will include
bias and accuracy of the estimates, as well as others
enumerated below.

_The studies reported below were motivated by results
obtained with live testing of Owen’s strategy. Using a
329-item pool of vocabulary knowledge test items, a
correlation of .80 was obtained between estimated ability
and number of test items to termination (McBride & Weiss,
1975b). Simulation studies designed to investigate the
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influence of the item pool on that unexpectedly large
correlation led to our discovery of systematic non-inear
bias in the Bayesian estimates of ability. The nature of the
bias, and some of its correlates, are discussed below.

METHOD

1. Dependent variables of interest included test length
(number of test items administered before the termination
criterion was reached), errors of estimate (6-6), bias of
estimate (mean over individuals of (§-6)), absolute value of
the error [6—0|, and validity of the estimates of 8, ry 3.

2. Independent variables of interest included the effects
of guessing in both the response model and the scoring
algorithm, of item discrimination, and the correlation of
difficulty and discrimination parameters in the item pool,
and of different termination criteria.

3. Examinees for the first study were simulated by
computer-generation of pseudorandom numbers (from a
normal population with mean O and variance 1) which
represented the ability 0; of each examinee, i. For the
second study, 100 examinees were simulated at each of 31
points on the ability continuum.

4. Item responses were simulated by comparing P’g(e,.)
for each item g and examinee i/ with a random number €yj
from a rectangular distribution in the interval [0,1]. A
score of 1 for examinee / on item g was assigned if
P’ g(Gi)>eg,-. Otherwise a score of 0 was assigned.

5. Itrem pools were simulated under two different
conditions:

a. A perfect item pool with items of constant
discrimination @, and guessing parameter ¢y was simulated.
Under this condéi,tion, the computer program computed the
optimal difficulty b, ,; of the next item to administer, and
a simulated item with that difficulty value was made
available. This is referred to as a “perfect” item pool
because in effect we have simulated an item pool in which
an unlimited number of items is available at any point on
the difficulty continuum. The estimated optimal difficulty
of an item to administer at stage m+/ is equal to the
current ability estimate, 0,,, when guessing is not a factor
(i.e., when cg=0). When guessing is a factor (c,~0), the
estimated optimal difficulty b, is smaller than 8,, by an
amount which is a joint function of 4, and ¢g. That is,
when ¢,>0 (bg—gm)<0. (Actually, the true optimal diffi-
culty is a function of dg, ¢ and the unknown parameter 6.
The Bayesian sequential test procedure only estimates 6
and hence estimates the optimal item difficulty. At any
rate, the simulated “perfect” item pool makes available at
every step m an item whose difficulty is exactly equal to
the estimated optimal item difficulty based on a,, Cg, and
the then current estimate of 8).

b. A differentially discriminating “perfect” item pool
was simulated by having unlimited item difficulties b
available (as in a. above), but varying item discrimination
systematically so that the mean ag could be specified and



the regression of a, of item difficulty b, could be varied. In
this way it was possible to simulate item pools in which
more highly discriminating items were available in some
regions of the ability continuum than in others. The details
of this procedure are described in Study 2, below.

6. The Bayesian sequential test was simulated by a
computer program. Input variables were 6;; the parameters
ug and o®; of the initial prior distribution on 0; the
number of items to be administered to any examinee; the
constant discrimination parameter 4, of the perfect item
pool (or the mean discrimination parameter of the dif-
ferentially discriminating perfect item pool), along with
two guessing specifications. The first, ¢;, specified the
propensity of the examinees to guess while the second, c,,
specified whether guessing was to be accounted for In
scoring.

Study 1: The effects of guessing
" For this study the “perfect” item pool was used, with
two values of ¢,:c,= { 0 paired with two values of the
&g 1200 Vo :
personal guessing tendency ¢;~ {.20. Of the four possible
pairwise combinations, only three were used; resulting in
three sets of conditions

ci Cg
no guessing 0 0
uncorrected guessing .20 0
corrected guessing 20 .20

In the first condition, no guessing takes place (c;=0) and no
correction for guessing enters into the scoring formula
(cg=0). In the second condition ¢;=.20 (every individual i
has a random chance of correct response equal to .20), but
cg=0 (guessing goes uncorrected in the scoring algorithm).
Finally, in the third condition, the .20 guessing parameter
and the scoring correction for guessing take the same value.

In each condition, the same 100 “examinees” (0;
sampled from a normal (0,1) population) were administered
14 simulated Bayesian sequential tests in which testing
terminated for an examinee whenever the ozm, the
estimated variance of the posterior distribution of 8, fell
below .0625 (this is equivalent to the Urry/Jensema
criterion of SEE <.25). The 14 simulated tests in each
condition were experimentally independent, and differed
from each other in the value of the a, parameter, which was
constant within a test, but which varied systematically
across tests. The 14 a,, values were ¢, = .5, 6,.7, .8, 9,1.0,
1.25,1.50, 1.75, 2.00, 2.25, 2.50, 2%5, 3.00.

For each test in each condition, the following variables
were observed:
mean and range of test length, &
. errors of estimate, ¢; = (6,-0;)
test bias, (1/N) Z -9,

1

. mean absolute error, (1/N) Z 16;-0;|
test validity rg4 i
correlated error 7§, and rg,
correlated test length rg g and rgg

e oo
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Study 2: The effects of the configuration of item param-
eters in the item pool

Most simulation studies of Owen’s sequential test have
used a constant item discrimination parameter within each
test. Typical item pools in actual use, however, have varying
item discriminations, with the potential effect of having
more discriminating items available in some ranges of the
trait level than in others. In this study, different item pool
agx by configurations were simulated by using the differen-
tially discriminating “perfect” item pool. The approximate
correlation (r,5) between item discriminating power and
item difficulty was varied in order to observe its effect on
some properties of the Bayesian test and of the resulting
scores.

Three different values of 7,5 were simulated: -.71, 0
and +.71. With r,;=.71, more discriminating items are
available, on the average, at higher levels of 6.With 7, =-71
the more discriminating items were available at the lower
levels of 6. And with r,;=0, no level of 0 was favored in
terms of available discriminating power of the items,
although discriminating power was free to vary randomly.
In each “item pool” configuration, the mean item discrim-
ination @, was set at 1.25. Additionally, a minimum a
value of .80 was imposed, in accord with Urry’s (1974%
recommendation.

The item pool configuration was simulated by means of:

1) selecting the appropriate b, for the next item from
the perfect item pool as though all ag were equal to Z,; call
this b*, = (bg I()m,ﬁg);

2) calculating a conditional ag value from a linear
transform of b*g:

S.D -
= AN
aglb*e = 1y (S.D.B )-b¥gtay

where S.D.5 is the standard deviation of the ag
parameters in the simulated pool

S.D.p is the standard deviation of the by parameters
in the simulated pool
ap, b*e, Typs Eg are as previously defined;

3) adding an error component, e,, to the approximate

ag, so that for each item administered a*y = aglb* teg

where a*g is the simulated discriminating power of
the item

aglb*g is the approximate discrimination defined
above

eg is a random number from a population normal in

0,0%,)
O, = \/0'2e = SDA (1—r2ab)1/2'

4) setting a*g equal to .80 whenever it would otherwise
have a lower value.

“Examinees’ for this study were 3100 simulated 0’s,
100 at each of 31 equally spaced intervals between -3.0



and 3.0, inclusive. The corrected guessing condition
(c =c;=.20) was in effect. The posterior variance termina-
tlon cntenon (0%,,<.0625) was used, with an arbitrary
30-item maximum test length. At each of the 31 @ levels
the following variables were observed for each individual, i:

a. test length, k;
b. test score, 0

c. error of estlmate, e - 60

While study 1 examined average characteristics of the
Bayesian test and test scores, Study 2 was concerned with
certain properties of the procedure as a function of trait
level, 0, and of the item pool configuration, r,,. For each
configuration, the regressions of X, € and 0 on 8 were
estimated from the means of the 100 individuals at each
level of 0.

Additionally, the data were used to calculate empirical
values of the information function /5{@) of the Bayesian
test scores §. The information at any level §; may be
calculated as the square of the ratio of the partial glerivative
with respect to 0 of the regression of test scores 8 on 8, to
the conditional standard deviation (o4 ,) of the test scores
at the given level of 6. This may be wntten I3(0) =
[a/ae(E(elf)))]2

04

(after Lord, 1970, p. 153). In each

configuration for each of the 31 levels of 8, the conditional
standard deviation was estimated as the observed S.D. of
the 100 test scores at that level. The numerator of the
equation was calculated for each 6 point from a third
degree polynomial equation for the regression of § on 6,
estimated by least squares fit to the thirty-one mean 8’s
observed under each item pool configuration.

RESULTS

Study 1

Tables 1, 2 and 3 and Figures 1, 2 and 3 contain the
results of sequential testing under the three conditions of
guessing/correction for guessing, at each of 14 item
discrimination levels. Some noteworthy trends are:

a. Test length was constant at each a, level in the no
guessing (Table 1; Figure 1) and uncorrected guessing
(Table 2; Figure 2) conditions, with test length to termina-
tion diminishing proportionately with the inverse of the g
level.

In the corrected guessing condition (Table 3 and Figure
3) test length varied across individuals, while mean test
length within a, level behaved in the same manner as dic
test length in the other two conditions. One datum of note
is the behavior of test length as a function of ag level: in
order for all examinees to reach normal termination in less
than 30 items (in the corrected guessing condition), the
item discrimination value must exceed 1.25 (a,>>1.25).

Another result of interest is an expected one: the
corrected guessing condition required more items to termi-
nation than did the other conditions.
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b. Errors of estimate, ¢ = (0 0) were moderately
correlated with ability 6 and test score ' under all
conditions, as revealed in Tables 1, 2 and 3. ¢; tends to be
positive for 8;<0 and negative for ,>0. This result was
consistent, and reflects a regression effect caused by the
quadratic loss function employed in the item selection
procedures.

c. Test bias, mean absolute error, test validity, corre-
lated errors and correlated test length values for the no
guessing, uncorrected guessing and corrected guessing con-
ditions are listed in Table 1, 2 and 3, respectively.
Additionally, Figures 1, 2 and 3 graph some of these values
as a function of &, level within each condition. Noteworthy
in these data is the sizeable bias and mean absolute error in
the uncorrected guessing condition (Table 2; Figure 2), as
well as the tendency for bias and absolute error to increase
at a, levels above 2.00 in"the corrected guessing condition

(l'able 37 Figure™ 3). Notfe also that in the uncotrecied
guessing condition (Table 2), test validity, 73, decreased at

levels beyond 2.00. Jensema (1972) observed this
p enomenon, which he termed “correlation drop-off.”

Study 2

Table 4 lists the observed mean values under each item
pool configuration of test score, test length, and error of
estimate for each value of 0. Figures 4, 5 and 6 depict these
data graphically.

a. Test length. Mean test length (Figure 4) did not vary
with 6 in the 7,,0 configuration since the maximum of 30
items occurred at all levels. In the r,,-.71 configuration,
mean test length covaried positively and almost perfectly
with ability level. In the r,,+.71 configuration, test length
covaried inversely with trait level, with more items required
at the lower trait levels until the arbitrary 30-item limit was
reached. -

b. Test scores. The regression of mean trait estimates, 0
on 0 was virtually linear in all three configurations in the
interval [-1.5<8<2.0]. As can be seen from
Figure 5, the Bayesian test scores tended to underestimate
6 at high trait levels, and to overestimate 6 at low trait
levels. The regression of 6 on 6 departed from a linear
regression at extreme levels of 8 (beyond 6 = £2.00) with
the departure more noticeable in the lower extremes of the
scale.

c. Errors of estimate. The regression of mean errors of
estimate on 6, seen in Figure 6, clearly illustrates a
tendency of the Bayesian test scores to overestimate 0
markedly and consistently at §<-1.5 in all three item pool
configurations. The tendency to underesiimate Righ Us &3
also illustrated. In this data the latter tendency was quite
strong with r,;,~.71 but less so with 7,5 +.71.

1ﬂf0rmatlon The estimated values of the derivative

9_[E(616)], the conditional standard deviation 04 and
ale information at each level of 6, under each item pool
configuration, are listed in Table 5. Smoothed information
curves for all three configurations are plotted in Figure 7.
Some noteworthy trends are pointed out here.




TABLE 1

Test Length, Mean Errors of Estimate, and Cormrelates of Ability 6 and Test Score 0, as a

Function of Item Discrimination ag in the Perfect Item Pool. No Guessing Condition (cg=cl-=0).

Item Discrimination (a,)

Property 5 6 7 8 9 1.0 125 15 175 2.% 225 25 275 3.0

Test Length

Mean 100 71 52 41 33 27 18 13 11 9 7 7 6 5

Minimum 100 71 52 41 33 27 18 13 11 9 7 7 6 S

Maximum 100 71 52 41 33 27 18 13 11 9 7 7 6 N
Error of Estimate

Mean (Bias) .00 -.01 02 01 .00 .01 00 .02 .04 .06 .04 05 .03 .04

Mean Absolute Error 17 17 19 19 18 .19 18 21 20 21 21 20 .21 22
Correlates

with error

Toe -35 -27 -31 -36 -39 -35 -37 -37 -30 -37 -39 -36 -32 -35

Toe -17 -08 -10 -16 -20 -15 -17 -14 -07 -15 -16 -14 -09 -10

with test length

Tok .2

Tox

rgg(validity) 98 98 .98 98 98 98 .98 97 97 97 97 97 97 97

a. Correlations not computed since test length (k) was constant.

TABLE 2

Observed Properties of the Bayesian Sequential Test as a Function of Item
Discrimination in the Perfect Item Pool. Uncorrected Guessing (cg:O; ¢j=20°

Item Discrimination (ag)

Property S 6 Ni .8 9 1.0 125 1.5 175720 225 25 275 30
Test Length
Mean 100 71 52 41 33 27 18 13 11 9 7 7 6 S
Minimum 100 71 52 41 33 27 18 13 11 9 7 7 6 5
Maximum 100 71 52 41 33 27 18 13 11 9 7 7 6 5

Errors of Estimate

Mean (Bias) 57 A48 47 42 37 34 30 .27 29 3t .32 .31 29 .29
Mean Absolute Error 58 48 48 46 42 39 .37 .37 36 40 .39 .38 .37 .39
Correlates

with error

r .51 -46 -49 -48 -48 -43 -44 -36 -31 -31 -32 -32 -32 -32
’gz -29 -23 -23 -19 -20 -13 -16 -04 O1 05 .05 .05 .07 .02
with test length a

qu

Tok

rea(validity) 97 97 96 95 95 95 96 94 95 93 93 .93 92 91

a. Correlations not computed since test length (k) was constant.
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TABLE 3

Observed Properties of the Bayesian Sequential Test as a Function of Item
Discrimination in the Perfect Item Pool. Corrected Guessing (cg=cl=.20)

Item Discrimination (ag)
Property S .6 7 .8 9 1.0 125 15 175 2.0 225 25 2795 30
Test Length
Mean 100 99 77 60 48 40 27 20 16 13 11 10 9 9
Minimum 100 93 66 52 42 33 21 14 11 8 7 6 6 5
Maximum 100 100 88 69 57 49 32 26 21 19 18 16 15 14

Errors of Estimate

Mean (Bias) 04 03 .02 .03 .02 .04 .01 .01 .01 .02 .04 .06 .07 .08
Mean Absolute Error 22 .18 .16 .18 .19 .19 16 .17 19 .20 A8 .20 A9 21
Correlates
Toe -39 -36 -25 -39 -42 -35 -37 -37 -38 -39 -25 =37 -33 -33
The -17 -18 -09 -20 -23 -16 -19 -.18 -18 -.19 -14 -14 -10 -.08
Yok .7 54 80 78 78 .81 .81 8 .85 .88 .85 .88 .90 .88
Tk .... .56 .82 81 .80 .83 .82 84 .87 .89 .86 .90 91 .90
Y] 97 98 .99 98 98 .98 98 .98 98 .98 98 .97 97 97

a. Correlations not computed since test length (k) was constant.

mOf .
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I:st 50 .
Fhe o
30 . .
20 . . .
® o o0 o
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5 1.0 1.5 2.0 2.5 3.0
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.40
Error of 30
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— [e-6]
.10
— e
0 '\o/\‘—-/‘\c _—-'—-—-—-'/ T (03‘

Figure 1. Some observed properties of a Bayesian sequential test,
as a function of item discrimination. No guessing; perfect
item pool; posterior variance termination criterion.
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Figure 2.

Some observed properties of a Bayesian sequential test,
as a function of item discrimination. Uncorrected .20

guessing; perfect item pool; posterior variance termina-
tion criterion.
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Figure 3. Some observed properties of a Bayesian sequential test,
as a function of item discrimination. Corrected .20
guessing; perfect item pool; posterior variance termina-
tion criterion.
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TABLE 4

Mean Test Scores (8), Mean Test Length (k) and Mean Error of Estimate (e)
for Three Item Pool Configurations, at each of 31 Trait Levels (9)

Item Pool Configurations

rab+'7 1 rab.() rab-.7 1

[} i k e 6 k e 8 k e
-3.0 -2.39 30 612 -2.47 30 532 -2.30 14 696
-2.8 -2.26 30 545 2.29 30 513 -2.20 14 601
-2.6 -2.06 30 542 -2.25 30 .352 -2.17 15 427
-2.4 -2.00 30 404 -2.06 30 342 -2.08 15 317
2.2 -1.81 30 .390 -1.94 30 263 -1.93 16 .269
-2.0 -1.70 30 296 -1.80 30 204 -1.74 17 263
-1.8 -1.60 30 200 -1.66 30 141 -1.65 18 146
-1.6 -1.44 30 163 -1.45 30 151 -1.48 18 125
-1.4 -1.24 30 .162 -1.32 30 .082 -1.29 20 110
-1.2 -1.12 30 076 -1.12 30 .082 -1.14 21 060
-1.0 -.93 30 073 - 93 30 071 - .98 22 .018
- .8 - .74 30 .055 - .74 30 .055 - .76 24 .037
- .6 - .56 30 .038 - .59 30 014 - .58 26 .015
-4 - .44 30 -.040 - .40 30 .004 - .35 27 049
-2 - .25 30 -.046 - .21 30 -.010 - .14 29 062

0 - .06 30 -.058 .05 30 046 .02 30 021

2 20 30 -003 .16 30 -.039 .19 30 -.007

4 .35 30 -.053 .34 30 -.056 .35 30 -051

.6 53 29 -.068 .61 30 .010 58 30 -.015

.8 .76 29 -.044 74 30 -058 .81 30 013
1.0 95 28 -.051 .89 30 - 113 92 30 -.080
1.2 1.11 27 -091 1.16 30 -.036 1.15 30 -.047
1.4 1.37 26 -.034 1.33 30 -.068 1.25 30 -.150
1.6 1.53 26 -.074 1.48 30 -117 1.46 30 -.140
1.8 1.73 25 -.070 1.68 30 -.123 1.64 30 -.165
2.0 1.89 24 -113 1.88 30 -.119 1.78 30 -.224
2.2 2.09 24 -.107 2.05 30 -.146 1.98 30 -.224
2.4 2.27 23 -132 2.22 30 -176 2.13 30 -270
2.6 2.47 23 -.126 2.37 30 -.230 2.33 30 -.273
2.8 2.63 23 -.168 2.57 30 -.230 2.43 30 -.372
3.0 2.81 23 -.189 2.72 30 -.282 2.57 30 -426
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Figure 4. Mean estimated ability (@) at thirty-one ability points (8)
for the simulated Bayesian sequential test under three
item pool configurations.
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Figure 5. Mean number of items to termination (test length) at
thirty-one ability points (#) for the simulated sequential
test under three item pool configurations (See text.)
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Estimated Value of the Derivative ;?g’ Conditional Standard
Deviation 7 and Value of the Information Function 1@(9)

for Three Item Pool Configurations, at 31 Ability Levels (8)

TABLE 5

Item Pool Configuration

¥ rab,71 rab() rab—.71
] 20 o« 1206 L 150 20 03 I2(0)
Y] al6 4(0) 20 016 8(0) 30 6le ]

-3.0 523 307 2.90 588 .336 2.58 450 .353 1.63
-2.8 .566 353 2.57 629 333 3.57 S11 308 2.75
-2.6 .607 .328 342 .668 304 4.83 .568 279 4.14
2.4 645 341 3.58 704 283 6.20 621 264 5.54
2.2 .682 321 451 .738 294 6.31 .670 268 6.26
-2.0 716 .330 471 770 284 7.35 716 289 6.14
-1.8 748 324 5.33 .799 228 12.29 .758 289 6.87
-1.6 778 257 6.26 .826 266 9.64 .796 247 10.37
-1.4 783 311 6.34 .850 265 10.29 .830 230 13.01
-1.2 .832 314 7.01 872 261 11.16 .860 251 11.73
-1.0 855 278 9.46 .892 275 10.52 .886 235 14.21
- .8 876 316 7.69 .909 278 10.70 908 244 13.86
- .6 .895 283 10.00 924 260 12.63 927 244 14.44
-4 912 282 10.47 936 288 10.57 .942 255 14.66
-2 927 .308 9.06 946 278 11.59 953 284 13.96

0 940 305 9.50 954 249 14.68 .960 257 13.96

2 946 253 1398 959 248 14.96 963 284 11.50

4 959 255 14.14 962 281 11.72 963 252 14.59

.6 965 287 11.29 962 275 12.25 958 285 11.31

.8 965 269 12.86 960 248 15.00 950 276 11.85
1.0 971 228 18.15 956 250 14.62 938 336 7.79
1.2 971 228 18.13 .949 250 14.42 922 294 9.84
1.4 968 218 19.71 940 272 11.94 .902 295 9.36
1.6 964 246 15.35 928 259 12.85 .879 301 8.52
1.8 957 229 17.46 914 292 9.81 851 317 7.21
2.0 948 263 13.00 .898 .289 9.66 .820 .296 7.67
2.2 937 230 16.56 .879 260 11.43 785 321 5.98
2.4 924 210 19.35 .858 255 11.32 .746 294 6.44
2.6 .908 227 16.00 834 270 9.55 .703 349 4.06
2.8 .891 258 16.69 .808 250 10.46 657 332 3.91
3.0 871 218 16.00 780 279 7.82 .606 293 4.28
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Figure 7.

Smoothed curves of the information functions of the
Bayesian sequential test under three different item pool
difficulty-by-discrimination configurations. (see text.)
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1) Under all three item pool configurations the informa-
tion functions were very low in the low end of the 0
distribution;

2) For r,3+.71 the information values uniformly in-
creased with increasing 6;

3) For 7,50 information generally increased with 6, to
about 6 = 1.00, then decreased somewhat;

4) For 1,3~ .71 information increased sharply with 8,to
about 8 = 0, then just as sharply decreased.

DISCUSSION

Study 1

Test length, or number of items required to satisfy the
posterior variance termination criterion, was shown to vary
inversely with item discriminatory power, a,, when the
latter is constant for all items in a given test. Tlglis result was
expected, and corroborates the findings of Jensema (1972,
1974) who also pointed out that if constant item dis-
criminatory powers were available it would be possible to
predict the validity of the trait estimates from the number
of items administered, and conversely to estimate the
number of items required to achieve any given validity
level.

In the no-guessing and uncorrected guessing conditions
(that is, in tests which assume no guessing) the test length
was constant for any fixed @, value. This result would not
be likely to occur with a finite pool of items due to the
inevitability of imperfect §-with-item-difficulty matches.
That is, with a finite item pool some variance in test length
would likely occur even if all items had equal discrimina-
tion parameters. The fact that there was no variance in
test length  (within any given discrimination level) with the
perfect item pool indicates that any variance in test length
in a real, constant-discrimination, no-guessing test must be
due solely to inadequacies in the distribution of item
difficuity parameters in the finite item pool.

These results are pertinent to the use of Rasch-model
ability estimation in an adaptive testing situation. Except
for the specification of the item characteristic function, the
Rasch model is conceptually identical with the no-guessing
model used in Study 1. Within each test, item discrimina-
tion parameters were constant (as the Rasch model
assumes) and no-guessing was assumed. Thus the major
difference between this portion of Study 1 and a Rasch
model simulation would be in the definition of the item
response model. We assumed a one-parameter normal ogive
response model, whereas the Rasch model uses a one-
parameter logistic one (Bimbaum, 1968, p. 402). As
Bimbaum (1968, p. 399) has pointed out, the two response
models are very similar. Thus, the results of Study 1 for the
no-guessing condition should be generalizable to adaptive
tests based on the Rasch model.

In the corrected guessing condition (Figure 3) there was
some variance in test length for all 4, values (except
ag = .50, where no testees terminated in fewer than 100

items). For all g, levels above .50, test length 8 correlated
strongly and positively with the trait estimate 6 (Table 3).
The test length - correlation r5y equalled or exceeded .80
for all a, values above .6. The correlation r,; between test
length and ability 6 was of similar magnitude but always
smaller than rgz. It seems obvious that for the case of
constant item discrimination and non-zero guessing there is
a systematic relationship between ability 8 or test score 8
and number of items administered. Examination of the
partial correlations, however, shows that Yoy vanishes when
6 is statistically controlled for. For instance, for a, = 1.0 we
observed 7oy = .81, g = .83, rp4 = 98, Controfling for §
and @, respectively, yields the following partial correlations:

rek_é =-.03

rékae =31

Analysis of the corresponding partial correlations for the
other a, levels would yijeld a similar result: r,; japproxi-
mately zero, but 75, , positive and moderate. This suggests
that, at least for the constant item discrimination case, the
tendency for rgx to be positive is due to some characteristic

© of the trait estimation method using the guessing correc-
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tion.

Another observation with regard to test length has a
practical application. Where the posterior variance termina-
tion criterion is to be used, it is desirable that all or nearly
all examinees reach criterion (e.g., o2m< 0625 or some
other arbitrary value) within a reasonably small number of
items, Typically (e.g., Urry, Jensema), a 30-item maximum
test length has been imposed in conjunction with the
posterior variance criterion. If a large number of examinees
reach the 30-tem limit before attaining the posterior
variance criterion, the latter may lose its usefulness as a
predictor of test validity. The data of Table 3 (and Figure
3) indicate that even with a ‘“‘perfect” item _pool, the
constant item discrimination parameter must equal or
exceed @, =1.25 in_order to insure test termination in

tewer than 30 items for the majority of examinees when

guessing is a factor. Although it is difficult to generalize this

finding" to the case of typical finite item pools, it is
reasonable to expect that test termination via the posterior
variance criterion 02m<.0625 will seldom occur in fewer
than 30 items in Bayesian sequential tests using item pools
whose mean item discrimination parameter is less than
1.25.

Errors of estimate were moderately and negatively
correlated with 8 in all three conditions, with the strongest
correlations observed in the uncorrected guessing situation.
That is, with constant item discrimination and a perfect
pool of item difficulties, larger errors of estimate (@—0)
tended to occur as @ decreased. This tendency can be
viewed as a regression effect. As is typical with linear
regression estimates for all three conditions the estimates 6
tended to be closer to the mean than the actual values 6.



. The correlation rj, between trait estimates § and errors
(6-0) was consistently of the same sign but lower magni-
tude than ry,, with the no guessing and corrected guessing
conditions,

The mean error of estimate, or bias, was virtually zero in
the no guessing condition, until ag became large (Table 1;
Figure 1). For a,21.50 there was a tendency for positive
bias to occur. Similarly, mean absolute error was quite
constant until 2,=1.50, than became larger. In the corrected
guessing condition (Table 3, Figure 3) mean absolute error
was fairly constant across a, levels, but bias was positive at
low a, values, diminished virtually to zero at intermediate
levels, and began to increase steadily as ag increased above
2.0.

Study 2

Test length. The data illustrate clearly the effect of item
pool configuration on the correlation of test length with 8
(or 5): The correlation is strong and its sign was opposite
that of the r,;, correlation in the simulated item pool. (For
the r,;0 configuration there was no variance in test length,
due to the arbitrary 30-item limit. The preceding three
studies have shown, however, that with constant a,, test
length varies directly with 6. Presumably that relationship
would hold for the 7,,0 configuration if test length was
free to exceed 30 items). We have already alluded to the
inverse relationship between test length and the rate of
reduction in the Bayes posterior variance. Thus, it should
be clear that the configuration of difficulty and discrimina-
tion parameters in the item pool, which can be roughly
described by the correlation of the discrimination and
difficulty parameters (7,;), effectively dictates the rate of
posterior variance reduction at any level of the trait 6.
Furthermore, if a maximum test length is arbitrarily
established (such as the 30-item limit used by us, and by
Urry, 1974, and Jensema, 1972) that limit, in conjunction
with the item pool configuration, may dictate regions of
the 0 continuum in which satisfactory convergence of the
trait estimates will seldom occur.

Errors of estimate. Study 1 found very high validities of
the trait estimates 8, indicating that the Bayesian sequential
test is capable of ordering simulated examinees from a
normal population quite well with respect to the variable,
0, underlying the item responses. Study 2 was motivated by
an interest in the accuracy of the estimates of 8, rather than
the correctness of ordering, as a function of 8 itself. The
data showed clearly that the Bayesian estimates behaved in
a manner similar to linear regression, except at the extremes
of the normal distribution (6<-1.5 and 6>2.0). Typically,
linear regression underestimates the criterion variable above
the mean, and overestimates it for values below the mean.
Such was the case for the Bayesian sequential estimates,
except that the underestimates became fairly sizeable
(around .20) on the average for 6>2.0, and overestimates
became severe (larger than .5) in the lower levels of the
trait. Furthermore, it was shown that the behavior of the
trait estimates varies as a function of the item pool
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configuration. Thus, by controlling the item pool configura-
tion for a live-testing item pool it should be possible to
control the accuracy of the Bayesian test scores as
estimators of the actual trait level of the examinees. Other
alternatives may prove useful in this regard. Some of these
will be discussed below.

Information. For the configuration r,,+.71, the in-
formation of the trait estimates appears to increase linearly
with 6, at least in the interval [~3.0<6<3.0]. This is what
we might expect, since item discrimination increased with 0
in this configuration. Note (Table 4) that mean test length
in this configuration was 30 items for-3<#<.6,and then
decreased linearly with for §<.6, reaching a mean of 23
items at 0 = 3.0.

For the 7,,0 configuration the information function
appeared to take the shape of an inverted (and rather
asymmetric) shallow dish, with maximal information
attained in the interval [0<6<1.5]. This should approxi-
mate, at least in its form, the information structure
resulting from applying the Bayesian sequential test with a
real item pool whose configuration is based on Urry’s
(1974) prescription. It should be apparent that some
efficiency of measurement will be lost in the extremes of
the 6 distribution, especially in the lower extremes. Note
that for these data, test length was a constant 30 items at
all levels.

For the r,,-.71 configuration the information curve
does not take the shape one would assume intuitively.
From knowledge of the distribution of the discrimination
parameters it would seem that the curve should mirror that
of the r,;+.71 information but with maximal information
at 8=-3.0. Instead it rather emphatically takes the convex
form. The test is maximally efficient in the interval
[-1<6<0], and rapidly loses efficiency elsewhere. This is a
remarkably different result from what one would expect.
The highest item discrimination parameters were available
at the low end of the @ scale, yet information was as low
there [-2<6<-1.5] as it was where the lowest item
discrimination values occurred [1.5<0<3.0] . The low levels
of information in the low 6 region are due in part to the
small number of items administered there. As Table 4
reveals, the posterior variance termination criterion resulted
in mean test length of 14 items at 0=-3.0; 17 items at
0=-2.0; 22 items at 8=1.0 The information values ob-
tained with these test lengths could be adjusted statistically
to estimate the information values for constant 30 item test
length. Such an adjustment would still show an efficiency
loss at 8<-2.0 for this item pool configuration, despite the
high average item discrimination in that region. We will
address this problem further in the discussion to follow.

Implications. These results were obtained by simulating
a “perfect” item pool; i.e., a pool in which unlimited
numbers of items of any difficulty level were available. This
should result in data, which, within the limits of sampling
error, approximate the best possible results obtainable using
the sequential testing procedure as specified by Owen
(1969), under the conditions studied.




We have found, as did Urry (1971, 1974) and Jensema
(1972, 1974) before us, that the procedure has the
potential to yield trait estimates having very high validities
with great economy in test length, provided that highly
discriminating test items, rectangularly distributed on
difficulty, consitute the item pool. We have also found that
there may _be a tendency of the method to overestimate
group mean _trait level, when item discrimination para-
meters are very high, even when the trait estimation model
‘exactly conforms to the item response model. When the
estimation model is not congruent with the item response
model (as in the uncorrected guessing condition of study 1)
we have found that rather sizable bias of estimate may
occur, accompanied by diminished validity.

Lord (1970, p. 152) made the point that evaluating a
tailored test by means of a group statistic (such as our
validity coefficient r44) presumes some knowledge of the
group’s distribution on the trait being measured, and
ignores information relevant to the accuracy of trait
estimates at any one level of the trait. The validity of the
Bayesian sequential test trait estimates was, as we have
seen, quite high under the conditions used in our simulation
studies. The accuracy of the estimates was also favorable in
what corresponds to the middle ranges of a normal
distribution on 6, but was found to be less favorable in the
extremes, especially the lower extreme. Similarly, the
information functions of the trait estimates showed that
the effectiveness of measurement under the Bayesian
tailoring procedure varied systematically as a function of
the configuration of the item parameters constituting the
item pool, but in all three configurations measurement
effectiveness was very low in the low ranges of the trait.

The observed loss of accuracy and information in the
extremes of the “typical” range of 0 are disturbing; since
the advantage of tailored testing over conventional testing is
the former’s supposed potential for superior measurement
accuracy and effectiveness in those extremes. From our
data it is apparent that with the exception of the 7,,+.71
configuration, the sequential test scores are behaving much
like conventional test scores, at least in terms of the shapes
of their information functions. And even for the r,;-.71
configuration measurement effectiveness was relatively
poor in the lower extremes of 8. The utility of the Bayesian
adaptive testing strategy may be diminished considerably
by results like those reported for Study 2, if they prove to
be general.

The problems revealed in Study 2 (of bias non-linear in
#, and of convex information structures of the trait
estimates) have causes which may be amenable to improve-
ment. At the heart of the problem is the effect of guessing,
which generally operates to reduce measurement efficiency
at all trait levels, and especially at low trait levels. Also at
the core of the problem is the Bayesian procedure itself. As
we have pointed out earlier, the Bayesian trait estimates
behave like regression estimates. Extreme values of 6 are
systematically regressed toward the initial prior esti-
mate: the assumption of a normal prior distribution of ¢
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ensures this tendency. Now, the more extreme 0 is for any
individual, the larger will be the regression effect, on the
average. Recall that the item selection procedure selects an
item with difficulty b, somewhat easier than the current 8
estimate. But for high 8 the current estimate is almost
always too low. Hence the difficulty of the selected item
will almost always be too easy for extremely able exam-
inees. Cumulated over, say 30 items, the effects of this
inappropriate item selection will be several:

1) mean proportion correct will tend to increase as a
function of @, despite the explicit attempt of the tailoring
procedure to make it constant at all levels of 8;

2) 0 will tend to be underestimated for high ¢ due to
the inappropriate difficulty of the test items administered;

3) information loss will occur at high 6 due to the
shallowing slope of the regression of 6 oro.

For low @ the initial prior is an overestimate. Hence, the
first item selected will generally be too difficult
[(b -0)>0], yet the examinee has a non-zero chance of
answermg it correctly. A correct answer, of course, will
cause an increase of § and thus result in another inappropri-
ate choice of item difficulty. Furthermore, as Samejima
(1973) has shown, there may actually be negative informa-
tion in a correct response to an item whose difficulty b
exceeds an examinee’s actual trait level 6 by a fairly smaﬁ
increment, when guessing is a factor. We suggest that
examinees in the low extremes of § are rather consistently
being administered overly difficult items [(bg—0)>0] with
several systematic results:

1) mean proportion correct tends to decrease with 0
despite the tailoring process;

2) posterior variance reduction tends to be more rapid
for individuals of low trait levels, due largely to their
sub-optimal proportion of correct responses, resulting in
shorter mean test length;

3) the shorter the test length, the less opportunity the
Bayesian estimation procedure has to converge to extreme
trait level estimates;

4) non-convergence combines with negative information
in some correct responses to diminish severely the effective-
ness of measurement in the low regions of the trait.

Some of the conclusions just stated are speculative.
Specifically, we have not looked at proportion correct as a
function of @, nor at the quantity (b -9), both of which
bear on the appropriateness of the taﬂonng process. Future
simulation studies will be necessary to examine these
variables.

One goal of adaptive testing should be to achieve a
constant high level of measurement effectiveness at all
levels of 0. This desideratum is equivalent to a high,
horizontal information function. We have found that the
Bayesian sequential test failed to achieve this goal despite
an unrealistically favorable set of circumstances: the per-
fect item pool, errorfree item parameters, and a scoring
model perfectly congruent with the item response model.
We have attributed the shortcomings of the Bayesian trait
estimates to the regression-like tendency of the sequential



estimates themselves, which in turn result in inappropriate
item selection for individuals whose trait levels are ex-
tremely high or low.

There are at least two methods of ameliorating this
problem, both of which should, to some extent, lessen the
bias of estimate at the extremes and improve the informa-
tion structure of the trait estimates. The first method
involves the assumption of a rectangular rather than a
normal prior distribution of 6. The second method would
involve replacing the present item selection procedure with
a mechanical branching procedure which would be less
sensitive to large errors in the current trait estimate in its
choice of the next item to administer. Needless to say, both

of these alternatives do considerable violence to Owen’s
elegant procedure.

If the practitioner is committed to the procedure as it
was originally proposed, it would seem that the best course
of action would be to take great care in assembling the item
pool, and to administer a constant number of items (say
30) to each examinee. If no strong commitment to Owen’s
procedure is involved, the practitioner may be well advised
to use another adaptive strategy, such as Weiss’ stradaptive
test (Weiss, 1974), Lord’s (1974) maximum likelihood
procedure, or a similar procedure being investigated by
Samejima (1975). Systematic investigation of some of these
strategies, which will permit them to be compared with the
Bayesian sequential test, are currently in progress.
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AN EMPIRICAL INVESTIGATION OF WEISS’
STRADAPTIVE TESTING MODEL

This study! investigated the validity and utility of the
stratified adaptive (“stradaptive”) computerized testing
model proposed by Weiss and colleagues in the Psycho-
metric Methods Program, University of Minnesota. Weiss
and his associates have reported the theoretical develop-
ment of the stradaptive model (Weiss, 1973; DeWitt and
Weiss, 1974; McBride and Weiss, 1974) including some
examples of individual results. To date, no full empirical
studies of the model have been published.

The Stradaptive Testing Model

Lord’s theoretical analysis of adaptive testing versus
conventional testing makes one point very clear: a peaked
test provides more precise measurement than an adaptive
test of the same length when the testee’s ability is at the
point at which the conventional test is peaked. At some
point on the ability continuum, generally beyond *.5
standard deviations from the mean, the adaptive test
requires fewer items for comparable measurement effi-
ciency.

Lord suggests that an “ideal” testing strategy would
present a sample of items to each subject comprising a
peaked test with a .50 probability of a correct answer for
examinees of the particular subject’s true ability (P, = .50).
The catch, of course, is that the true ability of the subject is
unknown; the estimation of which is, in fact, the desired
outcome of the measurement procedure.

Traditionally, this problem has been circumvented by
peaking the test at P, =.50 for the hypothetical average
ability level subject. This procedure worked well for
examinees near the center of the ability continuum, but less
efficiently near the extremes.

Weiss’ stradaptive model extends the Binet rationale to
computer-based ability measurement. A large item pool is
necessary, with item parameter estimates based upon a large
sample of subjects from the same population as potential
examinees. Items are scaled into peaked levels (strata)
according to item difficulty. A subject’s initial item is based
upon a previously obtained ability estimate or the subject’s
own estimation of his ability on the dimension being
assessed.

'This paper is based on the author’s doctoral dissertation
conducted at Florida State University under the direction of Dr.
Howard W. Stoker. Requests for copies of the dissertation should be
sent to the author ¢/o AFHRL/FT, Williams AFB, AZ 85224,
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Figure 1 depicts a nine-strata distribution of items in a
hypothetical stradaptive item pool.

As in the Binet, the subject’s basal and ceiling strata are
defined, with testing ceasing when the ceiling stratum has
been determined. A subject’s score is a function of the
difficulty of the items answered correctly, utilizing various
scoring strategies (Weiss, 1973).

The Item Bank

Verbal analogy test items were used in this study
selected from the SCAT Series I1.2 This test series provided
a singleformat, unidimensional test with extensively-
normed item parameter estimates. The item format was
easily stored in a computer item file, being short and
standard for all 244 items.

Item pool data received from Educational Testing
Service contained five 50-item verbal analogy tests, Forms
1A, 1B, 1C, 2A and 2B of the SCAT Series II examinations.
These tests had been nationally normed on a sample 3133
twelfth grade students in October 1966. P—values and
biserial correlations on 249 items were provided by ETS.
These values were transformed into normal ogive item
parameters.

Table 1 shows the actual distribution of items used in
this experiment. The final pool included 244 items grouped
into 9 strata according to normal ogive item difficulty
parameters as shown in Table 1.

The nine strata in Table 1 are essentially nine peaked
tests, varying in average difficulty from -2.12 to +1.91.
Stratum 9, the most difficult peaked test, for example, was
composed of 19 items ranging from &,=127 to
b,=3.68. In this study, items were randomly ordered
within strata, unlike in Weiss’ model, in order to permit an
alternate-forms reliability coefficient to be calculated for
stradaptive examinees. As is typical in educational and
psychological research, the concentration of more difficult
items contains the lower discrimination values. A correla-
tion between bg and g, of ~.31 reflects this problem.

Subject Pool. One hundred and two incoming freshmen
to Florida State University were tested in late July 1974.
Ninety-nine of the subjects had Florida Twelfth Grade

2Test materials from SCAT Series II Verbal Abifity tests were
adapted and used with the permission of Education Testing Service.
The author of this paper gratefully acknowledges the help of ETS in
the pursuit of this research.



(12V) Verbal Scores or 12V estimates derived from ACT or
CEEB verbal scores to serve as criteria for the validity
investigation of the stradaptive test scores.

Table 2 depicts linear vs stradaptive group test statistics
on the 12V scores.

As can be seen in Table 2, the random assignment of
subjects to linear or stradaptive testing groups did a good
job in equating the groups on the ability continuum as
presented.

Testing continued until a subject’s ceiling stratum was
identified. for this study, the ceiling stratum was defined as
the lowest stratum in which 25% or less of the items

STRATUM

measured by the Florida 12th Grade Verbal test.

Since SCAT-V published results had shown significantly
different difficulty levels between the five forms, linear
subtest scores were normalized within their separate distri-
butions and then pooled into a linear total score distribu-
tion for comparison with stradaptive results.

CRT Testing

A computer program described by DeWitt and Weiss
(1973) was adapted to fit the FSU Control Data Corpora-
tion 6500 computer.
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Figure 1. Distribution of items, by difficulty level, in a Stradaptive Test
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TABLE 1

Item Difficulties (b) and Discriminations (a), Based on Normal Ogive
Parameter Estimates, for the Stradaptive Test Item Pool

Stratum
(easy) (difficult)
1 2 3 [ 5 6 7 8 g
Item Difficulties
High -1.94 -1.46 - .90 - .49 - .10 .25 .67 1.34 3.68
Low -3.57 -1.91 -1.40 - .88 - .44 - .10 .27 Al 1.27
Mean -2.12 -1.68 -1.13 - .68 - .25 .04 .44 .95 1.9
No. of Items 20 26 33 39 3 28 26 22 19
Item Number
Within Stratum b a b a b a b a b a b a b a b a b a
1 -2.08 .48 -1.87 50 - .90 56 62 79 - 9 .29 20 59 38 53 1.25 .46 1.76 .49
2 -1.97 .45 -1.74 69 -1.05 83 49 69 - .33 .4 25 59 31 34 76 .64 1.69 .44
3 -2.07 .42 -1.70 95 -1.34 42 -.72 7 -1 50 00 44 43 53 1.19 .56 1.61 .44
4 =2.27 .64 -1.91 52  -1.11 1.7 65 730 - 7 50 24 34 63 39 81 .45 2.91 .49
5 -1.97 .86 -1.50 77 -1.39 63 -.88 .49 - .1 53 09 69 65 66 1.13 .36 3.69 .28
6 -2.17 .36 -1.79 59 - .92 50 -.49 61 - .16 33 -.10 61 34 49 87 .34 1.57 .29
7 -2.31 . -1.47 8 -1.06 42  -.80 50 - .16 83 09 71 30 n 71 .48 1.60 .33
8 -2.03 .41 -1.83 55 -1.31 44 - .69 5 - . 52 12 81 59 53 88 .53 1.3¢ .42
9 -2.13 .48 -1.68 58 -1.22 95 -.55 .52 - .44 69 M 52 28 64 88 .49 1.83 .82
10 -3.57 .30 -1.52 93 -1.08 52 -.80 55 - .42 55 00 39 38 52 79 .61 1.27 .77
1 -2.03 .50 -1.69 83 -1.19 79  -.57 33 - .2 39 00 4 29 61 1.24 .30 2.29 .44
12 -2.63 .39 -1.69 41 - .95 1.01 84 .68 - .35 59 21 53 62 56 77 .71 1.33 .33
13 -1.95 .25 -1.65 7 -1.37 53 -.86 .83 - .24 79 13 68 53 55 91 .26 1.91 .40
14 -1.95 .56 -1.56 " .64 -1.31 64 -.76 59 - .10 55 -.08 77 29 37 1.06 .49 1.27 .42
15 -2.31 .63 -1.90 69 -1.40 75 -.54 46 - .42 75 13 44 27 68 1.24 .33 1.91 .27
16 -2.50 .53 -1.51 88 - .90 3%  -.53 73 - .41 66 00 al 56 45 1.01 .56 2.94 .25
17 -2.03 .50 -1.88 58 -1.04 68 -.83 .58 - .16 83 -.05 56 67 46 75 .79 1.94 .4
18 -2.36 .61 -1.83 90 - .97 81 51 .58 - .30 58 13 44 40 59 1.34 .37 2.3 .27
19 -1.95 .81 -1.80 36 -1.09 68 -.62 .79 - .3 34 14 66 32 53 95 .25 1.33 .37
20 -2.03 .71 -1.55 61 - .9 77 86 55 - .31 45 05 64 30 73 75 .66
21 -1.65 .45 -1.02 75 -.64 .68 - .18 68 =91 .97 29 48 79 .46
22 -1.78 .68 -1.18 46 -.85 46 - .33 64 -.06 50 66 64 94 .53
23 -1.50 77 -1.35 45 -.59 .77 - .35 69 12 77 37 66
24 -1.46 .63 -1.17 58 -.53 A4 - 8 48 06 50 56 70
25 -1.46 .49 -1.07 27 -.65 .66 - .44 .52 10 55 50 68
26 -1.90 79 - .95 66 -.75 730 - .16 .81 00 45 56 39
27 -1.36 98 -.54 .88 - .23 49 -.04 88
28 -1.27 77 -.60 1.07 - .19 .44 07 36
29 -1.39 88 -.74 61 - .37 79
30 - .90 71 -.61 64 - .14 66
31 -1.30 69 -.83 81 - .18 48
32 -1.38 36 -.75 73
33 -1.21 45 -.60 59
34 -.88 81
35 ~.77 .48
36 -.49 .33
37 -.65 .33
38 -.76 .40
39 -.73 .83

*This {tem was misassigned to stratum 6 rather than 3.

TABLE 2

Comparison of Distributions of Linear and
Stradaptive Group Florida 12th Grade Verbal Scores

FortunateTy, no subjects reached the item in the Stradaptive Pool.

GROUP # SUBJECT MEAN STD DEV STD ERR KURTOSIS SKEWNESS
LINEAR 46 33.26 5.30 .855 .44 .70
STRADAPTIVE 53 34.06 6.12 .841 .36 -.03

P, (i lin = g str)=> .05

Pr (o? lin = 02 str) = > .05
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Testing Sequence. The subjects estimated their ability
using the procedures described in DeWitt and Weiss. The
first item that the stradaptive subject received was the first
item in the stratum commensurate with his ability estimate.
The subject was then branched to the first item in the next
higher or lower stratum depending upon whether the initial
response was correct or incorrect. If the subject entered a
question mark (?), the next item in the same stratum was
presented.

Testing continued until a subject’s ceiling stratum was
identified. For this study, the ceiling stratum was defined as
the lowest stratum in which 25% or less of the items
attempted were answered correctly, with a constraint that
at least 5 items be taken in the ceiling stratum. The 25%
figure reflects the probability of getting an item right by
random guessing on a 4-option multiple choice test. Once a
subject’s ceiling stratum was defined, the program looped
back to the examinee’s ability estimate stratum and
commenced a second stradaptive test with item selection
continuing down the item matrix from where the first test
ended. Since items were randomly positioned within each
stratum, parallel, alternate forms were taken by all subjects
who reached termination criterion on the first test.

A maximum of 120 items per subject was established, as
presstudy trial testing suggested that subjects became
saturated beyond this point.

Termination Rules. Weiss had two versions of his
stradaptive testing computer program. Version one, which
was used in this study, presented another item in the same
stratum when a subject skipped an item.

The author of this study was unaware of the existence of
the second branching strategy program prior to completion
of data collection. However, Weiss’ program procedure of
ignoring skipped items in determining test termination was
questioned. It appeared that valuable information was being
lost when the Weiss procedure was followed.

It was reasonable to expect that a subject would omit an
item only when he felt he had no real knowledge of the
correct answer. Thus, investigation of test termination
based upon omits counted as wrong answers was judged
appropriate.

Weiss had set 5 items in the ceiling stratum as the
minimum constraint upon termination. A secondary goal of
the present study was to determine what effect the
reduction of this constraint to 4 would have upon the
effectiveness of the stradaptive strategy.

These two questions of the handling of omits and the
variation in the constraint on the termination of testing
created the following three methods for comparisons:

Termination Method 1:

Omits ignored/constraint = 5 items
Termination Method 2:

Omits = wrong/constraint = 5 items
Termination Method 3:

Omits = wrong/constraint = 4 items
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Data was collected using Termination Method 1 and
then rescored using Methods 2 and 3. This was possible
since no indication of the termination of the first test was
given to the subject and since items were randomly ordered
within strata. Once test termination was reached using
Termination Method 2 or 3, the next item taken by the
subject in his entry point stratum acted as the start of a
parallel-forms test under the termination rule used.

Of course, Method 2 required fewer items than Method
1 and Method 3 considerably fewer than Method 2. The
thrust of this investigation, then, was to determine the
relative efficiency of the three methods in comparison with
one another and with linear testing after equalizing test
length using the Spearman-Brown prophecy formula.

Stradaptive Test Output. Figure 2 provides an example
of a stradaptive test report from this experiment. A “+”
next to an item indicates a correct response; a “-”, an
incorrect response, and “?” shows that the subject omitted
the item.

The examinee in Figure 2 estimated her ability as “5.”
Hence, her first item was the first item in the 5th stratum.
She correctly answered this question but missed her second
item, and after responding somewhat inconsistently for the
first nine items, “settled down” with a very constant
pattern for items 10 through 19 when she reached stopping
rule criterion and her first test terminated.

The testing algorithm then selected the 6th item in
stratum 5 (her ability estimate) to commence her second
test. (The subject was totally unaware of this occurrence as
no noticeable time delay occurred between her 19th and
20th items).

At the conclusion of her 31st item, this subject reached
termination criterion for her second test, was thanked for
her help in this research project, and given her score of 15
correct answers out of 31 questions with a percentage
correct of 48 4%.

The scores for this subject are shown for both tests. The
interested reader may gain a more thorough understanding
of the scoring methods used in this model by tracing this
subject’s ability estimate scores through Table 1.

RESULTS AND DISCUSSION

Test theory suggests that measurement efficiency is
maximized at P, =.50 for a given test group. It was
hypothesized that the stradaptive test strategy would more
nearly approach this standard than the conventional linear
test, indicating an improved selection of items for the
stradaptive subject. Table 3 shows the result of this
comparison. It clearly indicates significantly different distri-
butions of test difficulty. The stradaptive test was far more
difficult than the linear test, with a smaller variance.



REPORT ON STRADAPTIVE TEST 1

IDNUMBER- 263354070 DATE TESTED- 74/07/29

(EASY) (DIFFICULT) SCORES ON STRADAPTIVE TEST 1
STRATUM- 1 2 8 5 6 7 8 9
1.
1+
. e 2. DIFFICULTY OF THE N+} TH ITEM= .1}
P .
I 3.
5+ . .
L Nee . s,
. > - ANSWER= .04
g+ .
. T~92 5. DIFFICULTY OF THE N+I TH STRATUM=.04
](.)+\11- 6.
12477 .
. >3- 7. INTERPOLATED STRATUM DIFFICULTY=.06
S 8.
16477 .
. 7- 9. MEAN DIFFICULTY OF CORRECT ITEMS BETWEEN
18477 . CEILING AND BASAL STRATA= -.02
.19
10.  MEAN DIFFICULTY OF ITEMS CORRECT
PROP. CORR: T.00 .75 .71 0.00 AT HIGHEST NON-CHANCE STRATUM= .09
TOTAL PROPORTION CORRECT=
.474

REPORT ON STRADAPTIVE TEST 2
IDNUMBER- 263354070 DATE TESTED- 74/07/29

DIFFICULTY OF MOST DIFFICULT ITEM CORRECY=.24

DIFFICULTY OF HIGHEST NON-CHANCE ITEM CORRECT=.24

DIFFICULTY OF HIGHEST STRATUM WITH A CORRECT

DIFFICULTY OF HIGHEST NON-CHANCE STRATUM=.04

MEAN DIFFICULTY OF ALL CORRECT ITEMS= -.09

SCORES ON_STRADAPTIVE TEST 2

(EASY) (DIFFICULT) 1. DIFFICULTY OF MOST DIFFICULT ITEM CORRECT= -.11
STRATUM 1 2 3 4 5 7 8 9
2 2. DIFFICULTY OF THE N+1 TH ITEM= .34
+
Zé >2 - 3. DIFFICULTY OF HIGHEST NON-CHANCE ITEM CORRECT= -.1}
+ .
. N23- 4. DIFFICULTY OF HIGHEST STRATUM
24+< . WITH A CORRECT ANSWER= -.25
. 25-
2 /26-/ . 5. DIFFICULTY OF THE N=1 TH STRATUM= -.25
+ . .
. \28+\ . 6. DIFFICULTY OF HIGHEST NON-CHANCE STRATUM= -.25
. 29-
30+< . 7. INTERPOLATED STRATUM DIFFICULTY= -.18
31-
PROP. CORR: 1.00 .83 0.00 8. MEAN DIFFICULTY OF ALL CORRECT ITEMS= -.26
TOTAL PROPORTION CORRECT= .500
9. MEAN DIFFICULTY OF CORRECT ITEMS BETWEEN
CEILING AND BASAL STRATA= -.2]
10. MEAN DIFFICULTY OF ITEMS CORRECT AT
HIGHEST NON-CHANCE STRATUM= -.21
Figure 2. Example of stradaptive testing report.
TABLE 3
Comparison of Difficulty Distributions (Pc)
for Linear and Stradaptive Groups
GROUP # SUBJECTS @) STD DEV STD ERR KURTOSIS SKEWNESS
LINEAR 47 752 123 .018 -.87 -.39
STRADAPTIVE 55 584 .084 .011 5.14 1.97
*P, (u Str =g Lin) = <.0001

**P, (0? Str = ¢? Lin) = < .05
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Linear Test Reliability. Making the standard assumptions
underlying the one factor random effects analysis of
variance (ANOVA), the estimated reliability coefficient of
the total scores is shown in Table 4 for the linear
examinees. :

The internal consistency reliability estimate for the
linear test was .776 for a test of an average of 484 items in
length. Stepped-up to 50 items via the Spearman-Brown
Prophecy formula, this estimate becomes .782. The re-
ported reliability of the original SCAT-V tests was .87.
Using Feldt’s (1965) test, Pr (Dgcqr = Piin) = < .05.

It can be assumed that the difference between these
reliabilities was caused by one or more of three factors:

1. Testing mode (CRT vs paper and pencil)

2. Elimination of 6 of the 250 items from the original

item pool.

3. Restriction of range in subject pool for this experi-

ment.

The latter factor most likely caused the decrease in the
reliability of the test scores. The homogeneity of the
subjects would yield a relatively small amount of between-
person variance, which would lower the reliability estimate.
It might also be mentioned that Stanley noted that
intraclass item correlation is a lower bound to the reliability
of the average item.

Stradaptive Total-Test Reliability. Using Stanley’s
(1971) procedure, it was possible to estimate the internal-
consistency reliability of the person-by-item stradaptive test
matrix. Of the 244 items in the stradaptive pool, only 133
items- were actually presented to the subject pool in this
experiment.

Weiss’ Scoring Method 8 provided the only set of
stradaptive test scores wherein a person’s total test score
was a linear function of his item scores. Hence, this scoring
method was used to estimate internal-consistency reliabil-
ity. Table 5 summarizes these results.

Table 6 shows the parallel-forms and KR-20 reliability
estimates for the three termination rules used in this study.
Direct comparisons can be made between the stradaptive
KR-20 values and the .782 linear KR-20 estimate. Accord-
ing to Feldt’s (1965) approximation of the distribution of
KR-20, all of the estimates of the stradaptive test reliability
are significantly (p =< .05) better than the linear KR-20
estimate prior to being stepped-up by the Spearman-Brown
formula Pr (675 < p,o < .858) = .95. Thus, the 19, 26,
and 31 item stradaptive tests all proved more reliable than
the 48 item linear test.

A comparison of the linear internal-consistency reliabil-
ity coefficients (r,,) and the stradaptive parallel-forms
reliability estimates (r,,) in Table 6 must be considered

TABLE 4
Analysis of Variance for Linear Test Person by Item Matrix

SOURCE df SUM OF SQUARES MEAN SQUARES

Persons 46 37.57 817

Error 2229 408.55 .183

Total 2275 446.12

T Tt umy = 1 - -183/.817 =776
TABLE 5
Analysis of Variance of Scoring Method 8
of Stradaptive Test Person-By-Item Matrix
SOURCE ar SUM OF SQUARES MEAN SQUARES

T Persons 54 191.941 3.555
E 1 Error 1675 588.253 351
R Total 1729 (r,, = .901)
M
I R Persons 54 178.870 3.312
N U 2 Error 1401 470.442 .336
AL Total 1455 r,, = .899)
T E
I Persons 54 155.841 2.886
0 3 Error 1001 366.447 .366
N Total 1055 (ryo = 873)
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only tentatively since they are different kinds of estimates
of the true reliability. The sampling distribution of r,, 1s
known and that of r,, has been approximated by Feldt
(1965). Cleary & Linn (1969) compared standard errors of
both indices with generated data of known p. They found
the standard error of KR-20 to be somewhat smaller than
that of the parallel-test correlation (approximately .05 vs
.04 in the range of reliabilities, number of subjects, and
number of items involved in this experiment.)

Linear Test Validity. The correlation of obtained linear
scores with the Florida 12th Grade Scores was 477, which
was significantly lower than the published SCAT-V:SAT-v
correlation of .83 (p = <.01). As with the linear reliability,
this difference most likely resulted from subject homogene-
ity.
Stradaptive Test Validity. The validity coefficients of
the stradaptive scoring under the three termination rules is
shown in Table 7. Validity was estimated by the correlation
between the test scores and 12V scores. None of the
validity coefficients in Table 7 were significantly different
from the linear validity coefficient of 477, although
stradaptive validity coefficients were consistently higher
than the linear indices.

Number of Items. Table 8 shows the difference in
number of items presented for the linear and the three
termination methods of the stradaptive test. The consis-
tency in average number of items presented per subject was
surprisingly constant over the two parallel tests of termina-
tion methods 1 and 3. Method 2 did show a significant
(p =< .05) drop in the average number of items on the
second test, possibly due to the 60-item limit.

ftem Latency. It was hypothesized that mean item
latency would be higher for stradaptive subjects since they
would have to “think” about each item as it was near the
limit of their ability. Table 9 reflects the results of this
comparison.

The hypothesis of no differences between item latencies
was rejected. For the subjects in this experiment, the
average stradaptive item required approximately 11% longer
than the average linear item.

Testing Costs. No full cost analysis was planned for this
study. However, computer costs were available for the
three-day data collection. A total of $89.00 was spent over
the entire period on the CDC 6500 computer. This total
included core memory (CM), central processor (CP), per-
manent file storage (MS), data transmittal between the

TABLE 6

Comparison of Scoring Method 8 Parallel ¥ orm Reliability
with KR-20 Reliability Over Three Termination Rules Stepped Up to 50 Items

TERMINATION RULES

1 2 3
(N=12) (N =28) (N =38)
Parallel rxx(raw) .892 .688 732
Forms 7,(50) 929 .806 903
(N =55) (N =55) N =3553)
KR-20 P, o (Taw) 901 .899 873
P,0(50) _ 935 943 947
K, =31.45 K, =2647 K, =19.2

K; = average number of items under termination rule 1.

TABLE 7

Comparison of Validity Coefficients of Scoring
Method 8 under Three Termination Rules

Termination Rule
1
2
3

Tex = Correlation between criterion measure (12V)

* = i
Tox Tox corrected for attenuation

N r r..*
64 3% 585
80 536 693
91 499 626

60



CRT’s and the computer, line printing (LP), and punch card
output for 102 subjects. Data files were punched-out as
they were created to assure that data would not be lost in
case of hardware malfunction.

In the present study, 6 CRT’s were kept on and tied to
the computer continuously for 14 hours a day for 3 days in
order to be ready for subject-volunteers whenever they
arrived. In any institutional implementation of computer-
testing outside the experimental situation, exam time
would be scheduled, thus minimizing telephone line trans-
mittal costs.

The cost of actually testing each individual came to less
than 2¢ per subject for CM, CP, MS and LP time. The vast
majority of the costs cited above involve 42 hours on
continual tie-in to the computer, the “unnecessary” punch-
ing out of all data, and the extensive file manipulations
done by the author because direct access space became
critically short during data collection. The latter factor
required restorage of data files from direct to indirect file
space.

This cost approximation could be compared with testing
costs from the reader’s experience. Without trying to define
conventional testing costs per se, there is still little doubt
that computer-based testing costs less than conventional

testing with the paper and pencil mode for any large-scale
testing program.

CONCLUSIONS AND IMPLICATIONS FOR
FUTURE RESEARCH

The results of this study favor further investigation of
the stradaptive testing model. The model produced consis-
tently higher validity coefficients than conventional testing
with a significant reduction in the number of items from 48
to 31, 25 and 19 for the three stradaptive termination rules
investigated in the study. The internal consistency reliabil-
ity for the best stradaptive scoring methods was signifi-
cantly higher than the conventional KR-20 estimate, and
the stradaptive parallel-forms reliability estimates were
consistently higher than conventional KR-20 estimates.

No prior research was found showing a comparison of
item latency data between adaptive and conventional
testing modes. Results in this study clearly indicate that
subjects take significantly longer to answer items adapted
to their ability level, about 11% longer in the present study.
This is an important result, as it indicates that future

TABLE 8

Comparison of Average Number of Items for Linear Test and Three Termination
Methods of Alternate-form Stradaptive Tests

AVG # STD DEV AVG # STD DEV
# SUBJECTS ITEMS #ITEMS # SUBJECTS ITEMS # ITEMS
LINEAR 47 48.43 .99
TEST 1 TEST 2
AVG # STD DEV AVG # STD DEV
# SUBJECTS ITEMS #ITEMS # SUBJECTS ITEMS # ITEMS
STRADAPTIVE
Method 1 55 31.46 18.03 38 30.92 12.54
Method 2 55 26.94 16.76 41 21.98 13.10
Method 3 55 19.20 14.06 47 18.19 11.34
TABLE 9
Comparison of Distributions of Item
Latency Between Linear and Stradaptive Groups
GROUP #ITEMS MEAN # SEC/ITEM STD DEV
LINEAR 2276 35.999 12.062
STRADAPTIVE 1730 40.047 13.219

Pr (ustr = p lin) = < .001

Pr (o?str = ¢%lin) = < .001



research into adaptive testing of any kind should take this
variable into consideration when evaluating an adaptive test
strategy. The net gain of the adaptive model is a function of
the testing time needed to adequately measure a subject’s
ability, not the number of items presented to the subject.
All prior research reviewed tacitly assumed that item
latency was consistent across testing strategies. This study
indicated this assumption to be false.

It is recommended that future stradaptive experimental
studies should consider both stradaptive branching models
with a comparison of results from variation in the minimum
number of items in the ceiling stratum. A comparison
between variable number of stage strategies and fixed
number of stage strategies is desirable.

As suggested in previous research, adaptive testing may
reach “peak” efficiency at between 15 and 20 items. A
comparison of stradaptive test statistics for example with
k=10, 15, 20 and 25 items with linear testing should
investigate this hypothesis. Once the stradaptive data is
collected under the variable strategy, the fixed item
statistics can be determined by grading the stradaptive test
after “K” items and then “starting” the subject’s second
test at the first item of the entry point level.

Following the same logic which led to termination of a
subject’s testing when five items in a row in the highest
stratum had been correctly answered, the missing of five
items in a row of any stratum should provide immediate
ceiling stratum definition. The probability of this occur-
rence would be less than .05 for a properly normed item
pool. In the case of the present study, 13 of the 55
stradaptive subjects would have terminated a stradaptive
test an average of 12.1 times earlier than termination
method 1, with no effect upon the other 42 subjects. The
resulting stradaptive test statistics obtained from the
implementation of this suggestion have not been calculated,
except that the change would have reduced the average
number of items presented under termination method 1 to
28.4 from 31.45 (9.7%).

Further research is recommended into adaptive testing in
which both the number of stages and step-size are variable.
The Bayesian strategies and Urry’s model (1970) are
examples of this category of adaptive measurement and
further model development seems appropriate.
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Research is indicated with comparisons between adap-
tive models as well as the traditional design of comparing
adaptive methods with conventional methods. Weiss’ on-
going research is beginning this work, but more is needed.
The traditional comparison assumes that conventional test
statistics are the criterion that an adaptive testing procedure
should try to duplicate. Lord, Green, Weiss and others have
argued that improved measurement of the individual at all
ability levels may be hidden by the use of classical test
statistics such as validity and even reliability.

One objective of this study was the attempt to estimate
the degree to which the violation of the assumptions of the
one-factor ANOVA model affected KR-20 reliability esti-
mates. The assumption that items are independent of one
another is clearly violated in any adaptive testing pro-
cedure. The extent of the effect this violation causes is
unknown, yet most previous research in adaptive testing has
only considered ANOVA KR-20 estimates.

The results from this study do not permit definitive
statements on this question. Nevertheless, the three KR-20
estimates were consistently higher than the 3 parallel-forms
reliabilities. Cleary & Linn’s (1969) Monte Carlo study
indicated that r,, provided better parameter estimation
than parallel-forms reliability estimates, so one must ques-
tion whether the higher p estimates are not the result of the
dependency between items. Perhaps the only way this
question can be validly investigated is through a Monte
Carlo study of adaptive testing with p known and the two
methods compared, for estimating ,,.

Green (1970) stated that the computer has only begun
to enter the testing business, and that as experience with
computer-controlled testing grows, important changes in
the technology of testing will occur. He predicted that
“most of the changes lie in the future . .. in the inevitable
computer conquest of testing.”?

The stradaptive testing model appears to be one such
important change.

3Green, B.F., Jr., In Holtzman (Ed.), p. 194.
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USING COMPUTERIZED TESTS TO MEASURE NEW
DIMENSIONS OF ABILITIES: AN EXPLORATORY STUDY

Because most of the research with computer-assisted test
administration has been concerned with tailoring item
difficulties to test takers, what appear to be important
characteristics of computerized equipment for expanding
dimensionality of measurement appear to have been largely
ignored. Since paper-and-pencil tests are limited in terms of
stimulus control and response mode, the near exclusive
reliance on them for personnel selection has imposed
restrictions on the types of abilities which can be measured.
For example, using conventional paper-and-pencil tests, it is
difficult if not impossible to present a moving stimulus,
obtain measures of tracking performance, control item
exposure time, record response latencies, or sequence items
as a function of prior responses. Computer terminals of the
type ordinarily used for programmed instruction do have
these capacities.

The battery of tests developed for the present research
has been especially designed to exploit the special
capabilities of computer terminals for pictorial display and
movement and has thus been designated the Graphic
Information Processing (GRIP) series. A major interest of
the research was in finding abilities which are important for
on-job performance which computerized tests could
measure accurately but paper-and-pencil tests could not.

As a starting point for the investigation, five traits of
“real world” significance as defined by Mecham and
McCormick (1969) were selected. They were Short Term
Memory, Perceptual Speed, Perceptual Closure, Movement
Detection, and Dealing with Concepts/Information. Empiri-
cal data on the relative importance of these attributes for
work performance is available from Mecham and
McCormick (1969). The study was designed to provide
comparisons of computerized and paper-and-pencil tests
designed to measure these attributes and to compare the
computerized measures and the operational variables in
terms of dimensionality and validity for job performance
criteria.

The equipment used for the research consisted of the
IBM 1500 system plus a cathode ray tube (CRT) display
unit and a screen for film presentation linked on-ine to an
IBM 1130 computer. Subjects responded to visual stimuli
presented on the CRT by touching a target with a light pen,
or by entering a response into the typewriter keyboard.
Programming was carried out in Coursewriter.
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The GRIP Tests

The GRIP battery consisted of eight computer-
administered tests, each designed to measure a major aspect
of one or more of the five job elements.

Iustrative items from each of the GRIP tests are shown
in the Appendix.

1. Memory for Objects. Frames showing line drawings
of common objects with simple one word names were
flashed on the screen at an average exposure time of about
one-half second per object per frame. Number of objects
per frame ranged from three to nine. After the exposure
period, subjects typed in the names of all of the objects
remembered.

2. Memory for Words. The test was identical in
intention and arrangement to the Memory for Objects, but
with words substituted for the pictures. Of course the
object of this test was to compare the recall of words given
with the recall of words generated by the candidates’
recognition and labeling processes. Words were of two
lengths: 3-letters and 5-letters.

3. Visual Memory for Numbers Test. This is a digit-span
test using the same type of methodology as was used for
the two preceding tests but having digits as stimuli. About
50 percent of the digits were presented sequentially and the
other 50 percent were presented all at once, as a single
stimulus.

4. Comparing Figures. The frames of this computerized
measure of perceptual speed contain sets of squares or
circles presented as rows, vertical columns, and right and
left slant columns. Three to six stimulus pairs are shown on
the screen at a time. Each stimulus has a crossbar, oriented
either vertically or horizontally. Subjects are asked to
record as true-false answers whether or not all crossbars of
corresponding pairs in a set have the same orientations.

5. Recognizing Objects. For this computerized closure
test partially blotted-out pictures of common objects are
presented. The first presentation shows 10 percent of the
area and more area is added in random increments of 10 per
unit until 90 percent of the picture is exposed. Subjects
enter the names of the stimuli on the keyboard.




6. Memory for Patterns. A test designed to measure
movement detection abilities, in which patterns are formed
by sequentially blinking dots. Subjects are asked to report
whether or not two consecutive patterns are identical and
for other items they are asked to reproduce given patterns
on the CRT with a light pen.

7. Twelve Questions. A test which resembles the
Twenty Questions game in that subjects are asked to guess
the name of an object based on yes-no answers supplied by
the computer to questions. It differs from Twenty
Questions in that the questions are supplied in the test
rather than being posed by the subject. The subject’s
objectives are to select those questions which provide the
quickest identification of the object and to avoid questions
which are redundant or useless. Scores are sums of correct
responses weighted by number and characteristics of the
clues received.

8. Password. A test which resembles the regular
“Password” game in that sets of words are shown on the
CRT which suggest a target word. Five separate words are
shown as clues. After the first two clues and each
succeeding one, the name of the object may be typed on
the keyboard. Scores are sums of correct responses
weighted by number of clues received.

9. Latency and Accuracy Variables. In addition to
direct measures of the personal attributes, latency measures
were computed for speed of response for the Memory for
Words and the Comparing Figures tests and latency of
Recognizing Objects responses (speed of closure). In
addition a measure of the total extent to which the
response patterns failed to duplicate the stimuli in Memory
for Patterns, free response was created (PAT-ERR).

Paper-and-Pencil Experimental Tests, Biographical Vari-
ables, and Operational Tests

Together with the GRIP battery, eight paper-and-pencil
tests largely drawn from the ETS Kit of Reference Tests of
Cognitive Factors (French et al., 1963), and a motion
picture test (Drift Direction by Gibson, 1947) composed
the set of experimental tests. In addition, data for each man
were obtained for two biographical variables and for the
nine tests which are routinely administered and used for
Navy personnel decisions.

Samples

The experimental battery was administered to students
at the Navy Training Center, San Diego, during May and
June of 1972. Subjects were chosen from personnel in the
first two weeks of technical training for three ratings having
widely varied duties. Also tested in order to increase the
sample size were recruits in their final week of training who
were school eligible but had not yet received post-recruit
assignments.
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Ten to eleven months subsequent to the testing, after
the subjects had served on jobs in the Fleet for several
months, supervisory ratings covering both global and job
element aspects of on-job performance were collected by
mailout questionnaire.

The questionnaire used was an adaptation of the
Position Analysis Questionnaire, a broad-based empirically-
derived instrument developed by E. J. McCormick and his
associates which has been extensively used for job
classification research (McCormick, Jeanneret, and
Mecham, 1972). The adapted questionnaire was used to
collect ratings on global performance gqs well as perfomance
on all of the 42 job elements which were judged by a panel
of Chief Petty Officers to be relevant to the positions.

After a preliminary review of the questionnaire returns,
the 22 job elements having the largest representation in the
sample were selected for analysis. These 22 job elements
together with the sample size for each rating for each job
element are shown in Table 1. For instance, the first rating,
Electrician’s Mate, involved Manual Control-Non-precision
Tools, Assembling-Disassembling, Hand-Arm Manipulation/
Coordination, etc. In contrast the Personnelman rating
required Using Written Materials, Compiling Data, Oper-
ating Keyboard Devices, Persuading/Influencing Others,
etc.; and the Sonar Technician rating required Using
Pictorial Materials, Using Visual Displays, Adjusting
Machines/Equipment, etc. The last group consisted of
personnel in undifferentiated ratings, largely apprenticeship
ratings. Major aspects of the assignments of this group
involved Using Spoken Verbal Communication, Manual
Control Non-precision Tools, Attention to Details,
Completing Work, Working with Distractions, etc.

For each rating separately, zero-order validities of the
tests for supervisors’ marks of the job elements were
computed and comparisons were made to identify the
predictability patterns of attributes for job elements and to
compare the operational, experimental paper-and-pencil,
and experimental computerized tests as measures of these
job elements. Similar types of statistics were computed and
comparisons carried out for the ratings of global job
performance.

RESULTS

Most of the statistically significant zero-order validities
of the operational variables were found for the 12 job
elements which are shown in Table 2. The predictor
variables on the left are the Armed Forces Qualification
Test, GCT a test of vocabulary and verbal reasoning, ARI, a
test of arithmetic reasoning, MECH, a test of basic
mechanical knowledge and principles, CLER, perceptual
speed, SONR and RADIO, memory for pitches and sound
patterns, ETST, electrical knowledge and mathematics,
SHOP, Tool Knowledge, and lastly years of education.



TABLE

i

Sample Sizes for the Twenty-Two Most Common Job Elements

Job Element EM PN ST UA
Using Written Materials 48 30 71
Using Pictorial Materials 20 32
Using Visual Displays 35 66
Using Spoken Verbal Communication 20 52 36 92
Using Non-verbal Sounds 31
Analyzing Information 20
Compiling Data 49
Manual Control-Non-precision Tools 27 80
Manual Control-Precision Tools 23
Operating Keyboard Devices 53
Adjusting Machines/Equipment 23 29
Assembling-Disassembling 27
Hand-Arm Manipulation/Coordination 22
Hand-Ear Coordination 31
Persuading Influencing Others 40
Exchanging Routine Information 51 69
Unusually Good Precision 29 69
Attention to Details, Completing Work 25 51 36 102
Vigilance-Continually Changing Details 20
Coping with Time Pressure 22 49 78
Working with Distractions 48 84
Keeping up to Date 52 30 86
TABLE 2
Significant Zero-Order Validities of the Operational Variables
for Twelve Common Job Elements
Job Element
Predictor Verbal Non~ Routine Attention
Variable Rating | Writtem | Pictoriel!| Visual | Communi-; Precision| Adjusting Influencing | Infor- Good to Working with
Materials| Materisls| Display| cation Tools Equipment Others mation | Preciamjon| Details | Distractions| Up~to-Date
AFQT ST ~33% - -- -~ -
PN - - 50% - - - 36*
6T UA - 22 - - 27
ST 49nn - - -~ -
ARI UA - 26% - - 41% 27% 23%
MECH PN - - - - 554k - 8%
CLER vA 25+ - 20% - .- 29% 30k 26%
PN p - - - - 37%
SONR UA ~26% -- - - -26%
B - - - - - —44% - -
RADO ST 36+ 41% 334 - - -~ 37% - 9%
UA - 22% - -
ETST UA - -- - 28* 24%
SHOP PN - - 45% - - 42% -
YRED UA - 21% 22% - - 4k 31rx 26%%
Cell Ns
™ 15 16 21 18 19
PN 26 29 27 20 28 29 27 31
ST 29 30 33 34 27 27 34 28
UA 69 66 90 79 67 67 100 84

Note. Decimal points were omitted from validity coefficients.

Coefficients significant at p < .05 and p < .0l have been identified by single and double asterisks, respectively.

A blank cell indicates nonsignificant validity.

A double hyphen (--) indicates missing data.
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Only the statistically significant coefficients are shown.
The level of significance is indicated by a single underline
for the five percent level and double underlines for the one
percent level. Blank cells indicate non-significant validities
and double dashes indicated that the Ns were too small for
validity coefficients to be computed. Rows for individual
ratings which did not have any statistically significant
validities have been omitted.

Operational variables were generally not effective for
predicting performance on job elements in the technical
ratings, and where effective did not seem to be associated
with underlying relationships or constructs. For instance,

the writing abilities of ST’s do not appear to be logically
related to scores on ARI and RADIO, but they were
significantly correlated with them. Similarly, the reasons
for the significant relationships between RADIO and
Pictorial Materials, SHOP and Verbal Communication
abilities, ARI and Communicating Routine Information,
MECH and Influencing Others, and CLER with writing and
verbal communication skills were not clear. Yet all of these
relationships were found.

On the other hand interpretation of the significant
predictor-job element validities is much more logical and
consistent for the experimental tests (Table 3).

TABLE 3

Significant Zero-Order Validities of the Experimental Variables
for Twelve Common Job Elements

Job Element
Predictor Verbal Non- Influ- {Routine Attention
Varisble Rating Written |Pictorial|Visual |[Communi-|PrecisionjAdjusting|encing|Infor- Good to Working with|Up~to-
Materials{Materials|Display|cation Tools |Equipment {Others mation [Precision| Details |Distractions| Date
Obj. No. EM - - - — - =38% -— —_
== == ST = e - o -
Mem. Obj. | BM . _olx 22 . ol
Men. ST hax - - - -
Words PN oox - . . . __
Mem. for 3 33% - -- L8wx -- - - 33%
Nos. (V) ST hox -~ -- -- -
Mem. for m 29% - - Loww —_— - -
Nos. (A) EM - - - - _— —42% -— -—
Counting
UA - - - 26%%
Numbers ST — - - - 3%
Comp.
Figs., VA 25% - 20% - - 29% 30%* 26%
Machine~ PN - - - - —_— L4xk
paced
Gest
Comp. EM - - =40% - - - ~42% - _—
EM -- - ~36% - -— -~ -—
Hidden
PN - - 30%% - - 32%% - 3L
Patterns ST g% . p . —_ 35%
Rec. Objs.| ST 45% — - - -
Mem. for ST Lox - - - e 38%
Pats., Freel UA - - - 2l 28wk
Response PN - - - - — 26n Sow
Nonsense
Syls.
¥ M - - - - - 38 --
Inference { PN 3T* - - Lo j— — Lowx | 37 — 20%
Twelve PN L2 - - Ll - = 6% 553 - Lowe 1*
Questions | ST - - —_— - T*
PN 33% - - h3x - - - 30%
Password ST - 46% — - -
WORD -LAT EM -- .- b1 -- -- - .- -
CLO-LAT ST I - - - - — 37
PAT-ERR | & = - - - - u- A ey s
PN - - - - -36* -
FIG-LAT ST 34 - - - -
UA — - - 31k#
Cell Ns
B 20 20 27 23 25
PN 45 48 37 47 47 44 48
ST 2 31 34 36 29 29 36 30
UA 1 66 92 80 69 69 102 84 86
Note. Decimal points were omitted from the validity coefficients.

Coefficients significant at p < .05 and p < .0l have been identified by single

A blank indicates nonsignificant validity.

A double hyphen (~-) indicates missing data.

and double asterisks, respectively.
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The first five tests are short term memory tests with the
first test being the ETS Kit test of Associative Memory, the
next three being computerized memory tests and the last an
auditorily administered measure of digit span. Interestingly
the memory tests show consistent negative correlations
with job elements for Electrician’s Mate and the Appren-
ticeship group and positive correlations for Sonar Techni-
cian and Personnelman. The correlations for PNs are for
Writing and Verbal Communication Skills, two job elements
for which it would be logical to expect positive correla-
tions.

The next two tests, Counting Numbers and Comparing
Figures, are respectively paper-and-pencil and computerized
tests of perceptual speed. Both tests discriminate primarily
for Personnelmen and the Apprenticeships ratings and the
patterns of validities of the two tests were very similar.

The next three tests, together with CLO-LAT, measure
perceptual closure. Gestalt Completion and Hidden Patterns
were from the ETS battery, and Recognizing Objects and
CLO-LAT were computerized measures. The tests have
negative validities for Electrician’s Mate and positive validi-
ties for Sonar Technician, with primarily visual types of
elements being predicted for the latter rating.

The next test was separate parts of the computerized
test designed to measure movement detection. It had
significant validities for Sonar Technician and also had

significant validities for Personnelmen and the Apprentice-
ship rating group.

Nonsense Syllogisms and Inference, measures of syllo-
gistic reasoning from the ETS battery, and the next two
tests, 12 Questions and Password, are computerized vari-
ables hypothesized to measure the same type of ability. For
Personnelmen both Inference and 12 Questions were
significantly related to job performance and the patterns of
significant validities were very similar.

The four special variables at the bottom of Table 3
correlated with visual skills and with job elements involving
accuracy and precision.

These relationships are summarized in Table 4 which
shows the number of significant validities of the opera-
tional, experimental paper-and-pencil, and experimental
computerized variables for the job elements in each rating
in which they were present.

Major areas in which the computerized measures were
useful predictors were Adjusting Equipment for Electri-
cian’s Mates, Writing and Working with Distractions for
Personnelmen, and Visual Displays for Sonar Technicians.
In addition computerized measures were useful supple-
mental predictors of communication and interpersonal
relationships skills for Personnelmen. Thus, the computer-
ized tests predicted job elements which would be expected
to be central to global performance for the Personnelman
and Sonar Technician ratings.

TABLE 4

Significant Zero-Order Validities of Operational and Experimental
Variables for Twelve Common Job Elements

EM PN ST UA
Operating Experi- Experi- Operating Experi- Experi- Operating Experi- Experi- Operating Experi- Experi-
Variable mental mental Variable mental mental Variable mental mental Variable mental mental
JOB ELEMENTS Paper- Comput- Paper- Comput- Paper- Comput- Paper- Comput-
and- erized and- erized and- erized and- erized
Pencil Pencil Pencil Pencil
Skill Writing - 2 4 2 - 4 2 - 1
Pictorial Materials - - 1 1 1
Visual Displays 1 - 2 - - -
Verbal Communication - - - 2 3 3 1 - - 5 - 1
Non-precision Tools - 2 - 1 - 1
Adjusting Equipment - 2 ~ - 1
Influencing Others 2 2 2
Routine Information — 1 | 4 - -
Good Precision - - _ 3 _ 2
Attention - Details 1 4 1 1 - 1 1 - - 3 1 3
Work Distractions - - 3 - - 1
Keep Up to Date 2 2 3 1 2 3 3 - 3
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TABLE §

Zero-Order Validities of Experimental Variables for Global Performance

Validity
EM PN ST UA
Predictor (N=27) V=54) N=37) W=111)
Short Term Memory
Object Number —-.26 13 -.03 -.01
Memory for Objects -.16 -.03 -.05 =07
Memory for Words -33 .20 13 .01
Memory for Numbers(V) -15 20 .38% -.01
Memory for Numbers(A) —-.15 R 22 .08
Perceptual Speed
Counting Numbers .03 .04 A2 .06
Comparing Figures, Machine-paced .02 -.10 .07 —-.06
Comparing Figures, Self-paced 06 07 21 .08
Closure
Gestalt Completion —-28 " 26" .28 .06
Concealed Words -37 —-.14 A3 —.10
Hidden Patterns —-.04 23 .33 A1
Recognizing Objects -11 —.06 25 -.05
Movement Detection
Drift Direction -.29 .07 .02 .06
Memory for Patterns, True-false 15 -.07 42 .07
Memory for Patterns, Free Response .19 .21 23 .19
Dealing with Concepts/Information
Nonsense Syllogisms -.30 .01 .30 —.06
Inference 18 19 .00 A3
Twelve Questions -20 28 21 A1
Password .08 A3 233 .04
Special Variables
WORD-LAT —.24 —.06 -.05 -11
CLO-LAT .05 .02 —-.24 -11
FIG-LAT —-.04 .00 .02 .04
PAT-ERR —-24 -17 -26 -13

*Significant at p <.05.

Zero-order validities of the experimental variables for
the global rating of job performance are shown in Table 5.
Nine of the 92 validity coefficients (10 percent) were
statistically significant. Of the nine, five were for computer-
ized tests. Most of the significant validities were for Sonar
Technicians. In comparison, five of 35 validities of the
operational tests were statistically significant (Table 6), of
which three were for the UA group.
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Thus, variables in the operational battery were best for
predicting global performance in apprenticeship ratings
whereas those in the experimental battery were more useful
for predicting performance in technical ratings, and were
particularly good for predicting the performance of Sonar
Technicians. Personal attributes having the highest numbers
of significant validities were Movement Detection and
Dealing with Concepts/Information.



TABLE 6

Zero-Order Validities of Operational
Variables for Global Performance

Predictor Rating Group
EM PN ST A
=21 W=31)2 (N=35) (V=109)2
AFQT -09 .15 -12 .13
GCT .01 24 A1, 07 -
ARI -20 10 .38 25
MECH .04 .23 —-.04 A2,
CLER .21 -15 A1 .19
SONR -.08 .15 —.08 —-.03
RADO -.06 A1 15 A5, .
ETST .16 31 . -.09 33
SHOP .20 .38 -21 17
YRBI -12 .06 .01 -1,
YRED A1 05 -.02 22
3Complete data were not available for some of the tests.
*Significant at p < .05.
**Sijgnificant at p < .01.
TABLE 7
Optimal Predictive Composites for Global Performance of Electrician’s Mates
R
. Weight Expected Cross . Beta Weight in
Predictor Set Determination Validation Predictor Final Composite N
Operational
Classification 21 .00 CLER 27
Test Scores
Complete Set of .37 .00 Concealed Word —40
Experimental and 49 .20 CLER 39
Operational .58 .28 Drift Direction -.28
Variables .65 .34 PAT-ERR -.50 27
71 40 Memory for Words -40
.78 53 Y:Bi -.36

Multiple regression statistics for optimal sets of the
operational and experimental variables for Electrician’s
Mate are shown in Table 7.

The first super row shows statistics for the optimal
predictive composite for the eleven operational scores and
the same type of statistics for the complete battery of
operational and experimental variables are shown in the
second super row. The second column contains the shrunken
validity coefficient for each predictor selection step. Addi-
tion of the experimental tests to the battery increased the
expected cross validity substantially although the sample
size is so small that these figures should be interpreted with
caution. The negative beta weights for PAT-ERR and YrBi
are artifacts of the direction of scaling for those variables.
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The same type of finding was characteristic of the
predictive composite for Personnelman (Table 8). Again the
negative validity of WORD-LAT was an artifact of direction
of scaling.

For Sonar Technicians (Table 9) inclusion of the
experimental tests in the battery added 38 points to the
shrunken multiple correlation. All of the variables selected
for the complete set were measures of perceptual types of
abilities.

On the other hand, the experimental variables added
almost no increment to the expected cross validation for
the Apprenticeship group (Table 10).

The usefulness of this type of expansion of coverage of
the battery may be illustrated by reference to the abilities



TABLE 8

Optimal Predictive Composites for Global Performance of Personnelmen

. Weight Expected Cross Beta Weight in
Predictor Set Determination Validation Predictor Final Composite N
Operational
Classification .38 12 SHOP .38 30
Test Scores
.38 12 SHOP 22
Complete Set of 47 .20 Gestalt Completion -1.19
Experimental and .64 46 GCT 1.40
Operational 1 52 FIG-LAT 69 30
Variables .80 .65 WORD-LAT —.40
.86 .74 Mem. for Patterns, t.f. 37
TABLE 9
Optimal Predictive Composites for Global Performance of Sonar Technicians
. Weight Expected Cross . Beta Weight in
Predictor Set Determination Validation Predictor Final Composite N
Operational
Classification .38 22 ARI .38 37
Test Scores
Complete Set of 42 .28 Counting Nos. .33
Experimental and 54 40 Mem. for Patterns, t.f. 32
Operational .61 46 Nonsense Syls. - 29 37
Variables .66 .50 Recog. Objs. .33
73 .58 Gestalt Completion 32
TABLE 10
Optimal Predictive Composites for Global Performance of the Apprenticeship Group
. Weight Expected Cross . Beta Weight in
Predictor Set Determination Validation Predictor Final Composite N
Operational
Classification .33 .28 ETST .33 111
Test Scores
Complete Set of .33 .28 ETST .33
Experimental and .37 .29 CLER 21 111
Operational 41 .32 Concealed Word -.19
Variables
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which are being measured by the elements in each of the
four predictor composites selected. Thus, for EM to the
Perceptual Speed measure in the operational battery were
added Closure, Movement Detection, Memory, and
Accuracy of Spatial Perception from the experimental
battery. For Personnelman, to the Technical Knowledge
component, which provided the primary predictiveness in
the operational battery, were added measures of Closure,
Speed of Response and Memory from the experimental
battery. For Sonar Technician, to the general mental ability
component in the operational battery were added measures
for the Movement Detection and Closure components from
the experimental battery. And for the UA group to the
measures of Technical Knowledge and Perceptual Speed
from the operational battery was added a measure of
Closure from the experimental battery. With the exception
of the Closure measures, some of which were paper-and-
pencil, most distinctive predictive validities from the
experimental battery were supplied by computer-adminis-
tered tests.

DISCUSSION AND CONCLUSIONS

It is clear that the experimental battery represents an
increase in the breadth of abilities covered beyond those in
the operational Navy battery, a considerable amount of
which is attributable to the GRIP tests. Computer tests
apparently provided measures of several attributes which
were different from those measured by paper-and-pencil
tests. Furthermore, the measurement expansions of the
experimental battery served to supplement the measures of
the operational battery to produce substantial increases in
global validities.

The unique measurement characteristics of the GRIP
tests appear to be as follows:

1. Computer administration of tests of short term recall
using a variety of stimuli is feasible, and appears to offer
advantages in ease of data collection and processing over
paper-and-pencil tests measuring the same attributes. Fur-
thermore, use of computerized tests to eliminate the
expensive and time consuming hand scoring required by
paper-and-pencil tests of short term memory would make it
feasible to routinely measure these skills during personnel
classification testing. Computerized measures of this attri-
bute were found to have significant positive validities for
several job elements, particularly for those dealing with
communication. It is probable that use of the tests for
other occupations would identify additional relationships
which are useful for personnel classification.

2. Computerized administration of perceptual speed, as
carried out in the GRIP battery, was only marginally
different from paper-and-pencil measures of perceptual
speed. Since these measures did not offer any substantial
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improvements in validities over paper-and-pencil measures,
the initial judgment on their usefulness would be negative.

3. Further research will be required to clarify the
relationships between computerized and paper-and-pencil
measures of Closure. Hidden Patterns, the best of the
paper-and-pencil tests, had significant validities for Electri-
cian’s Mates, Personnelmen, and Sonar Technicians. The
pattern of validities of Hidden Patterns for Sonar Techni-
cians was duplicated by CLO-LAT, a measure which can be
administered and scored automatically.

4. The two experimental tests designed to measure
Movement Detection were not closely related to one
another and therefore did not provide evidence of a
Movement Detection factor. Instead these tests loaded on
memory factors, Perceptual Speed, and perceptual Closure.
On the other hand, of the measures, Memory for Patterns
proved to be very useful particularly as a predictor for both
specific and generalized performance of Sonar Technicians.
For the Electrician’s Mate and Personnelman ratings it
proved to be useful at a somewhat lower level.

5. Facility in Sequential Reasoning was apparently an
ability which was uniquely measurable by computer-
administered tests. These tests demonstrated widespread
and generalized validity for Personnelman and incremented
the predictability of communication and interpersonal
relations skills over that available from paper-and-pencil
tests.

It is believed that the initial results with this technique
are promising and that further development along these
lines is warranted, particularly for jobs which require
attention to scopes. Consequently, research to be carried
out during Fiscal Year 1976 will be concerned with refining
measures of Movement Detection, Sequential Reasoning
Perceptual Closure, response latencies, and accuracy of
spatial perception, together with the construction of tests
for other abilities which appear to be potentially usefut for
personnel selection. Also, we hope to convert one or more
of the tests to a branching mode designed to tailor item
difficulties to candidates.
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APPENDIX

ILLUSTRATIVE ITEMS FROM THE EIGHT COMPUTERIZED TESTS

1, MEMORY FOR OBJECTS

@ % Zp l}?ﬂ

“%%@@

2, MEMORY FOR WORDS

BIN MAN OWL PRIZE IVORY TABLE FIR TEA HAT KID ART

8TOVE MUSIC SOLID EYE CAT RIB BAT

3. VISUAL MEMORY FOR NUMBERS TEST
2 5 1 6*

124956387+

4, COMPARING FIGURES

BB O
8 0m

&
&
00 o600 @
&
&
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5. RECOGNIZING OBJECTS

6. MEMORY FOR PATTERNS

xxx.\:xx X X X X X x x x)x/.x/.\xx
xxxl:\{x X X x X X x X ?xx/xx\xx
xxxxx:\’ X X X X X x x X x x x x & x
xxxxxx"x xxxx:)x ;x'x’-x-ox-':.
xxxlex nx:(le\,- ‘/xxﬁnxx
xxx:x,’x: \xx"ﬁ’xx lxx;xxx
X X x x x x x%% x % x x x x x & x x «x
7. COMPUTERIZED 12 QUESTIONS
Mineral
Frequently larger than a glove
1. Is it often used as clothing? 11. Is it sometimes used by magicians?
2. Is it made of a soft material? 12, Do men and women use it equally often?
3. Is it often used at meals? 13, Is it often used before a person goes out?
4. Do people often wear it? 14, Can one use it with his eyes closed?
5. Does it have moving parts? 15. Must one touch it to use it?
6. Does it have a hard surface?
7. Is it always found on an auto? 16. Does it appear dark in the light?
8. Is it made at least partly of glass? 17. Can it be used to send messages?
9. Does it have more than one use? 18, Can it improve one's appearance?
10. Does it use electricity?
(Mirror)
8, COMPUTERIZED PASSWORD
Metal Circle
Finger Shiny Wedding (Ring)
Soaring Feathers Tapla
Exb lom Large Bald (Tagl~)
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A BROAD-RANGE TAILORED TEST OF VERBAL ABILITY

This report describes briefly a broad-range tailored test
of verbal ability, appropriate at any level from fifth grade
upwards, through graduate school. The test score places
everyone at all levels directly on the same score scale.

In a tailored test, the items administered to an individual
are chosen for their effectiveness for measuring him. Items
administered later in the test are selected by computer,
according to some rule based on the individual’s
performance on the items administered to him earlier.
Improved measurement is obtained 1) by matching item
difficulty to the ability level of the individual and 2) by
using the more discriminating items in the available item
pool. The matching of test difficulty to the individual’s
ability level is advantageous and desirable for psychological
reasons. For references on tailored testing, see Wood
(1973). Also CIlff (1975), Jensema (1974a, 1974b),
Kilicross (1974), Mussio (1973), Spineti and Hambleton
(1975), Urry (1974a, 1974b), Waters (1974), Betz and
Weiss (1974), DeWitt and Weiss (1974}, Larkin and Weiss

FREDERIC M. LORD
Educational Testing Service

(1974), McBride and Weiss (1974), Weiss (1973, 1974),
Weiss and Betz (1973).

The broad-range test consists of 182 verbal items. These
were chosen from all levels of Cooperative Tests’ SCAT and
STEP, from the College Entrance Examination Board’s
Preliminary Scholastic Aptitude Test, and from the
Graduate Record Examination. The choice was made solely
on the basis of item type and difficulty level. There was no
attempt to secure the best items by selecting on item
discriminating power.

Two parallel forms of this 182-item tailored test were
constructed. Only one of these forms is considered here.

Ideally there should be only one item type in each row,
so that all examinees would take the same number of items
of each type. The arrangement of Table 1 is an attempt to
approximate this ideal using the items available. (Few if any
hard items of types a and e were in the total pool; also few
if any easy items of types b and c. Types a and b, also types
c and e, seem fairly similar.)

TABLE 1

Broad-Range Verbal Test Items Arranged by Difficulty Level and Serial Number.
(a, b, c, d, e represent different verbal item types.)

Item (casy y€~—————Item Difficulty Level ——————(hard)
Serial
No. Grade Level: IV \' VI VI VIII XII
1 a a a a a b
2 e e e e c
3 d d d d d d
4 e e e e c c
5 d d d d d d
6 a a a a b b
7 e e e € c
8 d d d d d d
9 [ e e c c c
10 d d d d d d
11 a a a a b b b b
12 e e e c c c c
13 d d d d d d
14 e e e c c c c c
15 d d d d d d d
16 a a a b b b b b
17 e e c c c c c c
18 d d d d d d d d
19 e e c c c ¢ c c
20 d d d d d d d d d d
21 a a a b b b b b
22 e e c c c c c c c c
23 d d d d d d d d d
24 e e c c c c c c c c
25 d d d d d d d d d
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The 182 items in a single form of the test are
represented in Table 1, where they are arranged in columns
by difficulty level. An individual answers just one item in
each row of the table—a total of just 25 items. There are
five verbal item types, denoted by a, b, ¢, d, e. Within each
item type, the items in each column are arranged in order
of discriminating power with the best items at the top.

The examinee starts with an item in the first row. The
difficulty level of this item is determined by the examinee’s
grade level, or some other rough estimate of his ability. If
he answers the first item correctly, he next takes an item in
the second row that is harder than (to the right of) the first
item. If he answers the first item incorrectly, he next takes
an item in the second row that is easier than (to the left of)
the first item.

He may continue with the third and subsequent rows,
moving to the right after each correct answer, or to the left
after each incorrect answer, until he has at least one right
answer and at least one wrong answer. At this point, the
computer uses item characteristic curve theory to compute
the maximum likeihood estimate of the examinee’s ability
level. In effect, the computer asks: For what ability level is
the likelihood of the observed pattern of responses at a
maximum, taking into account the difficulty and other
characteristics of the items administered up to this point?
The ability level that maximizes this likelihood is the
current estimate of the examinee’s ability.

From this point on, the next item to be administered
will be of the same item type as the item in the next row
that best matches in difficulty the examinee’s estimated
ability level. Given this item type, we survey all items of

this type and administer next the item that gives the most
information at his estimated ability level.

After each new response by the examinee, his ability is
reestimated. The item type of the next item is determined,
as above, and the best item (not already used) of that type
is chosen and administered. This continues until he has
answered 25 items, one for each row of the table. The
maximum likelihood estimate of his ability determined
from his responses to all 25 items is his final verbal ability
score. According to the item characteristic curve model, all
such scores, for various examinees, are automatically on the
same ability scale, regardless of which set of items was
administered.

About thirty different designs for a broad-range tailored
test of verbal ability were tried out on the computer,
administering each one to a thousand or so simulated
examinees. The final design was recently chosen and has
not yet been implemented on the computer for
administration to real flesh-and-blood examinees.

Consider first the effect of the difficulty level of the first
item administered. The vertical dimension in Figure 1
represents the standard error of measurement of obtained
test score on the broad-range tailored test, computed by a
Monte Carlo study. Each symbol shows how the standard
error of measurement varies with ability level (horizontal
axis). The four symbols represent the results obtained with
four different starting points. The points marked + were
obtained when the difficulty level of the first item
administered was near -1.0 on the horizontal scale--about
fifth grade level. The small dots represent the results when
the difficulty level of the first item was near O--about
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Figure 1. The standard error of measurement at 13 different
ability levels for four different starting points for the 25-item

broad-range tailored test.



ninth-grade level. For the hexagons, it was near 0.75--near
the average verbal ability level of college applicants taking
the College Entrance Examination Board’s Scholastic Apti-
tude Test. For the points marked by an x, it was near 1.5.
For any given ability level, the standard error of
measurement varies surprisingly little, considering the
extreme variation in starting item difficulty.

Various designs were also tried out with more columns
or with fewer than the 10 columns shown in Table 1. A test
with 20 columns, spanning roughly the same difficulty
range as Table 1 but requiring 363 items, was found to be
at least twice as good as the 10-column 182-item test of
Table 1. The reason for this is not that the columns in
Table 1 are too far apart, but mainly that selecting the best
items (best for a particular individual) from a 363-item pool
will give a much better 25-item test than selecting the same
number of items from a smaller, 182-item pool. Still better
tests could be produced by using still larger item pools,
even though only 25 items are administered to each
examinee.

It is important to compare the broad-range tailored test
with a conventional test. Let us compare our broad-range
tailored verbal test with the Preliminary Scholastic
Aptitude Test of the College Entrance Examination Board.
Figure 2 shows the information function for the Verbal
score on each of three forms of the PSAT adjusted to a test
length of just 25 items. Also the information function for
the Verbal score on the broad-range tailored test, which
administers just 25 items to each examinee. The tailored
test shown in Figure 2 corresponds to the hexagons of
Figure 1, since they represent the results obtained when the
first item administered is at a difficulty level appropriate
for average college applicants. The PSAT information
functions are computed from estimated item parameters.
For points spaced along the ability scale, the tailored test

qﬂ 80

INFORMAT ION

I
~1.25 -0.75 —0!25

0.25
ABILITY

Figure 2. Information function for the 25-item tailored test, also
for three forms of the Preliminary Scholastic Aptitude Test (dotted
lines) adjusted to a test length of 25 items.
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information function is estimated from the test responses
of simulated examinees.’

It is encouraging but not surprsing to find that the
tailored test is at least twice as good as a 25-tem
conventional PSAT at almost all ability levels. After all, at
the same time that we are tailoring the test to fit the
individual, we are taking advantage of the large item pool,
using the best 25 items available within certain restrictions
already mentioned concerning item type. It would, of
course, be desirable to confirm this evaluation by extensive
test administrations, using flesh-and-blood examinees
instead of simulated examinees.

In conclusion, the writer would like to make an offer
that should enable research workers and graduate students
to conveniently design and build actual tailored tests and
administer them to real examinees. On written request from
suitably qualified individuals, he will provide estimated
item parameters for the verbal items in any or all of the
following Cooperative Tests:

SCAT 1II, Forms 1A, 2A, 2B, 3A, 3B, 4A (50 items
each);

STEP II, Reading Test, Part I only, Forms 2A, 2B, 3A,
3B, 4A (30 items each);

SCAT I, Forms 2A, 2B, 3A, 3B (60 items each).

This represents a pool of 690 calibrated verbal items
available for research or other purposes. (This offer expires
when better methods for estimating item parameters have
been developed—very soon, it is to be hoped.)

REFERENCES

Betz, N. E., & Weiss, D. J. Simulation studies of two-stage ability
testing. Research Report 74-4. Minneapolis, Minn.: Psychometric
Methods Program, Department of Psychology, University of
Minnesota, 1974.

Cliff, N. Complete - orders from incomplete data: interactive
ordering and tailored testing. Psychological Bulletin, 1975, 82,
289-302.

De Witt, L. J., & Weiss, D. J. A computer software system for
adaptive ability measurement. Research Report 74-1. Minne-
apolis, Minn.: Psychometric Methods Program, Department of
Psychology, University of Minnesota, 1974.

Jensema, C. J. An application of latent trait mental test theory.
British Journal of Mathematical and Statistical Psychology,
1974, 27, 29-48. (a)

Jensema, C. J. The validity of Bayesian tailored testing. Educational
and Psychological Measurement, 1974, 34, 757-766. (b)

Killcross, M. C. A tailored testing system for selection and allocation
in the British Army. A paper presented at the 18th International
Congress of Applied Psychology, Montreal, August 1974.

Larkin, K. C., & Weiss, D. J. An empirical investigation of
computer-administered pyramidal ability testing. Research
Report 74-3. Minneapolis, Minn.: Psychometric Methods Pro-
gram, Department of Psychology, University of Minnesota,
1974.

!When the test score is an unbiased estimator of ability, the
information function is simply the reciprocal of the squared
standard error of measurement. A k -fold increase in information
may be interpreted as the kind of increase that would be obtained
by lengtheninga conventional test k -fold.



Mc Bride, J. R., & Weiss, D. J. A word knowledge item pool for
adaptive ability measurement. Reasearch Report 74-2. Minne-
apolis, Minn.: Psychometric Methods Program, Department of
Psychology, University of Minnesota, 1974.

Mussio, J. J. A modification to Lord’s model for tailored tests.
Unpublished doctoral dissertation, Universsity of Toronto, 1973.

Spineti, J. P., & Hambleton, R. K. A computer simulation study of
tailored testing strategies for objective-based instructional
programs. Unpublished manuscript, University of Massachusetts,
1975.

Urry, V. W. Approximations to item parameters of mental test
models and their uses. Educational and Psychological Measure-
ment, 1974, 34, 253-269. (a)

Urry, V. W. Computer assisted testing: the calibration and
evaluation of the verbal ability bank. Technical Study 74-3.
Washington, D.C.: Personnel Research and Development Center,
U.S. Civil Service Commission, in preparation. (b)

78

Waters, B. K. An empirical investigation of the stradaptive testing
model for the measurement of human ability. Unpublished
doctoral dissertation, The Florida State University, 1974.

Weiss, D. J. The stratified adaptive computerized ability test.
Research Report 73-3. Minneapolis, Minn.: Psychometric
Methods Program, Department of Psychology, University of
Minnesota, 1973.

Weiss, D. J. Strategies of adaptive ability measurement. Research
Report 74-5. Minneapolis, Minn.: Psychometric Methods Pro-
gram, Department of Psychology, University of Minnesota,
1974.

Weiss, D. J., & Betz, N. E. Ability measurement: conventional or
adaptive?Research Report 73-1. Minneapolis, Minn.: Psycho-
metric Methods Program, Department of Psychology, University
of Minnesota, 1973.

Wood, R. Response-contingent testing. Review of Educational
Research, 1973,43, 529-544.



SOME LIKELIHOOD FUNCTIONS FOUND IN TAILORED

TESTING

This brief note discusses some peculiar likelihood
functions encountered while administering the Broad-Range
Tailored Test of Verbal Ability to simulated examinees.
Other workers have doubtless encountered similar prob-
lems.

Samejima (1973) shows that when the item parameters
are known, there may be no finite ability level 9 that
maximizes the likelihood function. Also, that the likelihood
function may have more than one (local) maximum.

Barnett (1966) states “Given a single sample of
observations [r]egularity conditions are no
guarantee that a single root of the likelihood equation will
exist for this sample. In fact, there will often exist multiple
roots, corresponding to multiple relative maxima of the
likelihood function, even if the regularity conditions are
satisfied.”

Huzurbazar (see Kendall & Stuart, 1973, sections
18.11-18.12) showed under regularity conditions that
ultimately, as the number of observations becomes large,
there is a unique consistent maximum likelihood estimator.
His regularity conditions would apply if the test were
composed of items with identical ICC. His conditions
would be violated otherwise, but it should be possible to
extend his proof to cover a reasonable set of regularity
conditions for the present problem.

To have a large number of observations, we would need
to administer a large number of test items. When the
number of items is not large, and especially if the test is too
hard for some individuals, we may expect 0,
occasionally. An examinee who makes unlucky guesses and
scores below the chance level is, not unreasonably, likely to
get an estimated ability of ' = - oo, Such an estimate would
presumably be corrected if a sufficiently large number of
additional test items were administered to him.

In the study on a Broad-Range Tailored Test of Verbal
Ability, many tens of thousands of simulated examinees
took various simulated tailored tests. Items with known
ICC were administered one at a time to each individual
examinee. After each item was adminsitered, an approxima-
tion to the maximum likelihood estimate 8 of his ability
was computed, based on all his responses up to that point.

When the examinee has wrong answers but no right

~ .
answers, § =- oo, When he has right answers but no wrong

=-— o0

Research reported in this paper has been supported by grant
GB-41999 from National Science Foundation.
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answers, § =+, When he has both right and wron
answers, there is usually no difficulty in finding a finite §.
An occasional difficulty resolves itself as more items are
administered. It is very rare to have any problem after the
first ten or fifteen items, since by then the item difficulty is
usually tolerably well tailored to the examinee’s ability.

The present study investigates the case of simulated
examinee T94 for %hom there were unusual difficulties in
obtaining a finite §. Table 1 describes the first 23 items
administered to him, shows his response to each item
(1 =right, 0 = wrong), and gives B, the maximum likelihood
estimate of his ability based on his responses to items
already administered.

Examinee T94 is really a very low ability examinee—his
true 0 is actually -2.9. Furthermore, the first items
administered to him were very difficult items (b; > 1.35)
which he would have no chance at all of answering
correctly except by guessing. By lucky guessing, he
nevertheless got 6 items right out of the first 12.

If ¢; were .20 for each of these items, the chance of a
score as good or better than 6 solely by guessing is less than
.02. The maximum likelihood estimates of the examinee’s
ability based on his performance on these first twelve items
range from 1.6 to 2.2, as shown in the last column of the
table.

His guessing on the next seven items was uniformly
unsuccessful. All items through item 17 were difficult, with
b; > 1.35. His performance on these 17 difficult items
earned him an ability estimate of 9 = 1.2.

Item 18 was an easier item, b, 3 = .65. 1 suggest that the
following rationalizations provide a correct explanation of
the 8 subsequently obtained.

The examinee has answered correctly 6 items with
b; >1.35 and has failed 12 items including one with
b; = .65. The last failure suggests that 0 is low and that
earlier correct responses were due to lucky guessing. If 8 is
low, all items so far administered are too difficult for the
examinee and are of no use, even for placing a lower bound
on his ability level. When an examinee has given only wrong
responses and lucky random guesses, his estimated ability
should be § =~ oo,

When the examinee answers item 20 (b, = - .83)
correctly, it is now plausible to assume that his ability lies
between - .83 and .65 (.65 being the difficulty level of item
18, which he answered incorrectly). The maximum
likelihood estimate turns out to be § = - 4.
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Figure 1. Standardized likelihood function for examinee no. T94,
6 =-2.9.
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TABLE 1

Successive Estimates of Ability for Examinee T94

Curve Item Parameters Number Log Estimated

Item no. in Examinee’s of right likelihood* ability **
no Fig. 1 a b < response answers atd ?
1 .61 2.20 19 0 0 -
2 2.05 1.74 .18 1 1 2.2
3 1.48 251 17 0 1 1.9
4 1.89 1.96 .20 0 1 1.6
5 1.93 1.89 24 1 2 1.8
6 2.21 1.73 21 1 3 2.0
7 1.57 1.76 .07 0 3 1.8
8 1.68 1.40 15 1 4 1.8
9 1.42 1.36 13 0 4 1.7
10 1.27 1.65 28 1 5 1.7
11 1.56 1.49 .19 0 5 1.6
12 1 1.34 1.54 .19 1 6 -1.7 1.6
13 2 1.07 1.52 .20 0 6 -8.7 1.6
14 3 1.31 1.89 .09 0 6 ~9.2 1.4
15 4 .93 1.35 .20 0 6 -10.1 1.4
16 5 1.02 1.98 21 0 6 -10.7 14
17 6 1.03 1.88 .13 0 6 -11.1 1.2
18 7 1.24 .65 .20 0 6 -11.7 — o0
19 8 2.00 1.27 10 0 6 -11.8 — o0
20 9 .88 —.83 .33 1 7 -12.3 —4
21 10 2.10 .05 21 0 7 -12.6 -8
22 11 1.37 -1.49 15 0 7 —13.3 ~-2.6
23 12 1.10 -2.84 .24 0 7 -13.6 — o

*Not computed for n< 12.
*#[Forn = 2,3, ...,11, the listed 8 is an approximate value determined numerically. Forn > 11, the listed was 8 was read from values of the

log likelihood tabulated at intervals of .2 along the @ scale.

Subsequent failures on items 21 and 22 lower this
estimate to -.8 and then to -2.6. When the examinee
finally fails an item with b; _ -2.84, it now appears that all
earlier correct answers were due to lucky guessing and that
all items so far administered were too difficult for this
examinee. The situation is much the same as the situation
after the answer to item 18, already discussed. Again, not
unreasonably, B=- o

In this testing, only the very last item was of appropriate
difficulty for the examinee, whose true ability was
8 =-2.9. All but the last two items were very much too
hard. He answered both the last two items incorrectly.
ThEs, it is only to be expected that his final ability estimate
is 0 =- co. Administration of further items of appropriate
difficulty would quickly correct this estimate.

The like/lihood functions used to obtain most of the
successive 6 discussed above are shown in Figure 1. The
code numbers identifying the curves are given in Table 1. In
order to get them all on the same graph, each likelihood
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function is divided by its maximum value, so that the
maxima of the normalized curves all fall on the top
boundary of the figure. These curves, together with the
discussion/\given above, seem to explain the anomalous
values of 6. When enough responses have been obtained to
indicate a lower limit to the examinee’s ability, then finite
ability estimates will be obtained.
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BAYESIAN TAILORED TESTING

AND THE INFLUENCE OF ITEM BANK CHARACTERISTICS '

Conventional tests are generally constructed to dis-
criminate over a rather wide range of examinee ability. One
of the consequences of this approach is that a conventional
test usually contains many items which are not appropriate
for a particular level of ability. Psychometricians have long
been aware of this and in recent years they have increas-
ingly turned their attention to the possibility of program-
ming computers to design and administer tests.

Of the many computerized testing methods which have
been proposed, the Bayesian process developed by Owen
(1969) seems to be the most elegant and intuitively appeal-
ing method. It assumes locally independent binarily scored
items and a normal ogive model (Lord and Novick, 1968,
Ch. 16) in which the probability of passing a free response
item g at ability level 8 is expressed as

a(G—b) _ 2
Pg(0)=\/—2%g | £ exp [—2L] dt
oo 1)

If the item is not of the free response type and ¢, is the
probability of guessing correctly, the probability of passing
becomes

Py (6)=P, (8) +c, [1- Py (0)]
&)

The derivation of Owen’s Bayesian tailoring process has
been described several times in the literature (Owen, 1969;
Usry, 1971; Jensema, 1974a). We will briefly run through
the fundamental formulas here for the sake of complete-
ness.

Suppose N(00,002) expresses our knowledge of an ex-
aminee having ability 8. If we administer free response item
g, which has discrimination and difficulty parameters ¢ and
b, and if the examinee responds correctly, Bayes’ theorem
specifies that the information available is

2
20,

P(8I1)=kP, (8) 27 0,) " exp[( —(0 _OO)iI
(3)

where #,(0) is defined by (1) and k is such that
o0

P(011)d6 = 1.
_fo @ “@
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The solution is
k™ 1=1/2(1- efD)
(%)
where erf D is the error function
) D
L _ g2
erfD—\/;,cl)' exp (- ¢*)dt
(6)
and
Lo b0
NACRET )
2(a g,%) )

The expectation of the posterior mean is

V2,2
Vra~? +g,?)

E@I1)=06, + exp (- D?) (1-erfD)"!

(®

and the variance is

2
7= 2D exp (D?*) (1 - erfD)

) V(1 +a"26,72) (exp(D?) (1 - erf D))?

var(@l1)=0% | 1

©

Similarly, if the examinee gives a wrong response to item g
we have

k -(0-86,7
POIO)y="7""(- P, @) (\/211'00)"1 exp |————
k-1 20,2

(10)
V20,2

Vr(@a~? +0,2)

E(610)=0, - exp (- D?) (1 +erfD)" 1,

(11)



and

2
VT + 2D exp(D?) (1 terfD)

0i0)=0,’ -
wior= e, Vi +a720,7?) (exp(D?) (1 +erf D)

(12)

To expand this discussion a little further assume that
item g is not a free response item and that it has a probabil-
ity G, of guessing correctly. If the examinee gives a correct
response we have

-(6-0,)*
P'(011)=\P; (6) V271 g,) ' exp |————| .,

20,
(13)
E'(0l1)=6,+(1-C)k™"' S,
(14)
and
var ' (011)= 0,2~ (1- C) k™' AS* (1- G, M)
(15)

where the prime is used to signify the effect of guessing,
P, (8) is defined by (2), and we take

-1 . _ -1
A 1—Cg+(1 Gk,

(16)
S=ko,exp(-D*) 2n(1+a"%g,”2))~"
(17)
t=1-2+/nk ' Dexp(D?).
(18)

If the examinee gives a wrong response the formulas in
(10), (11), and (12) hold, since our information, that the
examinee does not know the correct answer, is the same as
in the free response case.

Now assume we have n items and want to select the best
one for administration. The expected posterior variance of
0 after administration of a particular item is

83

2

E(var (Blu) =8, + 02 - KO) [E(810)]* - P(1) [E(8I11)]?

2

m(l+a"%0," ) exp(2D?) (1 - (erf D)?)

(19)
when items are of the free response type and
(- CHANO+C (1~ k1Y)
E' (var (Blu)) = 002 -
" 2n(l+0,7 %0 ?) (1- k™ ")exp(2D?)
(20)

when the items are affected by guessing. In (19) and (20) u
refers to the correctness of the examinee’s response and is
taken as 1 or 0. The item which leads to the smallest ex-
pected posterior variance is the most desirable one to ad-
minister. It is sufficient to select the item with the smallest
value o where

a=(a"? +0,%) (1- (erf D)*) exp (2D?)
(21)
for free response items and

1

a'=¢( ) (1+0,7%a7%) (1- k=) A" exp (2D?).

1-C,

(22)

when guessing is present.

If we have a pool of » items and estimates of the normal
ogive model parameters for each item, we may use a
Bayesian sequential procedure to select items for adminis-
tration to a particular examinee. Let 0 and 5% (m) be an
estimate of the examinee’s ability and 1ts variance where m
indicates the number of items administered. Assume the
populatlon has ability distributed as N(0,1) and take 0(0)
and 02 (0) 3 0 and 1. Calculate o; values for all (unused)
items, 1=1,2 (n-m), using (22). (We will assume
that the items are not free-response.) The examinee is ad-
ministered the item with the sma]lest o; value. If an incor-
rect response is given, 9 and ¢* (m+1) are calculated
from (11)and (12). If the resp?onse is correct (14) and (15)
are used. This cycle is repeated until G O(m) is within some

.......



pre-selected limit. The selection of a G, m)value for termi-
nation is, of course, arbitrary. It is usually selected to yield
some expected level of validity according to
- )
ree= V10 (m)
(23)

The characteristics of an item bank used for tailored
testing are very important to the efficiency and accuracy of
the process. There are four basic requirements for a good
item bank. These have been mentioned in whole or part in a
number of publications (i.e. Urry, 1970, 1971, 1971b,
1974; Jensema, 1972, 1974a, 1974b; etc.) and may be sum-
marized as follows:

1) Item discrimination should be as high as possible and

should not be less than .8.

2) Item guessing probabilities should be as low as pos-

sible.

3) The item bank must consist of a sufficiently large

number of items.

4) Ttem difficulties should have a rectangular distribu-

tion.
The remainder of this paper will concentrate on demon-
strating the importance of each of these four requirements.

Assume that an infinitely large item bank exists and that
all items have the same discriminatory power and the same
probability of guessing correctly. The assumption of an
infinitely large item bank allows the selection of an item i
having a difficulty level exactly equal to any given estimate
of ability. When this can be done many of the formulas
may be greatly simplified since we have:

Di- (24)

and
erf D; = 0. (25)

The equations for 62(m + 1) for correct and incorrect

responses become

2 (1- C)* |

~ -2
0 1)=0 1-
(m+1) = “(m) r(1- CY
(26)
and
~ n 2t;
Om + 1) =0(m) | 1-—
s
(27

where m is the number of items previously administered.
An item /’s difficulty is the point at which the probabil-

ity of knowing the correct answer is exactly .5. If guessing

is in effect the probability of responding correctly is equal
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to the probability of knowing the answer plus the probabil-
ity of guessing correctly. Then 5% m+1) may be expected
to be the sum of (26) and (27) weighted by the probabili-

ties of a correct or incorrect response:
2
+5(1-G) -—
m

EG, + 1) =8%m) [.5(1 +Cp) <1

26;(1- ¢)?

71+ )
(28)
A little algebraic manipulation reduces this to
~2 2 2 a- )
—_
EGin + 1)=0my | 1-——— (29)
i (l + Cl)

Inserting appropriate values for g; and ¢; in equation
(29) and plotting the results against the number of items
administered demonstrates the influence of item discrimina-
tion and guessing probability on the tailoring process.
Figure 1 plots the expected standard error of the estimate
eﬁ\(mﬂ) by the number of items administered for five
levels of discrimination when guessing probability is zero
and an infinite number of items are available. Notice the
sharp difference in the number of items needed at different
levels of discrimination. For example, if the items have dis-
criminatory powers of 2.5 only 4 or 5 items are needed to
reach a standard error of the estimate of .30 while 17 or 18
items are needed to reach this level when item discrimina-
tion is only 1.0.

Now suppose we take item discrimination to be 1.0, a
rather low value which is easily obtained. Figure 2 plots the
expected standard error of the estimate for various guessing
values by the number of items administered. The guessing
values range from .5 (i.e. true-false items) to 0.0 (ie. free
response items.) The greater the probability of guessing, the
more items required to reach a specific standard error of
the estimate.

To give a clear example of the combined effects of dis-
crimination and guessing on the tailoring process, suppose
we have three item banks which, for convenience, are
referred to as I, II, and III. Assume Bank I items have dis-
crimination and guessing paramenters of .5 and .33. Bank
I’s parameters are 1.0 and .25 while Bank III has parameter
values of 2.0 and 20. These banks may be roughly
classified as unacceptable, fair, and excellent for tailored
testing purposes. Assuming that each bank has an infinite
number of items and plotting the expected standard error
of the estimate against the number of items administered,
the three curves in Figure 3 are obtained.

In Figure 3, notice that Bank I wouid give unacceptable
results. After 30 items the expected standard error of the
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Figure 1. Expected standard error of the estimate according to
number of items administered at five levels of item discrimination.
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Figure 2. Expected standard error of the estimate according to
number of items administered at six guessing probabilities.
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Figure 3. Expected standard error of the estimate for three item
banks according to number of items administered.
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estimate is only .56 (i.e. reliability = .69, validity = .83). In
contrast an excellent item bank, such as Bank III, would
reach this level after only 3 or 4 items. The advantage of
high discrimination and low guessing probability in an item
bank is obvious.

Up to this point we have discussed the behavior of
Bayesian tailored testing when the item bank is assumed to
be of unlimited size. The obvious question which follows is
what happens when item bank sizes are within practical
limits? To answer this question, Monte-Carlo data for 200
items are generated for each of 100 “examinees” using
Urry’s (1970) “LOGIST” program. The parameters for
discrimination (1.0) and guessing (.25) were the same as for
Bank II mentioned earlier. Eight sets of 25 difficulty values
(-24, -22, ., 00, ..., 22, 2.4) were employed.
Bayesian tailored testing was simulated with this data using
50, 75, 100, 150, and 200 items in the bank. Since
difficulty had been specified in sets of 25 values, the item

TABLE 1

Validity (ref9\) Obtained With Different Size Item Banks
{Monte-Carlo Data, N=100, 4=1.0, C=.25)

banks had 2, 3, 4, 6, and 8 items at each of the 25
difficulty levels respectively.

For each of the five item banks and for each of the 100
examinees, tailoring was simulated until 30 items had been
“administered”. As each item was “administered” the new
estimate of ability was recorded. Since the data was
randomly generated, true ability (distributed as N(0,1) was
known and could be correlated with estimated ability.
Table I gives the validity (correlation between true and
estimated ability) for each item bank by the number of
items “administered”. The last column in Table I gives the
expected validities for an item bank of infinite size as
calculated from equation (32) and (23).

The Monte-Carlo data above represents items which are
passable but not especially good for tailored testing. To see
how item bank size would influence validity when the bank
was composed of excellent items, the Monte-Carlo data
tailoring simulation was repeated with higher discrimination

TABLE 2

Validity (reé\) Obtained With Different Item Bank Sizes
(Monte-Carlo Data, N=100, 4=2.0, C=.2)

ITEMS IN BANK

ITEMS IN BANK

Items
Adminis- 50 75 100 150 200 o*
tered - - - - -
1 53 53 53 53 .53 44
2 .59 .59 .59 .59 .59 .57
3 .65 .65 .65 .65 .65 .66
4 72 72 72 72 72 72
5 78 .78 78 .78 .78 .76
6 .81 .80 .80 .80 .80 .79
7 .83 .82 .82 .82 .82 81
8 .84 .84 .84 .84 .84 .83
9 .85 .85 .84 .84 .84 .85
10 .86 .86 .86 .85 .85 .86
i1 .86 .87 .88 .87 .87 .87
12 .87 .87 .89 .87 .87 .88
13 .89 .89 .89 .87 .88 .89
14 90 91 90 .88 .88 .90
15 91 91 91 .90 .90 91
16 91 92 .92 91 91 91
17 92 92 .92 92 91 92
18 92 .92 93 .92 92 .92
19 .92 .92 93 92 92 93
20 93 93 93 .93 93 .93
21 93 93 .93 93 .93 .93
22 93 94 94 94 93 .94
23 93 .94 .94 94 .94 .94
24 93 .94 94 94 94 94
25 93 .94 95 94 .94 94
26 94 95 .95 .94 .94 95
27 94 95 95 .94 .95 .95
28 94 95 95 .95 .95 95
29 .94 95 95 .95 95 95
30 94 95 95 95 95 .95

Items
Adminis-
tred S0 75 100 150 200 =%
1 .66 .66 .66 .66 .66 .58
2 75 .75 a5 5 a5 .74
3 .84 .84 .84 .84 .84 .82
4 .89 .89 .89 .89 .89 .86
5 92 .92 92 92 92 .90
6 93 .93 93 93 .93 91
7 94 94 .94 .94 94 93
8 95 95 .95 .95 .95 .94
9 .96 95 95 .95 95 .95
10 96 .96 .96 96 96 .96
11 .97 .96 .96 .96 .96 .96
12 .97 .96 .96 .96 97 .96
13 97 97 97 .97 97 97
14 .97 97 97 97 .97 97
15 97 97 .98 97 .98 97
16 97 .98 98 .98 .98 .98
17 .97 .98 .98 .98 .98 .98
18 98 .98 .98 .98 .98 .98
19 .98 .98 .98 .98 .98 98
20 .98 .98 .98 .98 .98 .98
21 98 .98 98 .98 .98 .98
22 98 .98 .99 .98 .98 .98
23 98 .98 99 .98 .98 .98
24 .98 98 99 .98 .98 .98
25 .98 98 .99 .99 .99 .98
26 98 .98 .99 .99 .99 .99
27 .98 .98 .99 .99 .99 .99
28 .98 .98 .99 .99 .99 .99
29 98 98 .99 .99 .99 .99
30 .98 98 .99 .99 .99 .99

*Expected validities calculated from equations (32) and (23) for an
imaginary bank having an infinite number of items.

*Expected validities calculated from equations (32) and (23) for an
imaginary bank having an infinite number of items.



(2.0) and lower guessing (.20) parameter values. These
configurations correspond to Bank III mentioned earlier.
The results of the simulated tailoring with this new data are
given in Table 2.

For practical application it is apparent that a very large
number of items is not a critical item bank characteristic if
the bank is good in other respects. In both Table 1 and
Table 2 the Monte-Carlo data validities obtained for the five
banks closely match each other and they also paralle] the
validities to be expected from a corresponding item bank of
infinite size. However, it must be remembered that this was
Monte-Carlo data and the tailoring simulation used known
parameter values for discrimination, difficulty, and
guessing. With real data involving imprecise parameter
estimates and a possible non-uniform distribution of
difficulty, it would be wise to be a bit cautious if a bank
had, say, fewer than 75 items. In connection with this,
there are some practical problems which arise if an item
bank is too large. A large bank has more items available for
administration, but the storage requirements and the
increased computer processing needed for item selection
also slow things down while adding to overall computer
costs. (Some good cost-efficiency studies are needed on
this?)

The last item bank requirement is uniform distribution
of difficulty. The exact results of violating this rule are
difficult to predict, since they would necessarily depend on
the actual distribution of item difficulty, the discrimination
and guessing parameter values, the number of items in the
bank, and the criteria used to terminate the tailoring
process. The essential point to remember is that the
Bayesian tailoring procedure attempts to select for
administration the item which will yield the most
information. If, at a particular level of difficulty, there are
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no items available, the Bayesian process will be forced to
select an item which is not appropriate and which will yield
less than an optimal amount of information.

To summarize, this paper has outlined a Bayesian
approach to item selection for tailored testing. Four basic
requirements of a good item bank for this process have
been discussed. If these requirements are met, Bayesian
tailored testing will yield excellent results. The key to the
process lies in careful construction of item banks. If
attention is given to this, the Bayesian tailoring process
gives us a fundamental tool for practical application of
latent trait mental test theory.
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REFLECTIONS ON ADAPTIVE TESTING

The purpose of this paper will be to reflect on various
aspects of the adaptive testing field. Building from our prior
Memphis State University and Air Force work in the area,
the various issues, alternatives, priorities and ultimate styles
of research for adaptive testing will be placed in the context
of empirical findings and institutional requirements. The
rationale for proposing such a pontifical and extremely
challenging task is twofold. First, all our substantive and
empirical work was recently reported (Hansen, 1975) and it
would seem superfluous to rewrite or try to extend this
research prior to more effort; therefore, only the major
questions and findings will be summarized in this paper.
Secondly, the various characteristics of the adaptive testing
field will be reflected on in terms of research productivity
and institutional requirements. Having by scholarly
necessity been forced to read extensively in this domain
over the past five years and, in many instances, to take a
pencil in hand to follow a variety of formal derivations, I
think it appropriate for me to comment about various
purposes and styles of research. This is not donesto criticize
any of these models but rather to seriously address the
question, “Are we moving in the most profitable direction
and using the most expeditious procedures?”

MSU Adaptive Testing

Generic to any research in adaptive testing or that
relating to the whole educational enterprise is a clear
understanding of its purpose. For our group, the purpose is
that of facilitating achievement or mastery testing. Within
industry and military training it is common to find that
testing time and managerial demands, especially for
individualized techniques, are now taking upwards of 20
percent of the total training time. Such a training
commitment becomes sizable and the systems managers
must inevitably ask the question, “Is there a more efficient
and effective way of going about it?” For example, the Air
Force Advanced Instructional System will ultimately have
700 students aboard for any given training shift (2,100
students per day). If one considers that their day consists of
six hours of instruction and that approximately 20 percent
of this will be given over to testing, one can see that 72
minutes are being allocated on the average for each
student’s evalution per day. If such testing time can be
reduced by 50 percent, an adaptive testing goal set for our
efforts, then effectively 1.5+ million dollars worth of
salaried money can be gained by shortening the training
time for the 2,100 manpower units flowing in this system.
It is precisely this type of monetary achievement that
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impresses our representatives in Congress concerning the
importance of research ideas applied to significant
educational problems. As will be suggested later, such
specific, operational goals, while unachieved to date, give
the best rationale for continued research support in this
area.

As a corollary to the efficiency issue, an accompanying
objective concerns the efficient application of computer
technology to the testing process. In essence, one can
demonstrate that adaptive testing falls closer to the drill
and practice end of the computer usage continuum
(Hansen, et. al., 1973) and certainly is orders of magnitude
less demanding on a computer than CAI or simulated
training. Our experiences and computer algorithms can be
offered to you for your consideration. These document an
efficient use of computers, tools which are fast becoming
integral to the educational processes within our human
institutions.

Finally, adaptive testing should be considered within the
context of a total systems effort. For our group, adaptive
testing is just one component within an overall adaptive
instructional system. As one significantly alters the
environment and the sequence of educational elements so
as to foster or optimize learning outcomes for a given
individual, one can see that testing becomes just one more
component in such a stream of events. One should look at
it, though, in terms of its contributions to the individual
and the institution, be this increasing levels of competency
or the educational system itself. Thus, one can contend that
theoretical models have little or no value unless placed
within such a system context since it is the context which
will mold and determine the criteria, values, and operation
by which its characteristics shall be judged. Let us turn
then, to the specifics of the MSU adaptive testing model.

MSU Adaptive Testing Model

Our adaptive testing approach involves three com-
ponents, namely, the entry of a student into the test,
tailoring the test items for the student, and adaptive scoring
procedure. Each of these will be discussed in turn. In
reference to the entry and test composition processes, a
student is entered at a level commensurate with our
prediction of his ultimate performance. Therefore, using
linear regression techniques mostly composed of variables
from prior test performances, a student is placed into a
monotonically arranged test. Such a procedure seems to
work quite successfully and has an additional advantage of
reducing the number of test items to be presented for any



given student. (How this is done should be obvious given an
understanding of the flexilevel algorithm.)

While we have very limited data concerning the efficacy
of this procedure, entry to final score correlations tend to
be in the low .80 range. These are similar to correlation
coefficients reported by Cleary at the University of
Wisconsin for students who were placed in a branch test
according to a predicted outcome level (a personal
communication at an AERA conference in 1969). Thus, the
adaptive entry of a student seems to be a positive step
forward and should be taken into account by any model
working within this field.

In reference to test composition, it can be specified that
each student, based on his entry profile, will have a
specially developed set of composed items. These composed
items may reflect information concerning the student’s
prior performance on various objectives which form the
achievement test. Therefore, if one has information about a
student’s achievement of these objectives, there is no
rationale for presenting the item. It is precisely this concept
of test composition that appears so advantageous, although
it has not been empirically pursued. One can anticipate that
sometime within the next year one of the military training
systems will pursue it in greater depth.

Tailored Testing of Items

As indicated, Lord’s flexilevel algorithm is utilized for
tailoring the presentation of test items. For achievement
testing, this approach violates the assumptions as to
normality as axiomatically represented within this model,
but it can empirically be countered that our findings justify
the utilization of the algorithm from a student and systems
point of view. This adaptation is precisely the ability to
move between very difficult and very easy items while at
the same time adjusting cutoff criteria where considered
appropriate {(up to this point our group always used end of
test item cutoff procedures but others could be
considered). Achievement and mastery testing, especially in
a technical training environment, always tend to yield
asymmetric performance score distributions. Such distribu-
tions, if better understood, could be more readily adapted
to flexilevel testing and yield optimal algorithms.
Obviously, no attempt to prove such an assertion has been
made at this point.

Scoring

Our views on scoring represent an attempt to remain
consistent with the traditional procedures of adding up all
correct responses and giving weights to those items that are
most difficult. Therefore, we have used the Green
procedure (Green, 1970), that is, an averaging of the
correct item difficulties achieved by a student. Using the
flexilevel algorithm and this scoring process, the overall
reliability and validity of the adaptive testing procedure
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seems reasonably satisfactory as it yields coefficients that
vary between .6 and .8 (i.e., alpha coefficients and parallel
test coefficients).

In addition, we are making plans to contrast two
additional adaptive routines so as to resolve what we
perceive as a critical problem, namely, the critical zone
performer. In any given training situation, there is a critical
criterion zone, typically being between the 70th and 90th
percent level .which is stipulated as a requirement for the
attaining of course mastery. If a student scores close or
within this level (consider it being bounded by the standard
error of measurement), then one should collect more
information prior to judging this student as having achieved
the objectives or in need of further remediation. At least
two approaches can be considered to resolve this problem.
The first is an obvious approach simply involving the
presentation of an additional set of items for this zone; this
is similar to a branching test. A more promising one,
especially given the role of the computer, is Bock’s (1972)
procedure for item latent structure which makes use of the
information contained in wrong alternative answers. The
Bock model appears to us to be a far more preferable
procedure in terms of ongoing large-flow training situations
and it shall be evaluated during the coming year within the
AF/AIS context.

Data relating to reduction in testing time indicates that
only approximately 31 percent of the items are utilized if
individualized entry and adaptive techniques are employed.
This yields a 150 percent savings in testing time. The
samples unfortunately, were extremely small and our group
looks forward to a much more extensive validation study in
the AIS military training situation. Similar savings are
reported by Tam (1973) in his study of affective adaptive
testing although modest ones were reported by Hedl (1971)
in his intelligence testing. All in all, the results are
sufficiently promising to extend the validation for these
approaches as well as explore alternative designs within
realistic training situations. These alternatives form the
substance of the remainder of the paper.

Issues in Adaptive Testing

As an active reader and investigator in the adaptive
testing area over the last eight years, one general
observation comes to mind, namely, a classical psycho-
metric approach emphasizing those cherished characteristics
of excellence, improved reliability, validity, and conse-
quential individual description, is limited in its systems and
institutional view. In essence, our efforts have been to
describe each and every individual in reliable, finegrain
terms while recognizing the needs to improve the testing
system. Given these broader insights, the purpose of this
section will be to raise issues and possible alternatives as
reflected by priorities concerning objectives for adaptive
testing. There are three areas to be considered as reflected



by these queries: (1) What are the possible purposes for
adaptive testing? (2) What types of formal models might
best be pursued for adaptive testing? and (3) How can our
theoretical and procedural methods best be evaluated?

Purposes for Adaptive Testing

The tradition within psychometric research as well as
test development has focused on descriptions and decisions
concerning individuals. On the other hand, many
institutions believe group differences in the testing process
should be stressed since it is group data that form the basis
of decision making. For example, in the current
controversy concerning the contribution of schools and
curriculum effects, Rakow (1974) argued that tests have
been constructed to maximize on individual discriminations
and to minimize group differences. Therefore it is not
surprising that one finds no statistically significant group
effects for schools or curriculums; the Coleman study
(1968) or the Jencks follow-on study (1972) represent this
type of outcome. Rakow argues that if one utilizes
inter-class correlational techniques, one can find highly
significant relationships of a subset of items which
distinguish among groups. For adaptive tests that attempt
to support large human organizations such as military
training, this implies that classifying an individual
concerning group membership and the characteristics of
this group is of a high priority. This adaptive testing
approach would utilize a branching item technique so as to
lead to reliable alternative group classifications for an
individual. Having achieved this, then the more conven-
tional individual discrimination techniques could be
applied. Obviously, the utilization of a flexilevel algorithm
based on appropriate individual placement would be
preferable. The point of such a two-stage model is to
provide for more effective adaptation for group placement
and ultimately for maximizing on institutional criteria
rather than individual criteria alone. Simply, might it be
better to find the correct group for an individual rather
than know his “true score” on some ability dimension?

In turn, one can look at training systems and recognize
that there is a trade-off between training load vs. standard
error effects. In essence, as the training load absorbs more
and more of the readily available resources, an improve-
ment in the testing process with an associated reduction in
standard error is superfluous since all the remaining
individuals will have the same minimal treatment. In
essence, each student is likely to spend long waiting times
and not be able to pursue any kind of optimum course of
instruction. Under such circumstances, it is therefore
critically important to identify those individuals who can
pursue self-study where appropriate. Moreover, it might
also be highly important to have adaptive tests that better
detect those individuals who seem to have aptitudes for
transfer, so that when branched forward or back for review
within a normal sequence of instruction, they will receive
facilitating effects rather than negative ones.
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In turn, as the training load on resources diminishes, one
should expect the test length to increase so as to reduce
errors of measurement. Thus, one can see that a systems
approach to adaptive testing tends to reflect a far more
dynamic procedure which might change the criteria, the
test length, and the algorithms depending on the state of
the training system.

Finally, to be optimally adaptive, one should recognize
that our clientele and their institution basically do not
understand the concepts, methods, or models of adaptive
testing. To them, the quantification, especially as
represented by our psychometric models, tends to defy
understanding. Allow me to illustrate. MSU has been
teaching a measurement course on base at NAS, Memphis.
Two of the students were commanding officers of Navy
technical training schools and have direct responsibility for
supervising the measurement processes within these schools.
After completing an eight-week course, each volunteered
that they had, prior to the course, never understood any of
the quantitative test item statistics or reports other than
those concerning students passing or failing, the all
important attrition rate. To be adaptive the system should
provide the commanding officers, instructors, students, and
other concerned people with verbal reports rather than
quantitative reports; thus, a client-oriented product
approach would vastly enhance the acceptance of adaptive
testing. The work of Fowler (1969) with the MMPI
successfully demonstrates that psychiatrists readily desire
and understand verbal interpretations rather than quantita-
tive reports of the 13 MMPI subscales. These observations
about institutional effects hopefully will stimulate your
interest in thinking about your clientele as well as your
model when you formulate some of your priorities for
future research. As cited in the introduction, adaptive
testing research must be scholarly, diligent, and of the
highest quality while reflecting a form of institutional
adaptation which can be appreciated and supported by the
clientele who provide the resource support for all research.

Psychometric Models for Adaptive Testing

Within the tradition of adaptive testing research, one
reads numerous reports that focus on the comparative
merits of alternative psychometric models for adaptive
testing. It shall be the thesis of this section that pursuit of
an optimal adaptive testing model is likely to be ineffective
and the adaptive testing domain needs a strategy for
identifying selection criteria that chooses among the many
existing models. Optimization studies, especially from a
formal point of view, have been pursued for the last 30
years in different contexts with surprisingly similar
indifferent results. For example, during the 1940’s many
statisticians pursued within analysis of variance models the
issue of optimal a@ posteriori mean difference tests. After
better than a decade and a half of effort, John Tukey
(1962) observed that one could not really argue for the one
best a posteriori test because each varies according to the



decision criteria of the investigator. In essence, it is the
characteristic of the research which determines which one
of the many tests is the most appropriate.

In turn, the area of mathematical learning models offers
a similar finding. Within the context of research on the
all-or-none vs. incremental learning processes during the
early 1960’s, one notes a flurry of research, ail of which
ended with the conclusion (Atkinson, et. al., 1965) that
each mathematical learning model has a set of task
characteristics which allows it to be optimal provided that
the a priori task characteristics are sufficiently matched.

Recently a great deal of effort has gone into the
investigation of adaptive instructional models from an
optimization point of view. Generalized approaches include
various regression models. While these regression models are
clearly non-optimal, they have proven significantly
successful in facilitating the process. On the other hand,
fairly specific models, be these Markoff processes or
dynamic programming structures, provide an elegant
theoretical explanation (Hansen, et. al., 1973) but rarely fit
the data or facilitate learning. Thus, one is led to the view
that an array of models for the instructional area will be
necessary in order to fit the rather diverse nature of the
learning process.

Based on these examples, the proliferation of psycho-
metric models for adaptive testing is likely to have limited
productivity. Our efforts to focus on the criteria to be used
for the selection of a given adaptive testing model and a
better description of how to test the model’s fit with the
given behavioral phenomena would seem to be a more
desirable direction in which to move.

Validation Procedures

As has been observed by each of the reviewers in this
area, the amount of empirical work is modest at best. If one
considers critical topics, namely, sample size and design
techniques, one is even further impressed by our modest
beginnings. For example, in reference to sample-size there
are those such as Bock (personal communication) who
would advocate that at least for his latent item structure
model, a sample size of 2,000 students would be required.
While pursuing some of the test data for the Air Force with
a sample of 1,000 plus airmen, the groups were divided into
samples of 200 each and then the usual reliability and
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validity analysis was performed. In addition, each sample
was progressively aggregated into the next. It is fairly clear
that the parameter convergence process was still taking
place after the sample size had increased to 800. Therefore,
it can be argued that it is important to consider maximizing
on sample size and to develop techniques by which both
item and test parameters converge on their appropriate
group and individual values.

In turn, our review of the designs for validation is
consistent with that proposed by Tam (1973), namely, that
one has to consider a within-test as well as a between-test
validation procedure. This can be achieved simultaneously
if one notes that one can present adaptive testing as a
variation within total test procedure. In turn, this can be
contrasted with a parallel form presentation. The two
statistics, correlation between the two adaptive and total
test scores and the correlations between the two parallel
forms, yield a comprehensive representation of the validity.
While this may seem excessive to some, such validation
procedures provide more substantial empirical results which
clearly indicate the justification for reducing total test
items.

Summary

This review and reflection has run on in a rather
extensive manner. Furthermore, it seems inappropriate to
have reflections on reflections. Therefore, this summary
will state a final point of view, namely, adaptive testing is
sufficiently dynamic that multiple concepts and hypotheses
can be incorporated in a design sequentially so as to
determine their effect on the efficiency and effectiveness of
the assessment process. This extensive review of a number
of neglected topics should not be taken as a set of
imperatives for research. Rather, these topics and
suggestions can best be considered as potential variations
within experimental designs of the future. They are offered
to you under the assumption of collegial productivity and a
firm commitment to the human and societal benefits from
adaptive testing. Of all the evaluational techniques available
to us at this time, adaptive testing offers that chance to
humanize our assessment processes. Such an eventuality,
especially in terms of shortening high-stress situations
commonly found in testing, cannot be minimized in terms
of its benefits.
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COMPUTER ASSISTED TESTING: AN ORDERLY TRANSITION

FROM THEORY TO PRACTICE

The United States Civil Service Commission is
responsible for examining applicants for Federal jobs
throughout the world. It examines almost two million
persons and makes about 200,000 placements annually.

The Commission’s investment in computerized adaptive
testing research and development is a significant one. This
exciting and innovative program is currently budgeted at
almost $200,000 per year. This expenditure comes at a
time when Federal agencies’ budgets are most austere and
when resources are sorely needed to respond to the
increasing challenges faced by conventional examining
methods.

The Commission’s investment in computerized adaptive
testing is based primarily on the potential payoff in
improved employee selection and placement. The large
numbers of examinations and applicants makes com-
puterized adaptive testing an economical, practical vehicle
for improved measurement. The answer to attacks on tests
in the employment situation is complex; the economic and
social implications of this problem are enormous.
Unquestionably, however, the greatest benefit both to the
employer and to the employee lies in better measurement,
not in less measurement. Every improvement in the
selection and placement processes should contribute to the
economic health of the employer, the psychological well
being of the affected individual, and the welfare of society.
Computer technology offers not only an opportunity to
make significant improvements in employment decisions
but also a better means of assessing the effects of such
improvements.

While there are problems yet to be solved, computerized
adaptive testing is well on the way to implementation.

As conventional approaches to test construction -are
modified in light of developments in latent trait theory,
computerized adaptive testing becomes more and more
feasible. The Rasch Model showed capabilities for
computerized adaptive testing in the special case where all
items discriminated equally and were unaffected by
guessing. This special case was simply not practical to
expect in available test items (Urry, 1970). Since item
requirements for three-parameter logistic or normal ogive
models can be met with existing items (Lord, 1970),
computerized adaptive testing can be implemented. The
implementation can be cost effective (i.e., the number of
test items administered is substantially reduced vis-a-vis
conventional testing) when certain rigorous item bank
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specifications can be met (Jensema, 1975). The determina-
tion that the item bank specifications can be met with
existing items is contingent upon a new look at
conventional item statistics and their relationship to model
parameters. It has become apparent that the distortions
caused by guessing result in severe underestimates,
particularly of item discriminatory powers (Urry, 1975).
Reliable estimates of parameters can now be made (Gugel,
et al, 1975). An algorithm exists that will allow on-ine
computer-interactive item calibration (Schmidt & Urry,
1975).

Problems remain in tailoring test batteries to specific
occupational requirements and in adequate coverage of
job-related abilities. Of serious concern are the time and
dollar respources that are needed for comprehensive
measurement. The improved medium of presentation
inherent in the hardware will facilitate resolution of these
problems; for example, new item types and audio input
possibilities.

Application of computerized adaptive testing in civil
service examining has several desirable features.

Job relatedness. With multivariate test item banks, it is
feasible to interpret scores on specific abilities in terms of
differential occupational requirements. This then enables
the employer to test a large number of abilities and to
weight these abilities in accordance with their importance
for success in specific jobs. The employer can array
applicants across a large number of jobs and select in terms
of priority, thus maximizing the utility of the selection
process.

Standardized Examination Administration. Individual
differences among administrators under conventional
testing make error variance due to unstandardized
administration largely unavoidable. Since administrarion
procedures can be programmed under individualizad
testing, standard conditions can be better maintained.

Compromise of Examination Materials. Under com-
puterized adaptive testing, examination questions are
located in a central computer. No test booklets are used,
therefore none can be taken from the examination room.
As a result, the security of tests and test questions can be
maintained more easily. Different individuals will receive
different sequences of items, reducing the likelihood of
cheating.

Improved Administrative Procedures. Test booklet
printing, storage, and distribution costs become inconse-
quential.



Examination Scheduling. Tests can be administered on a
walk-in basis since different tests can be administered
simultaneously. The shortened testing time makes possible
the administration of a multiple abilities battery in the time
now required to examine for a single ability. Further, if
selection is specific to a given position, individualized
testing for the required abilities can be accomplished in a
manner that minimizes the time of testing while
maximizing the job relatedness of a final weighted score.

Power Conditions of Examination. Tests of ability
should be power tests. However, due to administrative
considerations, i.e., scheduling, space restrictions, etc.,
conventional tests of ability are usually speeded to a certain
degree. Under computerized adaptive testing, the power
conditions required by this type of test can be ensured.

Test-Taking Motivation. Test-taking motivation and,
consequently, test performance may be impaired when the
level of difficulty of the examination material is
inappropriate to the level of ability of the examinee. In
conventional testing, the examination is constructed for an
entire population. This method of construction necessarily
leads to inappropriate question difficulties when a
conventional test is presented to a given examinee. In
computerized adaptive testing, the difficulty level of the
questions is matched to the level of ability of the examinee.

Improving Examinations. The current conventional
testing technology is the product of more than fifty years
of research and development. Substantial improvements
have been less frequent with the passage of time. This calls
for a rather dramatic change in testing procedure. At
present, the appropriate change would be towards an
individualized testing technology. Certainly greater experi-
mental control and a thorough monitoring of the
measurement process is made possible through the aid of
this new medium.

Improving Personnel Decisions. When a computer
interactive network has been established for individualized
testing, one has necessarily established a vast data accession
network to effect immediate evaluation of the personnel
decision making process. Optimization in the decision-
making process is the natural extension of events when
many sources of information are available to a central
computer and are readily accessible for analysis by the
personnel researcher and personnel specialist.
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It appears, at this time, that computerized adaptive
testing research has progressed to the point where
implementation will be feasible. In Fiscal Year 1976, a
comprehensive cost analysis will be undertaken. Preliminary
estimates are favorable. For example, computer connect
time in testing in one ability area now costs less than forty
cents per examinee. It is reasonable to expect that cost to
drop as the program progresses. Current plans call for fully
operational computerized adaptive testing by 1980. At that
time, it is expected that the examination for most
entry-level professional and administrative jobs will include
a test battery administered in the computerized adaptive
system. Approximately 200,000 applicants currently file
for these jobs. It will take until 1980 to get ready for an
examination of this scope and number of participants.

My colleagues this morning will address some of the
progress we have made in solving technical problems
associated with the program.
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A FIVE-YEAR QUEST:

IS COMPUTERIZED ADAPTIVE TESTING FEASIBLE?

Five years of research on the feasibility of computer
assisted testing has attempted to answer four extremely
significant questions: (1) What types of items are required
for effective computerized adaptive testing? (2) Do these
types of items exist in sufficient number to measure
important abilities adequately? (3) Can estimates of the
item parameters be obtained that are sufficiently reliable to
be used successfully in a computerized adaptive testing
algorithm? and (4) Is there an efficient and accurate
adaptive algorithm for computerized testing?

In answer to the first question, “What types of items are
required for effective computerized adaptive testing?”, the
development of specifications for effective item banks or
item pools for computerized adaptive testing was begun
about five years ago (Urry, 1970). These specifications were
written with reference to the three parameters of the
normal ogive model (Lord & Novick, 1968) and the logistic
model (Birnbaum, 1968). At that time, they included
requirements for a minimum of 100 itemns with item
discriminatory powers (the a;) of at least .80, with item
difficulties (the b;) evenly distributed on the interval from
—2.00 to 2.00, and with item coefficients of guessing (the
¢;) of 25 as a maximum. Some research was later
completed (Jensema, 1974; Urry, 1974b) indicating that
the maximum value for the ¢; could be set as high as .30
with item bank effectiveness still maintained.

In these studies, an item bank was adjudged effective
when computerized adaptive testing required fewer items
than conventional paper and pencil testing to attain the
same level of reliability. The specifications were arrived at
through model sampling and simulation techniques. The
concern was the capability of the 3-parameter models for
the specific purpose of computerized adaptive testing. After
model capabilities were adequately explored, there
remained the empirical question, “Do these types of items
exist in sufficient number to measure important abilities
adequately?”

At first glance, it might have appeared that the
requirement for item discriminatory powers of .8 or greater
was unreasonably high given the usual test item because an
item discriminatory power of .8 corresponds to a biserial
correlation of .62 between the item and latent ability. In
the experience of most psychometricians this would seem
an impossible specification to meet, because the usual
item-test biserial correlations tend to be much lower than
this specified value. However, the impossibility exists only
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if the attenuating effects of guessing on conventional
indicants of item discriminatory power are not fully
understood. These effects mask the true discriminatory
power of multiple-choice items to a marked degree, and
they are still largely unappreciated.

In order to illustrate these effects, equations were
derived for the point-biserial (Urry, 19742) and the biserial
(Urry, 1975) correlations between multiple-choice items
and latent ability. The equation for the point-biserial
correlation was derived as

(A-¢)prg 0 (vp)

VP 0/

Py =

(Urry, 19744, eq. 15); (1)
and the derivation of the biserial correlation resulted in

(I-¢c) e 9 (v

o ()

Pry =

(Urry, 1975,eq.6).(2)

In these equations, a prime was used to indicate that the
given term was affected by guessing. Definitions were as
follows:
¢;  the item coefficient of guessing, is the lower
asymptote of the regression of the binary item
on latent ability;
Prg is the biserial correlation, unaffected by
guessing, between the binary item and latent
ability;

v;  is the baseline value of the item distribution
N(0,1) above which the probability of (or
proportion) knowing the correct response
occurs;

¢(y;) is the height of the ordinate at 07F

P{ is the probability of (or proportion) passing a

multiple-choice item;
or 1- P/, is the probability of (or proportion)
missing a multiple-choice item;

o;



v;  is the baseline value on the distribution N(0,1)
above which the probability of (or proportion)
passing, viz. P}, occurs:
¢(v}) is the height of the ordinate at v,
The difference between the probability of (or proportion}
knowing the correct response to an item, viz.,
1 o -2

= — f exp
vV 2m y; 2

dt, (3)

and the probability of (or proportion) passing a
multiple-choice item, viz.,

Pl =c;+(1-¢c)P;,

1

G

is to be duly noted. As a consequence, it is known that v; is
equal to v/ only when c; is zero. When guessing is effective
(or, synonomously, c; is not zero), neither v; and v/ nor
¢(y;) and ¢(y';) are equal. Further, when guessing is
effective, 7/, as a baseline value, is unlike 7; which divides
the item distribution meaningfully on the basis of success
on the item. Notice that for ¢; equal to zero, equation (2)
indicates the equality of pp and pgy. Otherwise the
distinction between these two coefficients is to be kept
clearly in mind. Since item discriminatory power is defined
by the normal ogive model as

_ P

\/1 - p123 ’
it is totally inappropriate to substitute estimates of 91’6 for
pre in equation (5) to estimate a;. When guessing is
effective or when the items are of a multiple-choice variety,
this procedural error adversely affects computerized
adaptive testing.

The derived equations for the point-biserial and biserial
correlations were used to illustrate the attenuating effects
of guessing on these conventional indicants of item
discriminatory power. In the procedure, the item
coefficient of guessing is usually set at some meaningful
value, say, the reciprocal of the number of alternatives for a
multiple-choice question; and for this fixed value of ¢;, the
equations are evaluated to map the levels of 4; and b; onto
the planes defined by the coordinates, the point-biserial
correlation and the p-value, or the biserial correlation and
the p-value. In Figure 1, the levels of a, viz., .8, 1.0, 1.2,
14,1.6,2.0,and 3.0, and the levels of b, viz.,2.0,1.6, ...,
-2.00, have been mapped onto the plane defined by the
population point-biserial correlation and the population
proportion passing or p-value for ¢ equal to .20. When c is
fixed at .20, the effectiveness of guessing is roughly

(%)
q;

98

equivalent to the level typical of 5-alternative items. Since
the biserial correlation. (unaffected by guessing) between
the item and latent ability is defined as

a; (6)

1+a;

Prg =

in the normal ogive model, the levels of a portrayed in
Figure 1, viz., .8,1.0,1.2,14,1.6,2.0 and 3.0, correspond
to item ability biserials of .62, .71, .77, .81, .85, .89, and
95. Notice then the apparent paradox. For example, an
item which has an item-test point-biserial correlation of .11
with a p-value of 22 is indicated to have an item
discriminatory power, @;, of 3.00 or a P, of .95. The
astonishing paradox is due to the attenuating effect of
guessing. In Figure 2, identical levels of 4 and b have been
mapped onto the plane defined by the population biserial
correlation and the population proportion passing or
p-value, again, for ¢ fixed at .20. While the attenuating
effect is less pronounced for the biserial correlation relative
to the point-biserial correlation, it is most severe for
difficult items. For example, a five-alternative multiple-
choice item with an item-test biserial correlation of .17 and
a p-value of .22 is indicative of an item discriminatory
power of 3.0 or an item-ability biserial of .95 and an item
difficulty of 2.00. What would happen if the procedural
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Figure 1. Relationship between conventional and normal ogive item
parameters when the coefficient of guessing (c¢) equals
.20.
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Figure 2. Relationship between conventional and normal ogive item
parameters when the coefficient of guessing (c) equals
.20.

error alluded to earlier were committed in connection with
this interesting case? It will be recalled that the error
involved the misuse of py, in equation (5). In this
instance, a; would have been erroneously estimated as .17
when the true value was 3.00. Obviously, gross errors of
this nature render computerized adaptive testing less
efficient than it should normally be. If the data point
defined by the item-test point-biserial or biserial correlation
and the p-value is plotted on one of these maps or charts,
the corresponding values of @; and b; for the given item can
be interpolated from the grid system that identifies the
various levels of g; and b;. For reliable total tests' and large
samples, the interpolated values of a; and b; approximate
the true parameters and allow the researcher (1) to identify
items appropriate for the purpose of computerized adaptive
testing and (2) to assess the efficacy of a given set of
appropriate items for the purpose of computerized adaptive
testing by comparing the obtained interpolated values with
the specifications for item bank effectiveness. When the
specifications are met, improved reliability per item used is
assured for computerized adaptive tests relative to
conventional tests. However, the number of items required
in computerized adaptive testing relative to conventional
testing can be markedly reduced when the a; appreciably

1 As total test reliability decreases, the approximations for the
parameters a; systematically underestimate the true values of a;.
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exceed the minimum value of .80, the b; are widely and
evenly distributed, and the c; are maintained at low values.

Experience has shown (Jensema, 1972; Urry, 1974b)
that roughly one-third of the items in the usual aptitude or
ability test survive this screening for appropriateness.
Moreover, item discriminatory powers have been frequently
found to exceed 2.0 in value. .

After it was ascertained that sets of items could be
found that would satisfy the specifications for effective
item banks, there remained the important question, “Can
estimates of the item parameters be obtained that are
sufficiently reliable to be wused successfully in a
computerized adaptive testing algorithm?” In answer to this
question, a relatively rapid and inexpensive item-analytic
procedure was developed (Urry, in press—a). It has been

“programmed and is currently available for use on several

computers. The output of the program is an item analysis
yielding ancillary estimates for g;, item discriminatory
power; b;, item difficulty; and ¢;, item coefficient of
guessing.

Estimates of the parameters a;, b;, and ¢; are obtained by
an iterative minimum x-square procedure. The procedure
consists of two stages that differ only with respect to the
particular measure used for manifest ability. In the first
stage, the distribution of manifest ability is represented by
corrected raw scores where the item being parameterized is
omitted from the scoring. In the second stage, the
distribution of manifest ability is represented by Bayesian
modal estimates of ability (Samejima, 1969). Generally,
Bayesian modal estimates of ability more closely
approximate the distribution of latent ability than does the
distribution of corrected raw scores. Therefore, the second
stage constitutes a refinement on the first stage. In both
stages the procedure iterates item by item through values of
¢; to obtain pairs of @; and b; consistent with large sample
estimates of the item-manifest ability point-biserial
correlation and the item p-value. This allows the generation
of various item characteristic curves (ICC’s). The ICC’s are
then compared with the regression of the binary item on
manifest ability. The ICC that best fits this regression, as
indicated by the minimum x-square, is given by the set of
approximations — %, 'b;, and 7. The approximations are
then corrected for characteristics of the particular sample
of items being parameterized to obtain “ancillary
estimates” — 71\,-,7},~, and ’c\, Ancillary estimation as a generic
method was developed by Fisher (1950). The ancillary
corrections improve the efficiency of the estimates.

The procedure has been evaluated through model
sampling and simulation techniques. In particular, two
parameterization samples, one of 2,000 and one of 3,000
cases, were generated from the logistic model using
specified, and hence known, item parameters. The data
were then analyzed by the procedure, and the resulting
estimates were compared to the known parameters for each



of the samples. Specifically, root mean square errors
(RMSE’s), ie.
m m R
z G- a>m™t " (b= b m~' ¢ " and
i=1 i=1
m )
= G-e)Pm™ g ”

, were obtained. These measures of

deviation are given in Table 1 for the two parameterization
samples and stages. Notice that the particular RMSE
indicated by a given equation tends to decrease with stages.
This is an indication of improved efficiency
due to ancillary corrections. For the final stage ancillary
estimates, these deviation measures were .242, .123 and
.056 for the 2000 case sample, and .228, .148, and .056 for
the 3000 case sample. For 100-item parameterization tests,
these data indicated that 2,000 cases were sufficient for the
effective use of the procedure. Correlations were also
computed between the estimates and the known para-
meters, ie., kpy,, Mgy, and rp.. These correlations are
provided in Table 2 for the two parameterization samples
and stages. Notice that there is a tendency for each
correlation to increase with stages as predicted given that

the ancillary corrections improve efficiency of estimation.
For the final stage ancillary estimates, the correlations were
915, 996, and .764 for the 2,000 case sample, and 918,
997, and .760 for the 3,000 case sample. Since the ranges
of the @; and ¢; were somewhat restricted, these correlations
are very respectable. The results of these comparisons
between the estimates and the known parameters indicated
the merit of the item-analytic procedure.

The ancillary estimation procedure was further evaluated
using simulation techniques. In particular, testing was
conducted using a Bayesian algorithm developed by Owen
(1969). Samples of 100 cases each were generated for
computerized adaptive testing using 100 items with known
item parameters. In the generation process, values of 8, the
ability parameter, are sampled randomly from N(0,1) and
are also known. As a result, estimates of the ability
obtained under computerized adaptive testing could be
correlated with known ability. Comparisons of correlations,
rgp, were made across three conditions of computerized
adaptive testing where (1) the known item parameters, (2)
the ancillary estimates of the item parameters based on the
2,000 case sample, and (3) the ancillary estimates of item
parameters based on the 3,000 case sample were used in the
algorithm. The appropriateness of the use of the ancillary
estimates could be evaluated, therefore, by comparing the
results obtained for the last two conditions with those

TABLE 1

Root Mean Square Errors for Estimates by Parameterization
Samples and Stages

Sample Size Parameterization Stage

Root Mean Square Error

1

m
z
i=
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i
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l_aigzm—1>l/z <

m
z
i=1

A
¢

'™

{ _ci}zm-l)‘/z
1

{3i_bi}zm-x>‘/z ( m
i-

2000 Corrected Raw Score:
Approximation .309 181 077
Ancillary Estimate 283 120 067
Bayesian Modal:
Approximation 269 150 061
Ancillary Estimate 242 123 056
3000 Corrected Raw Score:
Approximation .308 .139 .081
Ancillary Estimate 253 135 .073
Bayesian Modal:
Approximation 252 .109 .059
Ancillary Estimate 228 .148 .056
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TABLE 2

Correlations Between Estimates and Known
Parameters by Parameterization Samples

and Stages
Sample Size Parameterization Stage Correlation
T4a "Bb ree
2000 Corrected Raw Score:
Approximation .876 996 651
Ancillary Estimate 873 996 .668
Bayesian Modal:
Approximation 909 996 754
Ancillary Estimate 915 996 764
3000 Corrected Raw Score:
Approximation .884 996 611
Ancillary Estimate 895 996 616
Bayesian Modal:
Approximation 914 997 752
Ancillary Estimate 918 997 .760

obtained for the first. In Table 3, the results are
summarized for each of the conditions of testing.

Further explanation, however, is in order before
proceeding to an interpretation of these results. When
compared with conventional testing procedures, comput-
erized adaptive testing can lead to a substantial reduction in
the number of items required to obtain a given degree of

TABLE 3

Validity Coefficients (ré‘te

Items (7) Required to

validity. Therefore, the concern was not only with the
validity obtained but also with the economy in items
observed in obtaining the given validity. Control over the
validity of computerized adaptive testing is direct. When an
individual is being evaluated, the standard error of the
estimate of ability is available at any stage in the sequence.
Validity, over individuals, is controlled by terminating the

), and Average Number of

t Tailored Testing to
Various Termination Rules Where the Item
Parameters Were Known or Estimated

Termination Rules

Item Parameters Estimated in

a Sample of:

# O LT Pdo

Parameters Known 2,000 Cases 3,000 Cases

"§g i "§o n T§6 d
1 .5477 .70 .84 .84 2.7 .83 2.0 .84 2.3
2 .5000 5 .87 .85 3.2 .86 2.7 .86 2.6
3 4472 .80 .89 .89 3.9 .89 34 .88 3.2
4 .3873 .85 92 91 4.7 .90 4.0 90 4.0
5 .3162 .90 95 94 6.6 .92 5.4 93 5.6
6 .2828 92 96 96 8.2 .94 6.7 93 7.1
7 .2449 .94 97 .96 10.8 95 9.1 94 9.6
8 2236 95 97 96 13.3 .95 111 95 11.9
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individual sequences at a common value for the standard
error of the estimate of ability. In the study, eight such
termination rules were designated. These rules are identified
in columns 1 and 2 of Table 3 and specify that the standard
error of the estimate of ability, o, was equal to or less than
(1) 5477, (2) .5000, (3) 4472 (4) .3873, (5) .3162, (6)
2828, (7) 2449 and (8) .2236, respectively, over all
individuals. Given o, for any termination rule, synonomous
rules may be generated through

Phe =1~ 0F N

and

Pge =1~ 0% (8)

for the expected rcliability and validity, respectively. These
synonomous rules are given in column 3 and 4. The
validities of column 4 may then be compared with obtained
validities. Eight estimates of ability satisfying these rules
were obtained for all cases. Obtained validities were
indexed by the correlations between known ability and
estimated ability rpy, for specified termination rules as
appropriate to the testing condition. As the termination
rule becomes more stringent, the obtained validities given in
columns 5, 7, and 9 increase and compare very closely with
expected validities given in column 4. Additionally, the
average numbers of items required, the 7, given in columns
6, 8, and 10 also increase as the termination rule becomes
more stringent. Notice that the # at each termination rule
differ only slightly across testing conditions. Since the
results were almost identical across testing conditions, the
item-analytic procedure appeared very appropriate in
computerized adaptive testing applications. Consequently,
ancillary estimates of the item parameters based on more
than 2,000 cases and 100 items were strongly recom-
mended for use in computerized adaptive testing.

Further research in evaluating the item-analytic pro-
cedure has been accomplished for varying numbers of cases
and items (Gugel et. al., 1975), and more detailed
recommedations regarding the use of the procedure will be
given later in the conference.

As it turned out, the last significant question, ““Is there
an efficient and accurate adaptive algorithm for comput-
erized testing?” could have been answered in the
affirmative as early as 1969. The important event was the
publication of an Educational Testing Service research
bulletin, “A Bayesian Approach to Tailored Testing”, by
Roger J. Owen. Subsequent research (Urry, 1971, 1974b, in
pressa; Jensema, 1972, 1974, 1975) has shown the
efficiency and accuracy of the algorithm. For example, it is
possible to construct some 2,000 computerized adaptive
tests in some 17 minutes of central processor unit time, and
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the precision of measurement can be accurately controlled
with termination rules.

In summary, we now find that: (1) the specifications for
effective item banks have been developed, (2) these
specifications can be met for a number of significant
abilities, (3) efficient procedures exist for the reliable
estimation of parameters, and (4) an efficient computerized
adaptive testing algorithm is available to conduct the actual
testing. All the necessary prerequisites for the success of
computerized adaptive testing are therefore now in
evidence. At this juncture, the feasibility of computerized
adaptive testing can be realistically assessed, and this
realistic assessment is decidedly and resoundingly affirma-
tive in nature. At present, computerized adaptive testing
appears to have a future without parallel in the literature of
psychological measurement.
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EFFECTIVENESS OF THE ANCILLARY ESTIMATION

PROCEDURE '

JOHN F. GUGEL, FRANK L. SCHMIDT, AND VERN W. URRY

Urry (1974a) has presented a graphic method to
provide approximations for the item parameters of the
normal ogive and Birnbaum logistic three-parameter latent
trait models. This method has since been further developed
(Urry, 1975) to provide a more accurate computational
procedure for estimating the three parameters, ¢; (item
discriminatory power), b; (item difficulty), and ¢; (item
coefficient of guessing). Programmed for the computer, this
technique produces parameter estimates quickly and
inexpensively.

Initial studies of this procedure employed large sample
sizes (NV=2000 and 3000 cases) and a relatively large
number of items (#=100). Under these conditions, the
procedure produces very accurate parameter estimates
(Urry, 1975). We are now in a position to examine the
effects of reduced numbers of cases and items on error in
the parameter estimates and on the accuracy of tailored
testing using those estimates. It is known a priori, of course,
that reduction in either the number of cases or the number
of items will, other things being constant, tend to increase
estimation errors. But it is not known at present how large
or practically significant such increases would be. The
present study, exploratory in nature, is addressed to these
questions.

METHOD

Based on suggestions by Lord (1968, p. 1016) and the
results of the previous study by Urry (1975), it was decided
to allow the number of items to vary from 50 to 100 and
the number of cases to range from 500 to 2000. The initial
100-item bank, from which the smaller banks were later
selected, was characterized by a; values ranging uniformly
from .80 to 2.20, b; values distributed uniformly from-1.9
to +1.9, and ¢; values from .02 to .24, also uniform in
distribution. These parameter values are not different from
what one might reasonably expect to find empirically given
prescreening of items (Urry, 1974a; Jensema, 1972). In the
reduced item samples, the a; values were chosen in equal
steps from .80 to 2.20. For example, there were five levels
of @; for the 50-item test and ten for the 100-item test. Ten
values of b; in equal steps between -1.9 and 1.9, inclusive,

!Computer processing for this study was done at the University of
Maryland Computer Science Center in conjunction with graduate
work by John Gugel. Arrangements for computer time were made
by Professor Charles Johnson of the Department of Measurement
and Statistics, College of Education, University of Maryland.
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were arranged within each level of a;. (an exception was the
55-item test, which had eleven values of b; in equal steps
between -1.9 and 1.9, inclusive, within each of its a;
values.) For different levels of g;, items were matched on b;
values. The ¢; values ranged from .02 to .24 in equal steps,
irrespective of a; and b;. Values of 0, representing simulated
subjects, were sampled randomly from MN(0,1). Then for
each 6, the simulation procedure described by Urry (1975
was used to generate a vector of responses (1 = correct; 0 =
incorrect) for the item bank in question using the known
item parameters. Parameter estimation was then carried out
using this simulated data.

Two indices were used to evaluate the parameter
estimates relative to the known parameters. First, the root
mean square error (RMSE) was computed for the estimated
parameters. The formula for this statistic, is;

€y

n
RMSE = 2<(p - ﬁ)2> %
1 n

where the p = known values of g;, b;, ¢;, or pyy, and
n =number of items involved in the particular
analyses.
Second, Pearson correlations between the known and
estimated parameters were computed, i.e., Top-

To illustrate the effects of error in the parameter
estimates on the accuracy of tailored testing, Owen’s
(1968) algorithm was employed. Specifically, tailored
testing was carried out on 100 simulated subjects using first
the known item parameters and then item parameter
estimates obtained on 1000 cases and 60 items. To increase
the number of items used in tailored testing to a more
realistic level, another identical set of 60 items was
parameterized on a separate, independent group of 1000
simulated subjects, and these “items” were combined with
the original 60 to produce a bank with 120 items. In the
case of the known parameters, both 60-item sets were
entered into the tailored testing bank. The known
parameters in this bank were used to generate the response
vectors of the 100 simulated subjects, and these vectors in
turn, were used in the tailored testing. Correlations between
estimated and actual 6 were computed at each of eight
termination rules for each condition of testing. This
allowed a comparison of correlations across the conditions
of testing, i.e., where (1) known or (2) estimated item
parameters were used in the tailoring process.



RESULTS AND DISCUSSION

Results produced by the parameterization procedure for
varying combinations of sample size and number of items
are shown in Tables 1 and 2. In both tables, “Raw Score
Estimates” refer to the parameter estimates prior to
application of the ancillary correction procedure, and the
columns headed “Final Estimates” refer to estimates after
application of the corrections. Table 1 includes the S.E. for
prg» the correlation between the continuum underlying the
item and 9, as well as for a;, b;, and ¢;. “Lost items” are
those for which the estimation procedure did not converge

because of insufficient cases in the tails of the distribution.

Looking at the S.E.’s for the final estimates in Table 1, it
can be seen that, in general, decreasing both sample size and
number of items results in increased RMSE’s. This effect
appears to be more pronounced for g; than for the other
parameters. Moving from 50 to 60 items (sample size
constant) appears to produce marked reductions in error
for a;, but beyond this, improvements in accuracy with
increases in number of items are smaller. The b; and c; were
estimated rather accurately throughout the range of both
independent variables, although variation in sample size
and number of items did have the expected effect. The last
column in Table 1 reveals a tendency for items to begin to
fail to converge during parameter estimation when sample

size is dropped as low as 500. Sample size appears more
crucial in this respect than number of items. Correlations
between final parameter estimates and actual parameters,
shown in Table 2, also pattern themselves as expected,
within the limits of sampling error. In examining these
correlations, one should bear in mind that in the case of
d; and to a lesser extent C}, restriction in range is operating
to lower the tabled values. The items parameterized
contained no values of @; lower than .80. This value of g;
corresponds to a biserial correlation of .62 between the
item and latent ability. Past studies (Jensema, 1972; Urry,
1974b) have shown that only about one third of the
items in conventional tests have q; values this large. No ¢;
greater than .24 were included; in practice ¢; does exceed
.24, although the range restriction here is probably less
severe than in the case of a;.

Results of simulated tailored testing using known
parameters and parameters estimated on a sample of 1000
with 60 items are shown in Table 3. The eight termination
rules, expressed as the standard error of estimate (o) are
seen in column 2. Column 3 translates these values to
reliability coefficients for 8, based on the relationship

2 _
PGe =1~ 0g? )

TABLE 1

Root Mean Square Errors (RMSE)
Before and After all Corrections

Raw Score Estimates

Final Estimates

RMSE

Items Cases a; b; ¢
50 2000 283 124 .086
50 1000 292 193 097
50 500 370 .164 097
55 2000 .385 195 091
55 1000 352 194 101
55 500 281 185 .098
60 2000 321 204 .091
60 1000 .343 231 .089
60 500 .360 .194 .080
70 2000 272 131 .095
70 1000 324 189 .095
70 500 .386 197 .096
80 2000 266 141 .092
80 1000 259 178 .092
80 500 319 224 091
90 2000 297 .180 .094
90 1000 341 171 .089
90 500 316 .184 .094
100 2000 290 138 .085
100 1000 286 137 .088
354 .189 .100

100 500

RMSE Lost
Pro a; b, < prg Items
.043 .395 137 .064 .053 0
.053 326 209 .078 .059 1
067 472 259 077 064 0
.061 .308 150 .057 053 0
050 315 .124 071 050 0
054 403 227 .086 .065 4
056 253 .140 065 .040 0
.059 322 144 .062 044 0
.070 342 179 .068 062 0
041 225 .166 067 040 1
.054 273 174 .074 045 1
.072 .351 187 .083 .058 4
046 214 150 072 .039 1
.048 261 .166 .073 047 1
.063 311 229 079 .048 6
049 244 .149 .069 036 0
051 .304 140 072 044 0
056 283 .144 .086 .049 2
049 223 131 .056 .036 0
.052 240 162 .062 039 0
061 276 .161 .083 .047 5
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TABLE 2

Correlations—Known Parameters vs. Estimated Parameters
Before and After All Corrections

Items Cases
50 2000
50 1000
50 500
55 2000
55 1000
55 500
60 2000
60 1000
60 500
70 2000
70 1000
70 500
80 2000
80 1000
80 500
90 2000
90 1000
90 500
100 2000
100 1000
100 500

Raw Score Estimates

Yad

.846
.888
745

731
158
.850

828
71
.768

834
813
715

873
850
.839

861
751
.804

837
.843
741

Final Estimates

*bb Teé T bb Teé
999 599 849 997 636
992 429 .908 990 492
993 428 780 989 454
995 488 891 995 646
995 428 870 995 546
992 .387 824 990 .376
996 491 .899 997 630
994 546 .842 995 588
994 .626 .801 995 668
997 471 922 997 632
996 468 828 .996 521
993 464 813 995 449
.996 535 914 997 574
.994 465 879 993 550
991 410 .823 989 502
996 483 871 996 568
995 518 .847 995 547
995 447 874 993 418
997 539 877 .998 690
996 470 863 .996 627
993 344 .824 994 420

The square root of this value is Pho > the correlation
between the latent ability estimates (f) and actual latent
ability (8). Validity coefficients of this sort are given in
columns 4, 5, and 7. Those in column 4 are theoretical
validities based solely on the termination rule chosen,
Those in column 5 were obtained by correlating the

produced using the known item parameters with known 8.
As expected they are essentially identical to the predicted
theoretical validities. Those in column 7 were obtained by
correlating the 8 produced using the parameter estimates
with the known 8. As expected, they are somewhat lower
than those in columns 4 and 5, but it can be noted that, as

TABLE 3

Validity Coefficients (rg4), and Average Number of Items (77) Required for
Tailored Testing to Various Termination Rules Where the Item
Parameters Were Known or Estimated

n 2) ) (C))
Termination Rules
# O¢ Pée LT
1 .54717 .70 .84
2 5000 5 .87
3 4472 .80 .89
4 .3873 .85 .92
5 3162 .90 95
6 .2828 .92 .96
7 .2449 .94 97
8 2236 .95 .97

(%) (6)

(7 (8)
Parameters Known Parameters Estimated

6o n "go n
864 2.43 792 2.26
904 331 821 2.89
932 4.00 821 2.89
935 491 864 3.70
955 17.03 895 5.30
962 877 921 657
969 1177 942 891
975 1451 952 1112
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the termination rule becomes more stringent, the
discrepancy decreases. At the most stringent termination
rule, the validity of the 6 derived using the parameter
estimates is only .023 lower than that based on the known
parameters. The reliabilities of the two @’s at this termina-
tion rule are .95 and .91, respectively.

Why are the termination rules not fully attained when
the parameter estimates are used? The tailoring algorithm
capitalizes on errors in the parameter estimates. As a
consequence, tailored testing using the estimated para-
meters terminates prior to actually reaching the pre-set
termination rule. That is, because of capitalization on error
in parameter estimates during the process of item selection,
the reliability levels implied by the Owen algorithm at
any stage during the tailoring process are somewhat
inflated. This leads to a too early termination of tailored
testing, and, when the obtained 0 are correlated with 6, it
becomes evident that the pre-set reliability level for
termination has not been met. In the present example, an
average of 14.51 items was administered when the known
parameters were used but only 11.12 when the parameter
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estimates were used. This shrinkage problem can be
overcome by setting the reliability termination rule higher
than that actually required. In our present example, the
termination rule should be set at .95 in order to obtain 6 of
reliability .91.
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ITEM PARAMETERIZATION PROCEDURES FOR THE FUTURE

Failure to appreciate the important psychometric role
played by guessing in conventional multiple choice tests
prevented until recently practical application of latent trait
theory to tailored testing. When this problem was properly
addressed, it was found that the solution could be
expanded to produce an inexpensive and highly accurate
item parameterization procedure. Combined with Owen’s
(1969) elegant Bayesian algorithm and available CRT
hardware, these developments made computer-assisted
tailored testing feasible from a practical point of view.

The capacity to parameterize new items for possible
later inclusion in the item bank during routine operation of
the computer-assisted testing system would be a significant
step in the direction of even greater practicality (Killcross,
1974). Such a procedure would eliminate the necessity for
periodic application of the full parameterization process
described by Urry (1975a; 1975b). The Urry ancillary
estimation procedure can be modified to provide the
capability to parameterize items in the environment of
a live, large-scale, computer-interactive tailored testing
system or network. It can thus provide a convenient
technology for updating and expanding item banks in
ongoing tailored testing systems.

The parameterization procedure is as follows: In addi-
tion to the items that are part of his tailored test, each
examinee receives a group of additional experimental items.
On-line ancillary parameterization can begin for any of
ihese items as soon as a sufficient number of examinees
have responded to it. For each item,j;,-g is computed
against the uniformly reliable Bayesian 6 from the Owen
algorithm. (Notice that the item does not enter in any way
into the determination of 6.) E’l-' is estimated in the usual
way using sample data. The 6 are next grouped into &
intervals. Provisional values for é,- are assumed, and the
minimum x2 procedure is applied to obtain approximations
of a;, b; and c;. These procedures have been outlined in
Urry (1975b) and are described in full in Urry (19754).

The purpose of this study was to evaluate the on-line
ancillary parameterization process using model sampling
and simulation techniques. The one hundred items to be
parameterized were those used in the earlier Gugel study,
and are shown in Table 1. (In practice, a much smaller
number of items would typically be parameterized, but for
evaluation purposes a larger number is desirable.)
Dependent variables in this study were also the same as
those in Gugel’s study: correlations between known and
estimated parameters and the square root of mean squared
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deviations of estimated from known parameters. Inde-
pendent variables are illustrated in Figure 1. Two different
banks were used in tailored testing to produce the Owen 6,
designated as the Verbal Ability Bank and the Ideal Bank.
The Verbal Ability Bank of this study consists of the 103
most frequently used items (based on counts from previous
simulation studies) from the Commission’s 200-item Verbal
Ability Bank. The Commission’s bank in turn, is made of
the best 200 items out of 700 verbal ability items calibrated
by Urry (1974). Calibration was carried out on large
samples and the final 200 items were chosen to provide a
wide distribution of b; values, high g; values, and low
(below .30) c¢; values. The 103 itern bank used here thus
represents a currently attained—though improvable—level of
quality. The Ideal Bank is the same 100 items being
parameterized (See Table 1). Three different termination
rules were examined for the Ideal Bank; for the Verbal
Ability Bank, the most stringent rule (.95) was omitted as
impractical. Sample sizes of 1000, 1500, and 2000 were
examined. Simulated subjects (8’s) were sampled and their
response vectors generated as in the Gugel study. (This
procedure is described in full in Urry {19744a]).

RESULTS AND DISCUSSION

The obtained standard errors for the Ideal and Verbal
Ability banks are shown in Tables 2 and 4, respectively.
Tables 3 and 5 present the correlations between actual and
estimated item parameters. In most cases, changes
associated with variation in the independent variables were
in the hypothesized direction. Increasing the number of
subjects and the reliabilities required for termination of
tailored testing usually resulted in lower standard errors and
higher correlations between known and estimated para-
meters. Some deviation from this pattern occurred because
of sampling error. (For each bank, a different sample of
simulated subjects was used for each termination rule and
sample size examined.) The same is true of the ancillary
corrections: the effect was generally to decrease standard
errors and increase correlations, but because of sampling
error this was not always the case.

In examining the correlations between known and
estimated parameters, one should bear in mind that in the
case of é‘i, and to a lesser extent 6,-, restriction in range is
operating to lower the tabled values. The items
parameterized (See Table 2) contained no values of a; lower
than .80. This value of a4; corresponds to a biserial



TABLE 1

True Parameters of the 100 Items Parameterized
Via the On-Line Procedure

Item Parameters
fi) a; b; i
1 80 -1.90 03
2 80 -1.70 06
3 80 -1.50 09
4 80 -1.30 12
5 80 -1.10 15
6 80 -.90 18
7 80 -70 21
8 80 -.50 24
9 80 =30 27
10 80 -10 03
11 80 .10 06
12 80 30 09
13 80 .50 12
14 80 .70 15
15 80 90 18
16 80 1.10 21
17 80 1.30 24
18 80 1.50 27
19 80 1.70 03
20 80 1.90 06
21 1.20 -1.90 09
22 1.20 -1.70 12
23 1.20 -1.50 15
24 1.20 -1.30 18
25 1.20 -1.10 21
26 1.20 -.90 24
27 1.20 =70 27
28 1.20 -.50 03
29 1.20 -.30 06
30 1.20 -10 09
31 1.20 10 12
32 1.20 30 15
33 1.20 50 18
34 1.20 70 21
35 1.20 90 24
36 1.20 1.10 27
37 1.20 1.30 28
38 1.20 1.50 06
39 1.20 1.70 09
40 1.20 1.90 12
41 1.60 -1.90 15
42 1.60 -1.70 18
43 1.60 -1.50 21
44 1.60 -1.30 .24
45 1.60 -1.10 27
46 1.60 -.90 .03
47 1.60 =70 .06
48 1.60 -.50 09
49 1.60 -.30 12
50 1.60 -.10 15

Item Parameters
(i) a; b; c;
51 1.60 10 18
52 1.60 .30 21
53 1.60 50 24
54 1.60 70 27
55 1.60 90 .03
56 1.60 1.10 .06
57 1.60 1.30 .09
58 1.60 1.50 12
59 1.60 1.70 .15
60 1.60 1.90 .18
61 2.00 -1.90 21
62 2.00 -1.70 .24
63 2.00 -1.50 27
64 2.00 -1.30 .03
65 2.00 -1.10 .06
66 2.00 -90 .09
67 2.00 =70 12
68 2.00 -50 15
69 2.00 =30 18
70 2.00 -10 21
71 2.00 .10 24
72 2.00 .30 27
73 2.00 50 .03
74 2.00 .70 .06
75 2.00 90 .09
76 2.00 1.10 12
77 2.00 1.30 15
78 2.00 1.50 .18
79 2.00 1.70 21
80 2.00 1.90 24
81 2.40 -1.90 27
82 240 -1.70 .03
83 2.40 -1.50 .06
84 2.40 -1.30 .09
85 240 -1.10 12
86 240 -.90 .15
87 2.40 -.70 .18
88 240 -.50 21
89 2.40 -.30 24
90 240 -.10 27
91 240 10 .03
92 2.40 .30 .06
93 240 S50 .09
94 2.40 .70 12
95 2.40 90 .15
96 2.40 1.10 .18
97 2.40 1.30 21
98 2.40 1.50 24
99 2.40 1.70 27

100 2.40 1.90 .03

correlation of .62 between the item and latent ability. Past
studies (Jensema, 1972; Urry, 1974) have shown that only
about one-third of the items in conventional tests have a;
values this large. No ¢; greater than .27 were included; in
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practice ¢; does exceed .27, although the range restriction
here is probably not as great as in the case of 4;.

The rather high a; values among the items parameterized
must be considered also in evaluating the root mean square



ITEM BANKS
Cut-
offs* IDEAL BANK VERBAL ABILITY BANK
S 91
1000 93
U
.95
B
91
y 1500 .93
.95
E
91
C
2000 .93
T 95
S

*Reliability values for termination rules.

Figure 1. Experimental Design: Independent Variables

errors for g;. Errors in @; are much larger for high a; than
low g;, since when a; is high, small errors in p;, lead to large
errors in @;. For example, if p;5 = .90, aj = 2.01. If 57y =
.88, a; = 1.85, a difference of .16. Butif 5;, = .50, a; = .58,
Then if pyy = .48, a; = .55, a difference of only .03.

The real test of the usefulness of the on-line parameteri-
zation process lies in the performance of the parameter
estimates in tailored testing. The better the estimates, the
closer they will come to equaling the performance of the
known parameters. The parameter estimates obtained in
this study have not yet been used in simulated tailored
testing, but an idea of how well they would perform can be
obtained by examining the performance of parameter
estimates from Gugel et al. (1975) with roughly equivalent
errors. Table 6 compares root mean square errors and
correlations between known and estimated parameters from
the present study for the Verbal Ability Bank with 2000
cases and reliability cut-off of .93 with the results obtained
by Gugel et al. (1975) using 1000 cases and 60 items with
the full parameterization process. Except for the standard
error of b (which is lower) and r;, (which is also lower), his
results are essentially equivalent. Using a reliability cut-off
of .95, Gugel et al. conducted simulated tailored testing
using both the known and the estimated parameters.
Known parameters produced rz, = .9752, exactly corre-
sponding to the termination rule (ie., [.9752]% = .95).
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With the parameter estimates, 5, was .9516, corresponding
to an obtained reliability of .9044.

Because the tailoring algorithm capitalizes on chance
errors in the parameter estimates, tailored testing using the
estimated parameters is terminated prior to actually
reaching the pre-set termination rule. That is, because of
capitalization on error in parameter estimates during the
process of item selection, the reliability levels computed by
the Owen algorithm at any stage during the tailoring
process are somewhat inflated. This leads to a too early
termination of tailored testing, and, when the obtained
0 are correlated with 8, it becomes evident that the pre-set
reliability level for termination has not been met. In the
present example, an average of 14.57 items was
administered when the known parameters were used but
only 11.12 when the parameter estimates were used. This
shrinkage problem can be overcome by sefting the
reliability termination rule higher than that actually
required. In our present example, thg termination rule
should be set at .95 in order to obtain 6 of reliability .90.
Simulation studies provide a convenient—and perhaps the
only—method of determining in advance of actual use the
amount of shrinkage to be expected when items are
parameterized on given sample sizes and with given
numbers of items. The shrinkage problem here is thus
somewhat different from that characterizing, say, multiple
regression, in that its effects can be cancelled out by
appropriate selection of termination rules. Two points,
however, should be noted here:

1. Parameterizing on large sample sizes (both numbers
of items and numbers of cases), and thus obtaining
more accurate initial parameter estimates, is prefer-
able where feasible to adjusting termination rules to
allow for shrinkage.

2. For certain tailored testing usages—for example,
battery tailoring or multivariate tailored testing—the
advantages of parameter estimates that can fully meet
pre-set termination rules become substantial. That is,
adjustment of termination rules to allow for shrink-
age becomes, at best, inconvenient and awkward.

In light of these facts, an important question is whether
or not the on-line parameterization process can produce
estimates with errors low enough to reduce shrinkage to
negligible levels. An important consideration, of coursg, is
the quality of the item bank on which the original ¢ are
derived. By parameterizing and adding to the Verbal Ability
Bank those items which were erroneously rejected earlier
on the basis of low point-biserial and biserial item-total
indices, it will probably be possible to make the Verbal
Ability Bank equivalent to the Ideal Bank used in this
study. By increasing the number of cases to 3000, or
perhaps beyond 3000, it should be possible to reduce the



Root Mean Square* For Item Parameter Estimates And
Brg Using the Ideal Bank

TABLE 2

Uncorrected Corrected
Subject Cut-offs ﬁ ﬁ ﬁ. m .‘i". b_l c_l m
91 465 226 .089 .076 .340 174 .086 .057
1000 93 480 227 .095 075 357 164 .079 .054
95 418 202 .093 .068 283 187 074 .045
91 481 .189 .086 .079 318 225 075 .051
1500 93 467 202 091 .079 290 208 067 .049
.95 445 193 .095 071 311 206 070 047
91 506 232 091 .082 267 236 .079 .044
2000 .93 477 218 .090 071 270 .198 .067 .042
95 454 209 090 .071 297 203 .066 .042
-\
*RMSE = <E(pl.—pl.) )
where p = parameters
n n = number of items
TABLE 3
Correlations Between Known and Estimated
Parameters—Ideal Bank
Uncorrected Corrected
Subject Cut-offs a; b; ¢ a; b; ¢;
91 807 995 567 .820 994 548
1000 93 780 994 495 .780 994 .540
95 876 994 504 874 995 553
91 .844 996 617 832 995 656
1500 93 861 995 593 .860 995 624
95 857 995 567 852 995 610
91 .883 995 610 .886 995 631
2000 93 892 996 602 892 996 641
95 .883 996 617 883 997 .649
TABLE 4
Root Mean Square Errors* For Item Parameter Estimates And
81 Using the Verbal Ability Bank
Uncorrected Corrected
Subject Cut-offs 2 ﬁ < Prg 9 ﬁ < 25
91 .596 259 093 103 370 261 097 055
10600 .93 599 285 .093 107 400 258 .095 .060
91 514 .208 .090 .081 .280 267 .084 .048
1500 93 554 286 .082 .098 336 267 .075 050
91 562 217 .087 096 .338 275 .076 .043
2000 .93 553 257 .086 .096 331 250 072 045

*RMSE = (E(pl.—[;l.)z

)’/z

n

where p = parameter,

n = number of items.
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TABLE 5

Correlations Between Known And Estimated
Parameters—Verbal Ability Bank

Uncorrected Corrected

Subject Cut-offs a; b; ¢ a; b; c;
91 786 993 524 780 933 550
1000 93 .821 993 510 .807 993 515
91 875 994 .565 .875 994 594
1500 93 871 993 614 .870 993 .624
91 836 996 622 .819 995 655
2000 93 .878 996 562 .879 996 591

TABLE 6
Comparison of Gugel Results with Present Study Results
Root Mean Square Errors Correlations (rit,p)

e b; ¢ Pro "da; "8, s
Gugel (1975)* 322 .140 .062 .044 .842 995 .588
Present Study** 331 250 .072 .045 879 996 591

*N = 1000, 60 items; full parameterization procedure.
**Verbal Ability Bank, N = 2000, Relaibility cut-off = .93.

root mean square errors shown in Table 2 (2000 cases, cut
off at .95) to levels comparable to those obtained by Urry
(1975) with the full parameterization process (2000 cases,
100 items). Urry’s root mean square errors were .242, 123,
and .056 for g;, b;, and ¢j, respectively. At this level of
accuracy, little shrinkage was in evidence. It should be
borne in mind that, in the case of the on-line parameteri-
zation process, the number of cases can be increased at
little or no cost. Also, as the quality of the bank is
increases, more stringent termination rules can be intro-
duced, further increasing accuracy of the on-line parameter
estimates.

A final modification of the on-line parameterization
process can be made which should further reduce estima-
tion errors. As the parameterization procedure is presently
set up, those examinees whose § do not attain the
termination rule reliability within 30 items are dropped
from the sample. Because coverage of 0 is weakest in the
Verbal Ability Bank in the low ranges, the dropped
subjects tend to be concentrated in the low end of the
distribution. This creates a paucity of information in a
range in which many c; values are determined, leading to
higher ¢; errors. Also, when the truncated dlstrlbutlon is
restandardlled the result is a displacement of the b values.
In the case of the Ideal Bank, no subjects were dropped at
the 91 and .93 termination rules. Even at the 95
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termination rule few examinees failed to reach the criterion
(10 at N = 1000, 8 at N = 1500, and 9 at N = 2000). In
the Verbal Ability Bank, no subjects were dropped at 91,
but at .93, 23 were dropped at N = 1000, 53 at N = 1500,
and 40 at V= 2000. Thus, up to 3.5% were eliminated. This
probably explains to a great extent the failure of the 93
termination rule to produce noticeably better estimates
than the 91 rule (Tables 4 and 5). Estimates would
probably be improved by retaining in the sample those
subjects who fail to reach the termination rule within 30
items. Although these @ are less reliable, they probably
provide information at low 8 which is useful for parameter-
ization purposes.
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DR. FREDERIC M. LORD
Educational Testing Service:

It is appropriate that my discussion should be expressed
in the first person singular—to continually remind you that
I am giving my own opinions, which may be biased, since 1
am not a disinterested party here. There have been many,
many important points made during these sessions. I have
chosen 14 points to emphasize in my discussion.

1. Clff (Note 1) writes: “It is felt that our formulation
will provide the framework for a test theory which is more
appropriate to the interactive case than either the classical
or traceline theories are.” I am sure he would not want this
challenge to ICC theory to go unanswered. Cliff proposes
that the appropriate model for the item responses is the
Guttman scale.

Since the Guttman scale is a special case of the more
general logistic or normal ogive item characteristic curve, 1
cannot see how the Guttman scale can be called a more
appropriate model than the logistic or normal ogive. If the
Guttman scale were the correct model, the fitted logistic or

" normal trace lines would come out in the Guttman form.

The Guttman scale assumes that the tetrachoric correla-
tion between any two items is 1.00. This value may be
approximated for certain attitude test data, but for
aptitude and achievement test data. typical tetrachoric item
intercorrelations are usually less than 0.35. This is so very
different from 1.00 that I cannot see how the Guttman
model can be considered acceptable for aptitude and
achievement tests.

2. Consider the problem of testing and assigning new
armed forces recruits. One recruit, perhaps, should take a
complete battery of tests to determine his suitability for
officer training school. The next recruit, however, should
be quickly extricated from this battery of tests and perhaps
given a battery of mechanical aptitude tests. How can we
use adaptive testing to route a new recruit through many
such batteries of tests efficiently, with a minimum waste of
time? Glenn Bryan raised this important question with me
some years ago. It seems as if adaptive testing should be an
excellent way to deal with this problem. Yet the situation is
so multidimensional that current theory does not tell us
how to proceed. Here is a very important unsolved
problem.

3. Waters has pointed out and documented something
that some of us had overlooked--that an adaptive test
should be expected to take longer to administer than a
conventional test with the same number of items. The
reason is that the conventional test contains items that are
too hard or too easy for each examinee—items that he can
answer (or omit) without need for lengthy consideration.
Studies of adaptive testing will have to take testing time
into account.
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4. There is one situation in which adaptive testing (or
some other unconventional procedure) is really indispens-
able. Suppose it is necessary to have good measurement
over an unusually wide range of ability. As a first step, one
might build a conventional type of test with extra easy
items added at one end and extra hard items at the other,
so as to have some items that are appropriate in difficulty
for each ability level. Of course, the easy items are a waste
of time for the high-level examinees, but that is not the
serious problem. The hard items are not merely a waste of
time for the low-level examinees. The guessing of low-level
examinees on the hard items adds so much noise that the
measurement provided by the easy items is nearly drowned
in random error.

In such situations, it can be shown that the test would
be much improved as a measuring instrument for low-level
examinees if we simply threw away (or refused to score)
the more difficult half or two-thirds of the test. The
situation cannot be remedied simply by adding more easy
items. If we wish to obtain good measurement at low as
well as at high ability levels, some kind of tailoring is
necessary so that hard items are not administered to
low-level examinees.

5. If total testing time is held fixed, adaptive testing
leads to better measurement for some examinees. If
accuracy of measurement is held fixed, adaptive testing
leads to reduced testing time for some examinees. These
two alternatives are not basically different.

Keeping the standard error of measurement fixed across
examinees would be simple if the test were very long or if
we knew the true parameter values, and if all items had
identical characteristic curves. Otherwise there may be
difficulty in finding a good small-sample theory and
method. Gugel and Schmidt have given empirical evidence
of this. This is a problem in sequential estimation (Wald,
1951; Robbins, 1959; Bickel & Yahav, 1968). Except
perhaps for Bayesians, methods of sequential estimation are
not as well settled as are methods of sequential hypothesis
testing. Even sequential hypothesis testing poses unsolved
problems when the items do not all have identical charac-
teristic curves.

6. It is undoubtedly significant that most of the
speakers here are using two- or three-parameter item
characteristic curve models. No one here has urged that
adaptive testing be limited to the one-parameter Rasch
model.

It is sometimes asserted that the Rasch model is the only
one that allows us to estimate examinee ability independ-
ently of the items administered. I would argue that all ICC
models allow us to do this. The unique virtue of the Rasch



model is that it provides a sufficient statistic for estimating
examinee ability. Sufficient statistics are desirable, but they
are not common in statistical work, outside of the usual
normal-curve theory. Statistical inference still proceeds very
effectively in the absence of sufficient statistics.

The objection usually cited against the Rasch model is
that it assumes all items to be of equal discriminating
power. I suspect that an even more serious objection is that
it assumes there is no guessing. Any attempt to modify the
Rasch model to take guessing into account would necessar-
ily destroy the sufficiency properties of the Rasch model
that make it attractive.

7. This brings us face to face with the question whether
to use a two- or a three-parameter ICC model. Waters used a
two-parameter normal-ogive model and the assumption that
ability is normally distributed to estimate the a parameters
(discriminating power) of the 50 verbal items in Form 2B
of SCAT II. By chance, I had available estimates of the
same parameters based on the three-parameter logistic
model, computed by a program called LOGIST (available
on request).

I have plotted Waters’” values against the LOGIST values
in Figure 1. Each point is shown as a digit representing item
difficulty. The larger the digit, the more difficult the item
and the more the examinees’ responses are affected by
guessing. Agreement is good only for the easy items where
there is no guessing.

Many studies comparing different estimation methods
should be carried out. Some should use real data; some
should use artificial data, where the true parameters are
known. I should be glad to run on LOGIST any suitable set
of data that someone here may wish to use for making such
comparisons.

8. In the three-parameter models, the 1CC’s have the
form ¢; + (1 - ¢;)F[a;(6 - b;)] . This mathematical form is
not beyond challenge, as Samejima has pointed out, but it
is relatively easy to defend as a versatile form that fits the
data, so long as we do not suggest that examinees either
know the answer to the item or else guess with probability
of success ¢;. We all know that examinees do not respond
this way. If ICC theory were based on the dichotomy,
knowledge or random guessing, it would not be credible.
For this reason, it may be best not to refer to ¢; as a
‘guessing parameter.” (I confess to violating this good
advice.)

9. When working with real answer sheets, it becomes
necessary to deal with the problem of omitted responses. If
we require the examinee to answer all items, we are
purposely introducing random error into our data. In
addition, we are forcing an examinee who has demonstrated
a certain level of performance by his responses to gamble
on some possibily random events, which may, if he is
unlucky, destroy all the positive evidence of ability that he
has displayed.

If we permit the examinee to omit items, we cannot
properly treat such responses as wrong. To do so would
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penalize the examinee who omits, in comparison to the
examinee who guesses.

It seems at first thought that we might simply treat
omitted items as if they had not been administered at all.
This cannot be correct, however. If we ignore omitted
items, an examinee could win a very high estimate of ability
simply by answering items only when he was completely
sure of his answer.

The fact that an examinee has omitted an item carries
information about his level that cannot be ignored. A
method for using this information efficiently, under certain
assumptions, is outlined in a Psychometrika paper (Lord,
1974).

10. 1 want to take this opportunity to make a correc-
tion. In a 1968 paper (Lord, 1970), 1 wrote:

If a; = 0.333, under the assumptions already made [the]
reliability for a 60-item test will be 0.80; if a; = 0.5, this
reliability will be 0.90; if @; = 1.0, this reliability will be 0.97.
In view of this, we shall choose a; = 0.5 as a typical value and
shall address most of our attention to it.

After seven years of experience with the @ parameter,
these reliabilities sound high. Actually, they are correct,
but, as the assumptions stated, they are for free response,
not multiple-choice items. Urry made this same point this
morning. Since most of the cited paper dealt with multiple-
choice items, it was a mistake to suggest ; = .50 as a typical
value. Although the diagrams presented in that paper
required the reader to supply his own values of g;, the
general impression given was one of only limited enthusi-
asm for adaptive testing.

Current results show that when a; = 0.9, a peaked test
composed of 40 five-choice items should have a KR,
reliability of .90. When ¢; is 0.9, the conclusions supplied
by the diagrams in the cited paper are quite encouraging for
the future of adaptive testing.

11. The purpose of the cited paper was to evaluate
adaptive tests in comparison to conventional tests. To do
this, the situation considered had to be a simple one. This
was the reason for the use of a fixed-step-size up-and-down
branching procedure. Such a procedure is not to be
recommended for practical testing.

When the item parameters have been estimated and a
computer is available for making the calculations, the
choice of the item to be administered next should be made
by checking all unused items (perhaps within a specified
item type) and selecting the item that is expected to give
the most information about the examinee.

If a Bayesian prior distribution of ability is being used,
and if this distribution is normal, this is Owen’s (in press)
procedure, frequently used today. In such a procedure,
except for certain approximations each step is locally
optimal. We cannot expect local optimality to produce
overall global optimality, but the difference may not be of
great importance.

12. When we select the next item to be administered on
other considerations besides item difficulty, we no longer



have an up-and-down branching procedure. The next item
administered after a correct response might be an easier
item, not a harder item.

The recommended procedure means that items with high
a; will be used very frequently and items with low a; will be
used seldom or not at all. The gain from this use of the best

items will probably more than double the gain from any
procedure, such as the up-and-down procedure, that selects
items solely on item difficulty.

Furthermore, the larger the item pool, the greater the
gain. This is not surprising. We always knew that if we

[¢9]
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Figure 1. SCAT 2B. A comparison of estimated a; parameters. The
two-parameter model assumes a normal distribution of
ability. Each item in the plot is located by a digit which
represents item difficulty (b; + 3). The easiest items are
indicated by a 0, the hardest f)y as.
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selected the best items from ten tests, we could build a
single test that would be much more reliable than any of
the original tests.

13. My last point concerns the use of Bayesian inference
in adaptive testing. When we are testing large numbers of
examinees all coming from a single source, we are in a really
exceptionally good position to obtain and use a prior
distribution describing the examinees. It would seem
negligent not to obtain and use such a readily available
prior distribution.

On the other hand, I would like to make a simple point
not often expressed. Bayesian inference based on a prior
distribution will give correct results when the prior corre-
sponds, in some sense, to reality. It is likely to give
incorrect results if the prior itself is incorrect.

In most Bayesian work, it is usually not practicable to
determine whether the prior is correct or incorrect. In our
work, on the contrary, it is fairly easy to do so. We need
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estimates will not be spoiled by an incorrect prior distribu-
tion of ability provided the test administered is long
enough.

This is not the whole story, however. The assumption of
a normal distribution of ability, if false, may lead to
unsatisfactory estimates of item parameters. The usual
formula for biserial r can give absurd results if the
continuous variable, in this case examinee ability, unknown
to the statistician, is far from normally distributed. Unlike
some other effects of Bayesian priors, this difficulty does
not diminish as sample size becomes large.

Two different estimates of the distribution of examinee
ability for one set of data are shown in Figure 2,
reproduced here from Lord (1974). The agreement between
the two estimates, obtained from very different assump-
tions, gives me some confidence in these results. My
empirical results from other sets of data (including a
representative sixth-grade group) are similar. When the
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Figure 2. Distribution of estimated 6 (histogram) and estimated
distribution of @ (curve). Reproduced from Lord (1974)
with permission of Psychometrika.

only estimate the ability of each person tested and then
look at the distribution of estimated abilities.

If we were testing unselected school children in grade
school, a normal distribution of ability might possibly be
found. When we are testing highly selected groups in college
or elsewhere, it seems unlikely that we will find a normal
distribution.

Bayesians point out that the effect of an assumed prior
becomes unimportant as the number of observations
becomes large. In our context, this means that our ability
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ability scale is chosen so that all item characteristic curves
are three-parameter normal ogives, or logistic curves, it
turns out, for my data, that ability is not normally
distributed.

14. Although I an not a market analyst, | will without
much risk venture two assertions. Computer costs—if they
have not already done so--will come down to the point
where computer-based adaptive testing is economical. When
this happens, adaptive testing will come into wide use. The



McKillip and Urry paper provides important details on this
subject.
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DR. BERT F. GREEN, JR.
Johns Hopkins University:'

Tailored testing has been talked about for many years in
academic circles. In this conference we have heard firm
plans for action. The promise of tailored testing is
becoming real. Numberless simulated examinees have taken
tailored tests and a substantial, though smaller, number of
real people have also had the experience. The use of
tailored tests will provide substantially improved efficiency
and will have a number of beneficial side effects, as
mentioned by McKillip and Weiss, among others. Testing
conditions will be more nearly standardized, the test will
hold the taker’s interest because each item will be a
challenge, possibly there will be less test anxiety, feedback
may decrease racial bias. (Weiss; Johnson, 1973)*

There will also be some harmful side effects, that we
may as well face. People will have trouble understanding
the system, and complaints will be frequent. Two people
with widely different abilities will both experience getting
about half the items rights, yet get very different scores;
one will be accepted, the other rejected. If these two people
compare notes, they may be confused. The anti-testing
forces are also for the most part anti-computer, so negative
voices will be raised. Security is at least as difficult with a
computer system as with a paper and pencil system. But
these are operational problems, and now is not the time to
worry about them. They will all be solved, somehow. I
merely list them to counter the tendency to believe that the
millenium is upon us.

Now let me make one thing perfectly clear. I am about
to criticize aspects of the work reported at this conference.
That is my job. But the one most important fact, that
outweighs all criticism, is this: The operational use of
tailored testing is a giant step forward in personnel
evaluation. Evidence indicates as much as a 2 to 1 gain in
efficiency, and possibly some very important side benefits.
I am completely convinced that this is an important step to
take. My comments are of two kinds—suggestions for
clarifying and improving the theoretical basis for this big
step, and impatience at our not yet having planned further
giant steps. These steps should be justified not in terms of
saving money, which Hansen claims, but in terms of doing a
better job.

Let us now consider some of the technical problems in a
computer-based system. We have heard two plans for item
analysis “on-the-fly”, as they say in the computer trade. A
auestion arises about some of the item analysis procedures

! This work was done with support from Grant GB37520 from
the National Science Foundation. The author is indebted to Warren
S. Torgerson for many fruitful discussions of computer applications
in testing and personnel decision.

2 Throughout, references to other papers in this conference are
by author only; other references are followed by publication year.
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(Urry; Jensema) which still seem to be built on the biserial
correlation of the item with the ability scale, and the
overall proportion of correct answers. These raw data are
reparameterized (to use an ugly word that should be
banned from civilized discourse) but the basic data are py;
and P;. Both of these indices depend on the notion of a
population of test takers. Yet one purpose of tailored
testing is to avoid the notion of population. What, for
example, is the population for Lord’s broad-range flexilevel
test of verbal ability? Everyone from fifth grade to college?

In tailored testing, it would seem that the item parameters
must be based on the regression of the item on the ability
scale. This sounds a little circular—perhaps it is. Some sort
of iterative optimization process would be needed at the
start, to ever get the ability scale in the first place. Cliff
described one such procedure for his ordinal scale model;
an equivalent procedure could easily be devised for the
metric model.

Cliff’s procedure also depends on a population. He goes
so far as to say that the purpose of a test is to rank order
the population of examinees. Sometimes it is, but often it is
not. Often the purpose is to categorize the examinee as
qualified or not qualified for a particular job. Or even
better, to give a quantitative index of the degree of
qualification. The only population we are really interested
in is the population of successful job holders.

There are other technical problems with Cliff’s scheme,
which he promises to solve. For example, he did not
describe what happens when a person’s item responses have
contradictory implications for other cells in his matrix.
Indeed his system probably tries to avoid asking questions
that might provide contradictory information.

The main reservation I have about the technical side of
tailored testing is the commitment to latent trait theory.
The concept of a latent ability scale is a great improvement
over the concept of a true score. The true score model was
never a very good idea; rather, it was a simple model that
worked pretty well. But are we sure that the latent ability
score is much better? Does the latent trait model fit the
tests for which it is used? Is the assumption of local
independence really tenable? Suppose, for example, that
there are secondary factors in common among subsets of
items. How much difference would that make? Nobody
knows.

The point is that latent trait theory is a theory, just as
any other behavioral theory, and it needs verification.
Empirical work is needed to show that latent ability scores
work as the theory predicts. Simulated examinees will not
do—studies are needed with real people. Are the scores
invariant over item selections, or over samples of individ-
uals? Does the precision of measurement really work the
way the information variable says it does? What about the
relation of validity to test length or information? Empirical



work has been presented by Waters and others, but whether
it supports the theory is not clear.

Classical test theory has a curious status: most psycholo-
gists and educators believe that it is fact, not theory.
Nowhere in Lord & Novick’s treatise is there a section on
empirical verification of the theory. Actually, test theory is
a self-consistent, much-elaborated theory that seems to
work pretty well. For example, the Spearman-Brown
formula usually works. Some people look upon the
Spearman-Brown formula as a fact. It is a fact only in the
sense that it is a logical consequence of the basic assump-
tions of the theory. So far as I know, neither true score
theory nor latent trait theory has been put to a critical test,
as have most other mathematical theories of behavior.

One final theoretical issue ‘needs clarification. The
literature contains resuits (e.g., Lord, 1970) indicating that
a tailored test is not much more effective than an ordinary
test with a peaked item difficulty distribution. The advan-
tage lies mainly in the extremes. But the theoretical and
empirical results presented in this conference indicate that a
tailored test is much better even in the mid-range. Work is
needed to clarify when a tailored test will help and when it
won’t.

One final point about technical terminology. In the
simulation studies of Jensema, Waters, McBride, and others,
the estimated ability @\ which is the test score in tailored
testing, is supposed to be nearly 8. The closeness of oo
is measured both by (26 - §)*/N)¥, which was called the

“standard error” and by rg3, which was called the
“validity”’. In engineering, the former measure is commonly
called the root-mean-square error, or RM.S. error; it is not,
after all, a standard error, since it’s not a standard
deviation. Mean square error includes both error variance
and squared bias. Thus the measure is very appropriate; but
it is misnamed. To call 744 the “validity” is much worse; it
is downright sinful. This use of the term goes back, I'm
told, to Ledyard Tucker and Hubert Brogden, but that only
proves that people in high places make mistakes. A
different word must be used. “Validity” is seriously
misleading, and has even been mis-interpreted at this
conference. My own candidate for a name for ry5 is
“fidelity”. I hope the in-group either uses “fidelity” or
finds another word.

Next Steps

Now that tailored testing is about to become opera-
tional, perhaps it is time to take a longer-range perspective.
Do the present developments really exploit the power of an
interactive computer? Many scientists, in their first en-
counter with a computer, use the computer mainly to do
faster and neater what they were already doing before
computers. It is as if the horse and buggy industry’s
reaction to internal combustion engines had been to build a
mechanical horse. Statistical computation is a good case in
point. To a very large extent, statistics is still at the
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mechanical horse stage in its use of computers. The
statistical program packages are fast ways to do old
things—analysis of variance, regression, factor analysis. Even
the few new things, such as nonmetric scaling and cluster-
ing, had their roots in pre-computer ideas. Interactive
statistical methods are still in their infancy. Mostly,
interaction means replacing the control cards in an input
deck by questions printed by the machine and answered by
the user on the spot. No subtle interplay of human
judgment and computer speed is implied.

The mechanical horse stage in computerized testing
would be an automatic test production system. Given the
characteristic of a population, the computer would select
the most appropriate items from its item files and would
print a suitable test. I naively thought testing had avoided
this typical first stage, but apparently such systems were
built, some years ago.

Tailored testing is one step beyond the mechanical horse
stage. To be sure, the up-and-down method had seldom
been used in mental testing, barring Binet, who didn’t do it
right, but the up-and-down method is an old stand-by
in psychophysics, and in sensitivity testing generally, dating
from World War II and earlier. Also, test theoreticians knew
that measurement was best when the items were all
sufficiently difficult that the examinee got about half of
them correct. (Actually about 68% for 5-alternative items,
Fred Lord reminds me, because of guessing.) This is one
part of the theory that none of the operational people
believed, but the theory was there. So the adaptive test was
a natural next step in computer involvement in testing.
Still, the only use of the computer in tailored testing, apart
from the trivial use in presenting the items on a terminal, is
in selecting the next item and computing the ability score.
The same 5-choice items are being used, the item is scored
either right or wrong, the same kinds of traits are being
measured. Now is the time to move on, in research at any
rate, to better things.

Many more opportunities exist. Some have been men-
tioned at this conference. Samejima proposes that we use
the particular wrong choice of an item as partial informa-
tion. Some wrong choices are better than others. Item
response weighting has minimal utility in standard tests,
primarily because of the test length. Weighting becomes
more useful with fewer items, which is just what tailored
testing provides. In addition to Samejima’s proposal, even
more information could be obtained, when the response is
wrong, by asking for a second try. The procedure of trying
alternatives until getting the right answer goes back to the
1940’s or earlier. In those days, Science Research Associ-
ates sold a punch board on which answers were punched
out. Instructions were to punch out alternatives until the
red dot appeared, signalling the right choice. The item score
was the number of unpunched choices, except that omits
got a negative score. I am told that test scores based on
these item scores were consistently more reliable and more
valid than scores based on a 1-0 item scoring. The computer
terminal is an elegant punch-board! Another possibility is



to have the examinee rank or rate the alternatives for
suitability. The probability assignment proposal of Shuford
et. al., (1966) now being tried by Weiss and his coworkers is
equivalent; though the restriction that the ratings must add
to one, like probabilities, is an unfortunate complication
that is likely to have adverse operational consequences.
Ratings or rankings would be better.

The computer permits the use of constructed re-
sponses—fill in the blanks-—rather than multiple choice.
Computer processing of constructed responses has been
worked on in computer assisted instruction; these tech-
niques could be adapted to the testing situation. Most of
our present item types have evolved in a multiple choice
environment, and constructed responses would be no help.
For example, some verbal analogies items would not work
as constructed responses — e.g., “Brick is to building as
leather is to . Others would work: “Shoe is to
foot as helmet is to . The difficulty of vocabu-
lary items is controlled almost entirely by the distractors,
so asking the examinee to construct a synonym would
markedly alter the item. But there is no reason why new
item types cannot evolve in the new context. Verbal
fluency is a natural for the computer to test, and virtually
impossible in the multiple choice context.

Of even more interest is the possibility of new types of
items, and new types of traits. The GRIP tests of Cory are
especially interesting, as are some of the items briefly
mentioned by Weiss, such as his conceptual maze. Many of
these types can be tried on present day alphanumeric
terminals, others need graphic terminals, which are at
present too costly, but which may soon be relatively
inexpensive.

I am convinced that the potential for new styles of
items, or contingent sets of items, is the next important
contribution of the computer. After all, we already know
how to measure verbal ability and quantitative ability. The
computer merely gives us efficiency. What we need is more
information.

The computer could also be immensely helpful if we
placed less emphasis on measurement and more on the
decision process. Instead of providing a test battery, we
could provide a decision system. Many years ago Cronbach
& Gleser (1965) argued for the necessity of coupling the
decision process with the testing process. The computer,
and computer assisted testing, have provided an unparal-
leled opportunity to do this. Hansen, McKillip, & Lord have
mentioned this.

Consider the simple example of selecting among appli-
cants for a particular job or for entry to a particular college.
The test’s job is to label each taker as qualified or not
qualified. This implies a cut-off score, or at least a cut-off
region. The very well qualified and the very poorly
qualified persons can probably be identified relatively
quickly; most of the effort should be spent on the
borderline cases. To be sure, we must beware of Lord’s
lucky guesser, and Weiss’ low consistency scorer, but with

care, an efficient system can be devised that does not
measure accurately at all levels, but only where it counts.

A one-dimensional case is only the beginning. Both Weiss
and Hansen have suggested that additional savings can be
made when there are several relevant dimensions. Here,
progress requires that the decision process be coupled with
the testing process to build a complete system.

There are many different approaches to a personnel
decision system. One model would treat jobs as regions in a
space whose dimensions are specific job requirements,
specific abilities, or characteristics needed for the job. A
person is a point in this space, the testing problem is to
pinpoint the person’s position sufficiently accurately to be
able to list the jobs for which he is qualified, and possibly
to list these in rank order from the ones for which he is
most qualified to the ones for which he is barely qualified.
The dimensions of the job space might be abilities, or they
might not. And individual items might serve to locate a
person on only one dimension, or items might help to
locate a person in the total space. At least, there is no a
priori reason for discarding impure multidimensional items.
Indeed such items might be especially useful in a decision
system.

Five years ago at a similar conference (Green, 1970) I
said that the computer had a great future in testing. Today,
happily, it has a present as well as a future. Operational
versions of tailored tests represent a great technical achieve-
ment. Furthermore, the computer plays a central role in the
enterprise. Still, the potential of the computer has barely
been tapped. The future lies ahead.
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ANNOUNCEMENTS

Dr. Robert J. Gettelfinger of Educational Testing Service
announced that organization’s willingness to edit a news-
letter on the subject of computer-assisted testing. He asked
for suggestions as to the content of the newsletter, and for



the opinions of the conferees as to what subject matter
should be covered and as to whether contributions should
be entirely voluntary or should be obtained by assigning
papers.

Dr. David J. Weiss of the University of Minnesota
announced that he will edit a new journal, Applied
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Psychological Measurement, that will publish empirical
research on the application of techniques of psychological
measurement to substantive problems in all areas of
psychology and related disciplines such as sociology and
political science. He invited conference participants to

submit their papers and promised to send further details to
all participants.
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