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To Weight or Not to Weight – Balancing Influence of Initial 

and Later Items in Adaptive Testing 

 

1. Objective of the Study 

 In computerized adaptive testing (CAT), such as the Graduate Record 
Examination (GRE), some examinees may get much lower scores than they would 
normally get if an alternative paper and pencil (P&P) version were given. This has 
become an arising issue in online implementation of CAT, and this phenomenon is 
unique to CAT because of the nature of its sequential selection rule. However, without 
effective remedial measures, it could significantly undermine the credibility of CAT.  In 
this paper, we would like to address some of the issues, find causes, and propose possible 
solutions.  

2. Problems and Background 

 The original motivation for adaptive (tailored) testing is to match items with the 
examinee’s trait level (Lord, 1971). Under the usual Item Response Theory (IRT) models, 
maximizing Fisher information is intuitively to matching item difficulty parameter values 
with the latent trait level of an examinee. Since the latent trait is unknown, the optimal 
item selection rule could not be implemented, but may be approximated using the 
updated estimate each time when a new item is to be selected. This is essentially the basic 
design behind Lord’s original proposal of tailored testing.  

 The adaptive item selection adds a new dimension of uncertainty to the outcome 
and evaluation of CAT. One major factor of uncertainty comes from inaccurate 
estimation of the trait parameter in the initial stages when the number of administered 
items is small. This could result in grossly underestimating the trait level at early stages. 
In consequence, easy items are likely to be administered due to the rule of matching 
“difficulty” to “ability”. As to be demonstrated subsequently, such items are ineffective 
to bring the estimate close to the true trait level, unless the test is sufficiently long or a 
variable-length test is used. 

 The main purpose of this investigation is to quantitatively reveal some of the 
causes that account for underestimation of latent trait  in CAT. The logistic models, 
particularly the Rasch model and the 2PL model, are used to demonstrate some key 
observations. They point to weighting likelihood score as a possibility to alleviate the 
problem of underestimation. In this connection, the stratified approach by Chang and 
Ying (1999) is shown to improve the adaptive testing in a natural and automatic way. The 
main analytic results are presented in the next section. Section 4 summarizes findings 
from numerical studies. The last section gives some additional remarks. 
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3. Main Results 

 The classical IRT assumes that the probability of an examinee given the correct 
answer to item i (Y =1) takes form i

  ( 1| ) (i iP Y Pθ θ= = ),

, ,..., θ

iY

where  is the examinee’s latent trait and  is monotone increasing in  (Lord, 
1980). Suppose that an examinee with a fixed  is given n items Y Y . Then  can 
be estimated by maximizing the likelihood function 
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where Q . Let  denote the resulting estimator. It is clear that  also 
solves the following maximum likelihood estimating equation 
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Note that (2) has an interesting form and we can think of Y P  as  ( )i i θ−

“observed” – “expected”, 

which therefore has mean 0. Thus U  is a weighted sum of  “observed” – “expected”. ( )n θ

 It is well known that, under suitable regularity conditions,  is asymptotically 

normal, centered at the true  and with variance approximated by  where 
is the Fisher information function. An original motivation for CAT is to maximize 

the Fisher information so as to make  most accurate. This can be achieved by 
recursively estimating  with current available data and assign further items adaptively. 
The asymptotic normality and validity of using Fisher information to estimate variance 
continue to hold under the adaptive item allocation of CAT.  
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 To illustrate possible sensitivity of in CAT to result on initial items and to 
motivate remedies, let us first consider the case of the Rasch model. Without loss of 
generality, we assume the common a parameter to be 1. The likelihood estimation 
function takes the same form, i.e., 
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after n items were administered. For the MLE , U  n̂θ ˆ( ) 0n nθ = .

0.
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Let b  denote the next item selected. Then  solves U  By the mean-
value theorem,  
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If the item pool is sufficiently rich that allows each given  to match a difficulty 

parameter b with the same value, then b  or 
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that the one-step update from  to  is n̂θ 1+n̂θ
1
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±  multiplied by , which is 

typical of order 2/n for large n. Consequently, the larger the n is, the smaller the one-step 
adjustment it gets. It is plausible that if the examinee misses a number of initial items and 
the test length is shot to moderate, then he/she may not be able to regain a score (estimate) 
comparable (close) to the true , even though he/she responds well to the rest of the 
items. 
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 The situation becomes even interesting in the case of the 2PL model, which has 
the estimating function 
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and the Fisher information function becomes 
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 Similar to recursion (4), we have  
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Through their analytic derivations and simulation studies, Chang and Ying (1999) argued 
that, provided necessary constrains are met, the a-parameter should be selected in an 
ascending order. Their motivations come from the considerations of efficiency 
improvement and item exposure balance. In view of (7), an additional benefit of the a-
stratified approach of Chang and Ying is that it automatically adjusts step sizes in 
updating current estimation of . Specifically, it shrinks weights at early stages, making 
it less likely to have extreme values in estimating . It also inflates weights at final 
stages, counteracting the effect of the multiplier and making it more likely to 
adjust the final estimator of . 
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 For the 3PL model, the recursion becomes  
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where  is a sequence that fluctuates around some certain constant in the design of 
Chang and Ying (1999). So, again, the ascending order of  as advocated in Chang and 
Ying plays pivotal roles to ensure higher efficiency, more balanced exposure rates as well 
as to reduce fluctuation due to initial item response irregularity and increase effectiveness 
in counteracting initial item influence by responses to later items. 

nξ

n

4. Simulation Studies 

A pilot study was conducted.  

Item Pool Structure  

Assume the item pool is so sufficiently rich that for every given  value one can find a 
corresponding difficulty parameter b with the same value. The item pool was partitioned 
into four strata and the discrimination parameter was identical within each stratum, with a 
equaled to 0.5, 1.0, 1.5 and 2.0 respectively for the four strata.  Without jeopardizing the 
generality of the findings, all discrimination parameters within each stratum were kept 
constant to maintain a clear change in item parameter distribution as testing progressed.  
Within each stratum, values of difficulty b parameters can be generated with the same 
value of .  For simplicity, the guessing c parameters for all items were set at zero. 

θ

θ

Latent Trait Distribution   

One thousand examinees were included with a fixed θ value at 0. Note that the true  
can be fixed at any point. 

θ

Test length and termination rule  

The test length examined was 40 items.  Though a bit longer than most adaptive tests, it 
was deliberately chosen to show the trend more clearly. 
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Item selection rules   

Hau and Chang (2001) made a comparison of efficiency in terms of MSE among several 
methods and reported that the ascending a- method was better than the descending a- 
method. The focus of this research is to examine whether the use of more discriminating 
items at the beginning of testing would cause “convergence to a wrong point”. Two 
approaches, namely, the descending a- and ascending a- methods, were designed in the 
simulation study.  In the descending a-method, the use of large a parameter items were in 
the reversed order to that of the ascending a-method, that is, large a parameter items were 
used first followed by small a ones. The former method is parallel to the maximum Fisher 
information method whereas the latter is advocated by Chang and Ying (1996, 1999). 
However, the objective of the research is to defend a general principle -- low-a items 
should be used first and high-a items should be used last, thus it will not entail specific 
item selection methods, such as the maximum information method, the a-Stratified method, 
etc.  In this regard the simulation design is essentially for all MLE based procedures that 
can be portrayed by Equation (7).    

Step 1.  The item pool is partitioned into 4 strata by the a-parameter, with the first and 
last strata containing, respectively, the smallest and the largest a items. 

Step 2.  Accordingly, the testing process is also partitioned into 4 stages to match the 4 
item strata. 

Step 3.  At the kth stage, 10 items are selected from the kth stratum.  The test-taker’s 
ability is updated by Equation (7), which is equivalent to maximizing the likelihood 
function constructed from the responses to the items already taken.   Then items of 
difficulty parameter equal to the estimated ability are selected and administered as the 
next item.   

Step 4.  Step 3 is repeated for k = 1 through k = 4 stages. 

The steps in the descending a-method are: 

Step 1.  The item pool is partitioned into K strata by the a-parameter as in the ascending a 
method.  However, contrary to the ascending a method, the earlier and latter strata now 
contain, respectively, the higher and lower a items. 

Steps 2 to 4.  Identical to the steps in the ascending a method, the entire testing process is 
also partitioned into 4 stages to match the 4 item strata.  
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Initial Estimators  

Let  be the initial estimator of the true . Eleven initial estimation points were selected: 
=-3.0, -2.5, -2.0, -1.5, -1.0, 0, 1.0, 1.5, 2.0, 2.5, and 3.0. Note: the true =0.0. 

1̂θ θ

1θ̂ θ

Evaluation Criterion 

(i) Average bias, and (ii) Mean squared error (MSE). 

Results 

Figure 1 shows the mean squared errors for the two methods. For each method, MSEs 
were calculated based on 1000 replications at each of the eleven starting points. The graph 
represents the MSEs as a function of the starting values.  For the descending a-method, the 
larger the difference between the initial estimator and the true  is, the higher the value of 
MSE is. See Figure 1 for details. The same pattern was found in the bias plots in Figure 2. 
These figures clearly indicate that the ascending a-method generated much more 
consistent results for both bias and MSE. The simulation results may also imply that if the 
item selection algorithm relies on items with the highest a-parameter values at the 
beginning of the test, it is plausible that if the examinee misses a number of initial items, 
then he/she may not be able to regain an estimated  that is comparable to the true , 
even though he/she responds well to the rest of the items. For instance, according to Figure 
2, the average bias of the descending method at –3 was –2.8, however, according to Figure 
3, the corresponding average number of correct items was 37. 

θ

ˆ

θ
θ

1 *
1)−

θ θ

5. Conclusions 

The analytic derivations in this paper provided theoretical evidence to Chang and Ying 
(1999) and Hau and Chang (2001) that the ascending a-method should be used in 
computerized adaptive testing. The results of the simulation study provided certain 
confirmation to the speculation that using high a-item first may cause divergence if the 
student failed a couple of items at the beginning of the test.   

The theoretical results presented in this paper may help us in designing more robust item 
selection algorithm. In view of (7), an additional benefit of the a-stratified approach of 
Chang and Ying is that it automatically adjusts step sizes in updating current estimation 
of . Specifically, it shrinks weights at early stages, making it less likely to have extreme 
values in estimating . It also inflates weights at final stages, counteracting the effect of 
the multiplier and making it more likely to adjust the final estimator of . 
The stratified method is just only one of the many possible ways, including incorporation 
with the maximum Fisher information method, to implement the weighting philosophy.  

1(θ+n nI + θ

The current simulation study was oversimplified. Different test lengths, more realistic 
item pools, and many constrains, such as content balance and item overlap rates control 
should be included in the future study. 
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Secondly, we will demonstrate that the adoption of  (8), may also alleviate the problem. 
We intend to show that both the a-stratified method and the weighted Fishier information 
method perform well in practice. It is not so rare that an examinee in a fixed-length CAT 
may get an unusually poorer score than she/he deserves. A common cause is that the 
examinee may perform poorly on several initial items encountered. Under certain 
adaptive item selection rules, it is almost impossible for an examinee to recover with a 
limited number of later items, since they are likely to have low difficulty parameter 
values. We observe that weighting the likelihood score suitably may alleviate such 
problem. As a result, the estimator of examinee’s latent trait will be less sensitive to a 
possible selection of extreme items in initial stages of a CAT. We show that this can be 
achieved either automatically with the a-stratified design or manually by inserting certain 
desirable weights into the likelihood equation. Many issues will be discussed after the 
2002 NCME. 
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Figure 1. MSE of the two methods 
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Figure 2. Average bias of the two 

methods.
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Figure 3. Average Number Correct Items of the Two Methods 
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