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Abstract 

An accurately calibrated item bank is essential for a valid computerized adaptive test. However, in some 
settings, such as occupational testing, there is limited access to examinees for calibration. As a result of 
the limited access to possible examinees, collecting data to accurately calibrate an item bank in an 
occupational setting is usually difficult. In such a setting, the item bank can be calibrated online in an 
operational setting. This study explored three possible automatic online calibration strategies, with the 
intent of calibrating items accurately while estimating ability precisely and fairly. That is, the item bank 
is calibrated in a situation where examinees are processed and the scores they obtain have consequences. 
A simulation study was used to identify the optimal calibration strategy. The outcome measure was the 
mean absolute error of the ability estimates of the examinees participating in the calibration phase. 
Manipulated variables were the calibration strategy, the size of the calibration sample, the size of the 
item bank, and the item response model. 
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An Automatic Online Calibration Design in Adaptive Testing 
      

The past 15 years have seen a steady increase in the use of online testing applications in a 
variety of testing settings.  Computers can be used to increased statistical accuracy of test scores 
using computerized adaptive testing (CAT; Van der Linden & Glas, 2000a). The implementation 
of CAT is attractive because research indicates that CATs can yield ability estimates that are 
more precise (Rudner, 1998, Van der Linden & Glas, 2000a), can be more motivating (Daville, 
1993), easier to improve (Linacre, 2000, Wainer, 2000), and take a shorter period of time to 
complete (Rudner, 1998; Wainer, 2000) than traditional tests. Although CATs have been widely 
implemented within large scale educational testing programs, the use of CATs in other settings 
such as in occupational testing has been limited because of several practical challenges.  

One of the major obstacles to cost-effective implementation of CAT is the amount of 
resources needed for item calibration. Large testing programs have been able to overcome this 
problem with the availability of extensive resources. Nevertheless, there has been broad interest 
in investigating procedures for optimizing the calibration process (e.g., Berger 1991; 1992; 1994; 
Berger, King & Wong, 2000; Jones & Nediak, 2000); Lima Passos, Berger; 2004; Stocking 
1990). Unfortunately, this research is based on the assumption that a large number of examinees 
is available in the development phase of a test. However, this is not the case in many applied 
settings. In reality, the lack of available examinees is one of the greatest challenges in the 
development phases of a test in an occupational setting. This is the case because the 
organizations that purchase an occupational test are usually unwilling to invest time and 
resources in letting their employees take a test unless they can use the results. To circumvent this 
problem, test developers usually access examinees from a context other than the one in which the 
test is to be used, that is, they access a low-stakes sample. The use of a low-stakes calibration 
sample comes with several limitations. First, there is evidence that large motivational differences 
exist between examinees in low-stakes calibration samples and the intended population of 
examinees (Wise & DeMars, 2006). These motivational differences introduce bias in the 
estimation of item parameters in the calibration phase, which will result in biased test scores. 
Further, the use of a separate sample usually means extra resources in terms of time and money 
in test development.  

The resources required for item calibration would be reduced if a test could be calibrated and 
implemented for the intended population as quickly and fairly as possible. This would make it 
attractive for possible customers to be involved in the calibration process because they could use 
the results. Therefore, it is worthwhile to identify designs that make it possible to simultaneously 
calibrate items and estimate ability, while treating examinees fairly. The present study differs 
from previous studies in that this is an investigation of the problem of calibrating a set of items 
where there is no previously available information, with the practical constraint of maintaining 
fairness in test scoring. The purposes of this paper are to discuss calibration strategies that will 
make it more practical and cost effective to develop and implement CATs in occupational 
settings, and to report on a simulation study conducted to choose an optimal strategy.    

 
The Model 

The present study was carried out in the framework of item response theory (IRT). The 
fundamental concept of IRT is that each test item is characterized by one or more parameters and 
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each examinee is characterized by a single ability parameter. The probability that a given 
examinee answers a given item correctly is given by a function of both the item’s and the 
examinee’s parameters. Conditional on those parameters, the response on one item is 
independent of the responses to other items. The IRT model used in this study, is the two-
parameter logistic, or 2PL model,     
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(Birnbaum, 1968). Here Pi(θ) is the probability of a correct response for item i, θ is the 
examinee’s ability, and ai and bi are item parameters.  ai is called the discrimination and bi the 
difficulty parameter. A specific form of this model is the one-parameter logistic or1PL model. In 
the 1PL model the assumption is made that all items have the same discrimination parameter.  

Calibration pertains to the estimation of the item parameters ai and bi from response data, say 
data from a calibration sample. In the operational phase of CAT, the item parameters are 
considered to be known and the focus becomes the estimation of θ. In IRT, θ can be estimated 
using several different strategies. The weighted maximum likelihood estimator derived in Warm 
(1989) was used to estimate   in this study. This method is attractive because of its negligible 
bias (Van der Linden & Glas, 2000b). 

What differentiates CAT from traditional tests is that items are selected optimally by an item 
selection algorithm that finds the next available item from the item bank that provides the most 
information about the examinee. A selection function that is often used in item selection for CAT 
is Fisher’s information function. For dichotomously scored items, the information function has 
the following form:  
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where Pi(θ) is the response function for item i, P’(θ) its first derivative with respect to θ, and 
Qi(θ) = 1  Pi(θ). In CAT, the item is selected that has the maximum information in the item pool 
at θ = θ*, where θ* is the current  estimate for the examinee (Van der Linden & Glas, 2000b). 
Maximization of information minimizes the estimation error of θ.  

 
Calibration Strategies 

This study investigated the online calibration of an item bank when there is no available 
information about item parameters at the beginning of the testing process. Therefore, the most 
equitable way to select items during the initial phase of testing is to administer items randomly. 
Although random item administration does not guarantee tests with equal difficulty levels, it 
does ensure that there are no systematic differences in difficulty which would result in 
unfairness. Then, once sufficient data become available, optimal item selection can be carried out 
with Fisher’s information function. The objective of this paper is to investigate how to progress 
from random to optimal item selection in a fair and effective manner. The next section describes 
three plausible calibration strategies for attaining this goal.  
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Two-Phase Strategy 

In this strategy, labeled P2, items are administered randomly up to a given number of 
examinees. For the remaining examinees the items are calibrated and administered optimally in 
the form of a CAT. In the random phase, tests are scored with the assumption that all items have 
a difficulty parameter equal to 0 (that is, bi = 0), and in the optimal phase tests are scored based 
on the item parameters obtained in the random phase. The reason for the scoring rule in the 
random phase is to obtain scores that are on the same scale as in the optimal phase. This scoring 
rule is analogous to the scoring rule used in classical test theory, where a proportion-correct 
score is computed assuming that all items have the same weight. Here this score is simply 
converted to a score on the   scale. The clear transition from one phase to the next means that 
stakeholders can be informed about the current precision of the test, and policy decisions about 
how the test should be used can be clearly defined based on the level of precision. The transition 
is made when the average number of item administrations is above some predefined value T. The 
optimal transition point T from the random to the optimal phase was one of the topics in this 
study.     

Multi-Phase Strategy  

An alternative strategy labeled M consists of more than two phases. As in the previous 
strategy, the items are calibrated at the end of each phase. Table 1 illustrates an example with the 
five phases that the design follows. In Phase 0, all item selection is random and   is estimated 
with the assumption that bi = 0. As in the previous strategy, also here the transition is made when 
the average number of item administrations is above some predefined value T. In the next phase, 
labeled Phase 1, the first three parts of the test are random, and the final part is CAT using the 
item parameter estimates from data collected in the previous phase. A transition takes place 
when the average number of administrations over items has doubled. In general, a transition 
takes place when this average exceeds (Phase + 1)  T.  This continues until the final phase, 
where all of the items are administered optimally and the item bank is calibrated.  

 
Table 1. Phases of the Multi-Phase Strategy 

Phase Part 1 Part 2 Part 3 Part 4 
0 Random Random Random Random 
1 Random Random Random CAT 
2 Random Random CAT CAT 
3 Random CAT CAT CAT 
4 CAT CAT CAT CAT 

 

The motivation for the strategy is as follows: In phase 0, the amount of uncertainty regarding 
the item parameters and the person parameters is too high to allow for optimal item selection. In 
fact, this high uncertainty might introduce bias because the uncertainty estimate in item 
parameters and    could compound the error in the   estimate. Therefore, items are 
administered randomly. After the random part,  is estimated using the item parameters obtained 
in the previous phase, and this estimate serves as an initial estimate for the adaptive part. In later 
phases, it is assumed that the parameters are estimated with sufficient precision to support 
optimal item selection.  The inclusion of an adaptive part at the end makes the test more effective 
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in terms of scoring ability and in terms of calibrating items. As with the P2 strategy there is a 
clear transition point between phases in this strategy.  

Continuous Updating Strategy (C) 

Labeled C, this strategy is analogous to the previous two strategies in that items are 
administered randomly and tests are scored with the assumption that bi = 0 in the first phase. An 
item becomes eligible for CAT if the number of administrations of the item is above a transition 
point labeled T. The proportion of CAT in a test is proportional to the number of eligible items in 
the item bank. In the final phase where all item selection is optimal, items are calibrated after 
each exposure and tests are scored based on the parameters computed after the latest 
administration of the items. Therefore, the precision of the θ estimates is continuously improved.  

The three calibration strategies represent a sample of possible designs on a continuum 
ranging from one extreme where items are calibrated at a single point in time, to the other 
extreme where items are calibrated constantly after each exposure, once the items become 
eligible for CAT.  

Simulation Studies 

To investigate which of the considered calibration strategies leads to the lowest overall mean 
absolute error (MAE) in the estimation of , simulation studies were conducted. The studies 
were designed to measure the impact of each of the three strategies across a variety of conditions 
by varying the following variables:  

1. The transition point T from one phase to the next. These points were varied as T = 10, 25, 
50, 100, 200 item administrations.   

2. The calibration sample sizes, which were varied as N = 250, 500, 1,000, 2,000, 3,000, 
4,000. 

3. The IRT model, varied as the 1PL model and the 2PL model. 
4. The size of the item bank, varied as K = 100, 200, 400 items. 

Upper and lower baselines were also simulated to compare the precision of the simulation 
strategies to external criteria. MAE for an optimal test administered with a completely calibrated 
item bank, labeled O, was set as a lower baseline. This was simulated by calibrating items using 
strategy P2 with a transition point of 4,000. The precision of a test administered randomly with 
all items having difficulty parameters of 0.0 was set as an upper baseline.  This procedure is 
labeled R. 

Method 

The focus of this study was to assess how accurately   is estimated while in the calibrating 
phase of the test. Once the number of examinees becomes large and the item bank is accurately 
calibrated, it is expected that different calibration designs result in similar precision, so then the 
calibration design is no longer of interest. Therefore, it was important to differentiate the 
calibration sample from the post-calibration sample of examinees. A calibration sample of 4,000 
examinees was set in this study.  

The examinees’   parameters were drawn from a standard normal distribution. An item bank 
was simulated by drawing item difficulty parameters from a standard normal distribution, and 
item discrimination parameters from a lognormal distribution with an expectation of 1. After 
each phase, items were calibrated under either the 1PL or 2PL model using the method of 
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marginal maximum likelihood estimation (Bock & Aitkin, 1981). Optimal item selection was 
implemented using maximal expected information. The item parameters were the current 
estimates at that point in the design of the strategy, and the test length was set at 20. MAE was 
computed as the mean absolute difference between the true   drawn from the N(0,1) distribution 
and the   estimated by the weighted maximum likelihood procedure. The MAE for each strategy 
was then calculated by averaging across all examinees to give an estimate of the global precision 
of the strategy.   

In addition to global precision, it was also of interest to investigate the precision with which a 
certain examinee’s score was estimated. This so-called local precision was measured at specific 
points on the   continuum (θ = 2, 1, 0, 1, 2), to give an estimate of the precision with which 
an examinee with a specific θ could be expected to be assessed within each condition. Therefore, 
after each phase 4,000 examinees were simulated at each of the five   values, and the MAE was 
computed for each of the five   values. 

Results  

Global precision and optimal transition points. The first research question investigated 
was the optimal point at which item selection should transition from one phase to the next in 
each of the three calibration strategies. Five conditions were investigated (T = 10, 25, 50, 100, 
200) for the 1PL and 2PL models. The results are shown in Table 2.  

The table gives the MAE obtained for the three calibration strategies as well as a completely 
random (R) and completely calibrated test (O), for a calibration sample size of 4,000, with item 
bank sizes of 100, 200 and 400 (K = 100, 200, 400), using the 1PL and 2PL models. A 
comparison of the MAE for the three strategies indicated that the C strategy consistently resulted 
in the best   estimates across all conditions.  

The results for the 1PL model were consistent across the item bank sizes, and indicated that a 
transition point of 100 (T = 100) had the lowest MAE for the P2 strategy, T = 50 for the M 
strategy, and T = 25 for the C strategy. Therefore, the most effective transition point became 
lower as the number of calibration points for the strategy increased (from P2 to C). Note that for 
T = 10, the MAE of the P2 and M strategies was often above the MAE of the upper baseline 
(strategy R). This occurred because, in that case, the item parameters were calculated based on 
10 observations only. Therefore these estimates of the item parameters were very poor and 
performed worse than the baseline estimate of bi = 0.  

The results for the 2PL model were similar to those for the 1PL, but they were not as 
consistent. Specifically a faster transition seemed to be optimal for the M strategy with larger 
item bank sizes. This finding seems to be a consequence of the M strategy taking a long time to 
transition through the five phases in the design with large item banks.  

The general pattern in these findings is consistent with the hypothesis that a balance between 
efficiency and accuracy in terms of switching from one phase to the next is important. A quick 
transition resulted in a premature progression through the phases in each strategy, because item 
parameter estimates still had much error. Therefore, the use of an optimal item selection  
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Table 2. Comparison of the MAE for Different Transition  
Points Within Each Calibration Strategy 

 
   MAE 

Model Item Bank Strategy  T = 10 T = 25 T = 50 T = 100 T = 200 
R 0.418      
P2  0.489 0.420 0.404 0.392 0.394 
M  0.453 0.395 0.389 0.396 0.402 
C  0.381 0.379 0.380 0.381 0.392 

K = 100 

O 0.376      
R 0.418      
P2  0.577 0.435 0.409 0.393 0.396 
M  0.417 0.397 0.392 0.408 0.420 
C  0.390 0.382 0.393 0.398 0.404 

K = 200 

O 0.381      
R 0.418      
P2  0.533 0.439 0.406 0.401 0.414 
M  0.430 0.410 0.405 0.414 0.420 
C  0.400 0.396 0.397 0.397 0.413 

1PL 

K = 400 

O 0.384      
R 0.405      
P2  0.475 0.388 0.353 0.352 0.361 
M  0.362 0.366 0.358 0.368 0.380 
C  0.342 0.345 0.353 0.355 0.366 

K = 100 

O 0.342      
R 0.405      
P2  0.460 0.352 0.351 0.349 0.373 
M  0.366 0.340 0.346 0.381 0.394 
C  0.335 0.324 0.329 0.352 0.369 

K = 200 

O 0.323      
R 0.405      
P2  0.450 0.368 0.356 0.362 0.416 
M  0.344 0.354 0.375 0.401 0.406 
C  0.339 0.330 0.348 0.366 0.414 

2PL 

K = 400 

O 0.311      
Note. Best results for each strategy within each condition are in boldface. 
 

algorithm to administer items, assuming that the item parameters were accurate, resulted in 
inaccurate   estimates. On the other hand, the slower progression through the phases resulted in 
loss of efficiency because the calibration procedure did not react quickly enough in switching to 
the next phase, even though item parameter estimates had stabilized. Since the results were 
similar across the different item bank sizes, and between the two models, transition points of T = 
100, T = 50, T = 25 were used respectively, for the P2, M, and C calibration strategies in 
subsequent analyses for both the 1PL and 2PL models, in order to have comparable results across 
settings.  
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Local comparison of the calibration strategies. In addition to global precision, the 
local precision of the three strategies for specific points on the   scale was investigated. A 
comparison of these and random item administration with bi = 0 (R) as a baseline is presented in 
Figure 1.   

 
Figure 1. MAE at Specific Points on the θ Continuum 

 
          a. Strategies P2, M, C and R,                                       b. Strategies P2, M, C and R, 
                1PL Model, K = 100                                                       2PL Model, K = 100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      c. Strategies P2, M, C and R,                                             d. Strategies P2, M, C and R,               
            1PL Model, K = 200                                                            2PL Model, K = 200 

 

 

 

 

 

 

 

 

 

 

 
 
 
    

-7- 
 



e. Strategies P2, M, C and R,                                                f. Strategies P2, M, C and R, 
         1PL Model, K = 400                                                               2PL Model, K = 400 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 illustrates the local precision of the three strategies with the 1PL model on the left 
side and the 2PL model on the right side, for item bank sizes of 100, 200, and 400 items. The 
horizontal axis represents the ability level of the examinees at five points on the θ scale (2, 1, 
0, 1, 2), and the vertical axis represents the MAE across the first 4,000 examinees within each 
design. For the 1PL model, the graph shows that the C strategy measured   more precisely than 
the other strategies at extreme s, while all three strategies performed fairly equally at θ = 0. The 
use of random item administration with item parameter estimates of bi = 0 performed well at θ = 
0; however, this method performed much poorer at extreme   levels. For the 2PL model, the 
three strategies performed quite similarly with a smaller item bank, but the C strategy performed 
better than the other two as the item bank size became larger. All three strategies also performed 
better than random item administration for the 2PL model, with the largest differences occurring 
at extreme   values.        

A comparison of the strategies at different points in the calibration process.  The next 
research question investigated was the precision of the strategies for settings with a limited 
number of examinees. In this section the examples are limited to an item bank size of 100, 
because the general results across the different item bank sizes led to similar conclusions. 
Figures 2a and 2b display the specific precision for each strategy at a particular point in the 
calibration process. In other words, these figures present the results for how accurately the 
particular test estimates   for the nth examinee in the calibration design. This provides 
information about the point at which a test can be confidently used in a high-stakes situation. The 
horizontal axis represents the nth examinee in the calibration design, and the vertical axis shows 
the MAE for the three strategies, as well as random item administration (R), and a fully 
calibrated test (O). 
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Figure 2.  Precision of R and O Strategies Examinees Number 250, 500, 1,000, 
2,000, 3,000 and 4,000 for the 1PL Model, and the 2PL 

              a. Specific Precision, 1PL Model      b. Specific Precision, 2PL Model 

   c. Cumulative Precision,  1PL Model  d. Cumulative Precision, 2PL Model  

 

 

 

 

 

 

 

 

 

 

 

The results indicate that strategy C performed nearly as well as a fully calibrated test after as 
few as 500 examinees for the 1PL model; it took strategy M 1,000 examinees to reach a similar 
level of precision. Strategy P2 never reached the same precision as a fully calibrated test, which 
implies that the P2 strategy needs to be supplemented with additional calibration points later in 
the design in order to reach the same level of accuracy. The results for the 2PL model were 
similar to the 1PL model, with the exception that the C strategy took a longer time to reach 
precision estimates comparable to a completely calibrated test.   

These results consider the accuracy of a given examinee at a particular point in the 
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calibration process. The Figures 2c and 2d present the cumulative precision of each strategy, 
which is the average precision with which an examinee is assessed in the calibration phase of the 
test, for different size calibration samples. The figure plots the average MAE of the sample on 
the vertical axis, based on the number of examinees in the calibration sample on the horizontal 
axis. The results were similar for the 1PL and 2PL models, in that the C strategy performed 
considerably better than the other two strategies and random item administration. The difference 
was evident after the number of examinees in the calibration sample reached 500 for the 1PL 
model, and after as few as 250 for the 2PL model. The M and P2 strategies resulted in  
estimates that were considerably better than random item administration; however. the 
calibration sample had to be at least 1,000 before a significant difference was evident. The 
difference between the precision of the three strategies decreased as the calibration sample 
became larger, suggesting that the benefits of using the C strategy are highest when there is a 
limited number of examinees.  

Item exposure. The calibration strategies have been compared in terms of how accurately  
is assessed in the calibration process. However, another purpose of this study was to identify a 
calibration method that would calibrate the entire item bank. Therefore, it was important to 
investigate the frequency with which items were administered using the calibration strategies in 
the two models. Table 3 displays the number of times items were administered in the three 
calibration strategies, for item bank sizes of K = 100 and K = 400, in a calibration sample of 
4,000 examinees. The results for the 1PL model are presented in the upper portion, and the 2PL 
model in the lower portion of the table.   
 
Table 3. Number of Times Items were Administered for Each Strategy Within Each Model 

   Number of Administrations 
 
Model 

 
Item Bank 

 
Strategy 

 
< 100 

100-
199 

200- 
399 

400- 
599 

600-
799 

800-
999 

 
> 1000 

1PL K = 100 P2 0 2 13 21 31 18 15
  M 0 0 6 28 31 23 12 
  C 0 0 0 32 39 6 23 
 K = 400 P2 0 286 103 6 1 0 4 
  M 0 316 64 8 0 0 12 
  C 0 262 142 0 0 0 0 
2PL  K = 100 P2 12 30 11 8 4 5 30 
  M 0 45 7 8 5 6 29 
  C 39 6 6 10 6 5 28 
 K = 400 P2 136 198 22 11 15 6 12 
  M 1 355 19 7 8 8 10 
  C 320 17 18 8 6 4 27 

 
Table 3shows a fairly uniform administration of items for all three calibration strategies for 

the 1PL model. Item administration for the 2PL model was highly uneven for the P2 and C 
strategies, but fairly balanced for the M strategy. In the C strategy, 39%, and 80% of the items 
were administered fewer than 100 times, for item banks consisting of 100 and 400 items 
respectively.  
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Discussion  

The purpose of this study was to investigate which of three possible calibration strategies 
would result in the lowest MAE in   estimation, and lead to a uniform administration of items in 
a setting where examinees’ ability could be assessed throughout the calibration design. The 
benefits of the three designs were tested in terms of several possible conditions. In general, all 
strategies performed well across the different conditions and seem to be viable options when 
calibrating an item bank effectively and fairly, so as to use the test in a high-stakes setting as 
quickly as possible.  

The C strategy consistently outperformed the other two strategies across all conditions. In 
fact,   was estimated nearly as well as in a fully calibrated test after as few as 500 examinees in 
a test consisting of 20 items and an item bank consisting of 100 items for the 1PL model. A 
weakness of this strategy was the non-uniform administration of items with the 2PL model, 
which lead to the calibration of a few items at the expense of others. The M strategy might be 
preferred in settings where the 2PL is used, because this strategy resulted in a more uniform 
administration of items with both models. However, a larger number of examinees were required 
before the precision in   estimation increased, which made this strategy ineffective with large 
item bank sizes. The P2 strategy generally resulted in a lower level of precision compared to the 
other two, because items were calibrated only at one point. An alternative method would be to 
use the P2 strategy with follow-up calibrations instead of simply calibrating one time. The use of 
random item selection with bi = 0 for all parameters at the beginning of each strategy, led to 
good   estimates for examinees with  estimates near the mean; however, this method was 
inaccurate at estimating examinees with extreme  values due to a consistent shrinkage toward 
the mean. 

In a context where stakeholders need to know the level of precision in the test in order to 
make procedural decisions about how the test should be used, it might be important that 
examinees within the same phase are given the same probability of success. Here the P2 or the M 
strategy would be preferred over the C strategy because the precision in the C strategy is 
continuously improved.  

The C and P2 strategies resulted in a non-uniform administration of items for the 2PL model, 
because the item selection algorithm in the 2PL model quickly resorted to selecting the items 
with high discrimination parameters at the expense of the other items. This resulted because the 
discrimination parameter has a multiplicative effect on the information for the items for the 2PL 
model, which leads to the selection of items with greater information at specific points on the  
scale, over items that provide information across a broader area. This can be efficient when there 
is little error in   and item parameter estimates; however, it is not optimal at the beginning of a 
test when there is a lot of insecurity concerning an examinee’s , and is undesirable when there 
is error in the item parameters. The use of the 2PL model for these strategies could be a 
disadvantage because items can receive a small discrimination parameter by chance due to 
inconsistent answering in a small test taker population. Therefore, good items might never get 
the opportunity to be accurately calibrated and used in the test with the 2PL model, which would 
result in a waste of resources for the test development organization. The optimal selection of 
items in the development phases of a test with the 2PL model could also be an advantage, 
however, in settings where there is an abundant number of items and it does not matter if some 
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items are never used, because the algorithm in the 2PL model concentrates on calibrating the 
items that are likely to be the best and most frequently used in the test.       

A study by Van der Linden and Glas (2000b) found dramatic impact of capitalization on 
estimation errors on   estimation using the 2PL model with a fully calibrated test. They 
highlighted four solutions for controlling the capitalization of error in   estimation: cross 
validation, controlling the composition of the item pool, imposing constraints, and using the 1PL 
model. The final two are possibilities for the current context. Imposing an exposure constraint 
would lead to a more uniform administration of items; however, the constraints would also limit 
the efficiency of the item selection algorithm. In the context of the 1PL model all three 
calibration strategies resulted in improved   estimates, in addition to a uniform calibration of 
items. The results suggest that the 1PL model could be used in selecting items for the calibration 
phase of the test, and then once items have been accurately calibrated, the selection algorithm 
could switch to the 2PL model.  

The results of the study provide viable calibration design options for test development 
organizations that find it difficult to get test takers in the development phases of a test. In these 
settings, these calibration strategies offer more cost effective and practical methods for 
developing large item banks, which makes it more attractive for smaller test development 
organizations to take advantage of the benefits of CAT. All three methods have the advantage 
over traditional booklet calibration designs that they offer the possibility to assess test takers’ 
ability throughout the calibration of the test. This makes it more attractive for organizations that 
purchase occupational tests to become involved in the development phases of the test because the 
results can be used.  

Future research could investigate the consequences of using the 2PL model with item 
exposure constraints to investigate if it can lead to a uniform calibration of items while 
simultaneously estimating ability accurately. In this study, the assumption was made that items 
fit the model that was used; future research could also estimate the consequences of bad items by 
varying the degree to which the items fit the model. Finally, methods for filtering and assessing 
fit in items during the calibration process could be considered.  
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