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Abstract 

Using Bayes modal  estimates with a N(0,1) prior, a simulation study evaluated how a new 
procedure for estimating information for scores from CAT administrations (i.e., the global-slope 
method) compared to two existing procedures (i.e., the local and quasi-local methods).  Test length and 
the number of simulees at each   point were varied.  A fundamental premise of the global-slope 

approach is a single linear relationship between  and over the entire   range.  The linearity 
assumption was found to hold for  tests with 30 and 60 items, while tests with 10 and 15 items yielded 
nearly linear, but slightly S-shaped scatterplots of

̂

  and .  However, due to a confounding 

factor caused by the pool used, the study was unable to assess the impact of the minor violation of the 
assumption on the information functions of the shorter tests.  On the  tests of 30 and 60 items, however, 
the three methods produced relatively similar information functions, particularly when there were at 
least 500 simulees at each   point. 

BME-N(0,1)̂
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An Evaluation of a New Procedure for Computing Information 
Functions for Bayesian Scores From Computerized Adaptive Tests 

 

Computerized adaptive testing (CAT) requires a pool of items that can yield reliable scores 
for a range of examinees without compromising security.  One way to evaluate CAT item pools 
is to compare them in terms of their information functions.  For example, of two equal-size 
pools, the one with more discriminating items (and therefore higher information) for an ability  
range where examinees are located is more desirable.  Also, if one intends to construct alternate 
item pools, they should be comparable in their information functions. 

As described by Birnbaum (1968), the score information for any test score y is defined as: 
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where  is ability.  The numerator denotes the slope of the regression of score y on  , while the 
denominator is the standard error of measurement of y for a given .  Note that the regression 
might be non-linear. 

Score y can be computed using various scoring methods, including unweighted and weighted 
summing of item number-correct scores and item response theory (IRT) scoring.  One of the 
most frequently used IRT () estimators is the maximum likelihood estimator (MLE).  Lord 
(1980) states that when the weights for item scores are optimal as a function of  , score y 

becomes a MLE ( MLE̂ ), and that the asymptotic (i.e., for a sufficiently long test) information 

function for score MLE̂  on a test of n items has a special name, i.e., the test information function.  

The MLE information function is expressed as: 
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where Pj is the logistic function for item j, Qj = 1  Pj, and P’j is the first derivative of Pj.  
Theorem 5.3.2 in Lord (1980) states that  “is an upper bound to the information that can 

be obtained by any method of scoring the test” (p. 71).  Interestingly, the information function 

for the Bayes modal estimator with a normal prior (BME normal), , includes a 

positive additive term as follows: 

MLE
ˆ(I  )

)ˆ( normalBMEI 

BME-normal MLE 2

1ˆ ˆ( ) ( )I I  ,


   (3)

where is the variance of the posterior distribution. 2

The above formulas for the MLE or BME normal score information, however, are primarily 
used for scores from traditional non-adaptive tests where all examinees take the same set of 
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items.  For scores from CAT tests that are tailored to examinees (i.e., everyone takes a 
potentially different set of items), Lord (1980, p.157) provides a formula for computing 
information functions.  It involves simulation and is based on the conditional mean and variance 
of the final scores for simulees at each of equally-spaced   levels.  Specifically, 
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where m is the conditional mean, s2 is the variance of the final scores, and ,, 01  and 1  denote 

three successive levels of  .  Note that this method requires the knowledge of the true  s as 

well as the ̂ s, and therefore can be implemented only in simulation.  This procedure will be 
referred to as the local method, because the slope is based on two   points directly adjacent to 
the   of interest. 

However, the local method tends to produce uneven and unstable information functions. The 
information functions can be smoothed by increasing the number of successive  points to 
include 2  and 2  as follows: 
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where 21012 ,,,,   denote five successive levels of   (Segall, Moreno, & Hetter, 1997).  

The procedure for estimating CAT information functions using Equation 5 will be referred to as 
the quasi-local method, because it is still based on a small section of the   scale, but more than 
three points as in the local method. 

Yet another method seems possible via simulation if one has sufficient evidence that a single 
linear line fits the data reasonably well over the   range— i.e., a method in which the slope of 
Equation 1 is estimated with ordinary least-squares (OLS) regression across the entire   range 

and divided by )ˆ( 0
2 s .  This third method will be referred to as the global-slope method, 

because the slope is global and constant for all   points, although the standard error is estimated 
for each   point, as in the local method. 

This study compared the new global-slope procedure with the two existing procedures for 
computing amounts of information from simulated CAT administrations.  The type of score 
employed was the BME with a N(0,1) prior (BMEN (0,1)).  In comparing the procedures, the study 
considered such aspects as test length and sample size.  Prior to applying the global-slope 
method, it was evaluated whether it would be appropriate to fit a linear line to the entire range of 
  and . )1,0(

ˆ
NBME
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Method 

Source of the Item Parameters 

The source of the item parameters for the simulation was nine existing CAT pools of 
multiple-choice Arithmetic Reasoning (AR) items.  These nine pools were developed for use in 
large-scale operational administrations of a 15-item fixed-length test.  The IRT parameters for all 
items in the nine pools had been estimated using the three-parameter logistic (3PL) model and 
placed onto a single operational scale.  The nine item pools were assembled in such a way as to 
achieve similar measurement precision and content coverage across the pools.  See Sands, 
Waters, & McBride (1997), DMDC (2008), and DMDC (2009) for more details of the assembly 
of the AR item pools. 

From the nine CAT item pools, items were randomly selected to create a 600-item CAT pool 
for the simulation.  The pool size was selected to accommodate the test length and maximum 
exposure rate used in the study (discussed further below).  Table 1 presents descriptive statistics 
for the 3PL item parameter estimates (i.e., a/discrimination, b/difficulty, and c/pseudo-chance) as 
well as the natural logarithm of the a [i.e., Ln(a)].  The distributions of the item parameter 
estimates for the 600 items are plotted in Figures 1.  Although Table 1 shows that the bs were 
virtually centered around 0, Figure 2 demonstrates a lack of very difficult items in the pool, 
considering that the true s ranged between ±3.0 as described in the next section.   This, as it 
turned out, had a noticeable impact on the results for the global-slope method. 

Table 1.  Descriptive Statistics of the a, Ln(a),  
b, and c Parameters in the Item Pool 

Parameter  N Mean SD Min. Max. 

a  600  1.445 0.403 0.700 3.178 
Ln(a)  600  0.332 0.265 -0.357 1.156 
b  600  -0.002 1.173 -2.983 2.350 
c  600  0.181 0.072 0.020 0.495 

 
Response Generation 

Item responses were generated for a fixed number of simulees at each of 31 equally-spaced   
points between 3.0 and +3.0, employing the 3PL model and the item parameter estimates.  The 
number of simulees at each    point varied across conditions.  Throughout the simulation, these 
item parameter estimates were treated as “true” item parameter values that were known, 
eliminating the possibility of differences due to item parameter estimation (e.g., different 
calibration programs and estimation algorithms).  That is, all BMEN (0,1) information functions 
were computed using the true item parameter values summarized in Table 1 and Figure 1. 

The simulated CAT for the study matched the actual operational implementation of the CAT 
testing program as much as possible, including the use of Sympson-Hetter (1985) exposure 
control and Lord’s (1980) maximum information item selection procedure.  The study employed 

the scoring procedure used in the operational CAT administration:  provisional s were obtained 

using Owen’s (1969) Bayesian sequential method and final s using the Bayes modal method 
with no limit imposed on the maximum or minimum values.   In generating item exposure 
control parameters via the Sympson-Hetter procedure, separate simulations were conducted for  

̂
̂
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Figure 1. Distribution of Item Parameter Estimates in the 600-Item Pool  

a. a Parameter                                                                b. b Parameter 

 

 

 

 

 

 

 

 

 

 

c. c Parameter                                                                       d.  Ln(a)  

 

 

 

 

 

 

 

 

 

 

 

each of the differing simulated test lengths (see “Simulation Conditions” below), where the 
maximum exposure rate was set to equal the exposure rate observed in paper-and-pencil 
administrations of the AR test, i.e., 1/6. 

Simulation Conditions 

Two factors were manipulated in the simulation:  test length and sample size.  The 
manipulated simulation conditions were as follows: 

1.  Test length:  10, 15, 30, and 60 items. 

The test length of 15 items matched that used in operational CAT administrations of the 
AR test.  The test length of 60 items was intended to simulate an asymptotic (i.e., long 
test) condition. 
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2.  Number of simulees at each equally-spaced   point (Nk):  100, 500, 1,000, and 2,000.  

Total sample size (N) was determined by the number of simulees at each equally-
spaced   point.  For example, N was 3,100 simulees under the Nk = 100 condition 
where 100 sets of responses were generated at each of the 31  points. 

Each combination of test length and Nk  was replicated five times. 

 

Results 

Appropriateness of the Global-Slope Method 

Use of the global-slope method assumes that it is appropriate to fit a linear line to the entire 
range of   and .  Figures 2 –5 present scatterplots of BME-N(0,1)̂   and final from 

Replication 1.  The remaining replications produced substantially similar scatterplots and are not 
included here. Figures 2 and 3 for the shorter-length tests seem to suggest that the relationship 
between 

BME-N(0,1)̂

  and is almost linear, but slightly S-shaped.  What is troubling about these 

plots, however, is a gap that is present on the upper-right corner of each plot, indicating that 
clearly shrank toward the mean of the prior and did not reach 3.0 (the maximum

BME-N(0,1)̂

BME-N(0,̂ 1)   

value used).  This “failing-to-reach-3” feature can be attributed to the lack of more difficult items 
in the pool that was noted earlier in the Method section.  

In contrast, Figures 4 and 5 for the longer tests demonstrate substantial linearity between   

and .  Additionally, the plots seem to exhibit no shrinkage toward the prior mean in the 

sense that is obviously reaching 3.0.  Furthermore, the R2s for the regression of final 

 on 

BME-N (0,1)̂

BME-̂

E-N(0,1)

N(0,1)

BM̂   were extremely consistent across all five replications.  Regardless of Nk, the R2 

was .94 or .95 for the 10-item test, .96 or .97 for the 15-item test, .98 or .99 for the 30-item test, 
and .99 for all the 60-item tests. 

In sum, the linearity assumption of the global-slope method seemed to be satisfied when test 
length was longer (e.g., at least 30 items), while it was slightly violated on shorter tests (e.g., 15 
or fewer items).  More important, the lack of difficult items in the pool caused Bayesian    
estimates on the 10- and 15-item tests to shrink toward the mean of the prior and fail to attain the 
maximum  value of 3.0.  As can be seen in the next section, this has an implication for the 
global-slope method.  No such shrinkage was observed for the 30- and 60-item tests. 
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Figure 2. Scatterplots of Final  and BME-N(0,1)̂    

From 10-Item Simulated Tests (Replication 1) 
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Figure 3. Scatterplots of Final  and BME-N(0,1)̂    

From 15-Item Simulated Tests (Replication 1) 
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Figure 4. Scatterplots of Final  and BME-N(0,1)̂    

From 30-Item Simulated Tests (Replication 1) 
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Figure 5. Scatterplots of Final  and BME-N(0,1)̂    

From 60-Item Simulated Tests (Replication 1) 
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Comparisons of BME Score Information Functions From the Three Approaches 

The information functions from the three methods from Replication 1 are plotted in Figures  
6 – 9.  Once again, these information functions were very similar across all five replications. 

 

Figure 6. Information Functions for BMEN(0,1)  

Scores From 10-Item Simulated Tests (Replication 1) 
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Figure 7. Information Functions for BMEN(0,1)  

Scores From 15-Item Simulated Tests (Replication 1) 
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Figure 8. Information Functions for BMEN(0,1)  

Scores From 30-Item Simulated Tests (Replication 1) 
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Figure 9. Information Functions for BMEN(0,1)  

Scores From 60-Item Simulated Tests (Replication 1) 
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 On the shorter tests (Figures 6 and 7), the local and quasi-local information functions are 
very similar, particularly when Nk is 500 or larger.  Although the global-slope information 
functions are fairly comparable on the lower half to those based on the local and quasi-local 
methods, they clearly differ on the upper half with a distinctive rise on the high end.  This rise on 
the upper end is a result of the “failing-to-reach-3” phenomenon noted earlier (i.e., shrinkage 
toward the prior mean), which, in turn, is a result of the lack of more difficult items in the pool. 

Thus, the insufficient number of difficult items, which is unrelated to the global-slope 
method, confounded the results.  If the pool had contained as many difficult items as easier 
items, the results for the global-slope method, even on the shorter tests, would plausibly have 
been more comparable to those from the other existing methods.  Since the plots seem 
sufficiently informative at this point, numerical comparative results will be reported in a future 
report when the same comparisons are made using a fuller pool.  See the Discussion section for a 
more detailed explanation of why the shortage of difficult items in the pool affected only the 
global-slope method’s results.   

In contrast, all three methods produced relatively similar information functions on the 30- 
and 60-item tests, particularly for Nk of 500 or larger (Figures 8 and 9).  Given that the 
assumption of the global-slope method was met on the longer tests, this came as no surprise.  
Information functions of the global-slope method seem to have a tendency to be more similar to 
those of the quasi-local method than to those of the local method.   

Discussion 

Summary and Conclusions 

This study evaluated how a new procedure for estimating information for scores from CAT 
administrations (i.e., the global-slope method) compared to two existing procedures (i.e., the 
local and quasi-local methods).  It focused on Bayes modal  estimates with a N(0,1) prior.  A 
fundamental premise of the global-slope approach is a single linear relationship between  

and over the entire   range.  The linearity assumption was found to hold for longer tests (e.g., 
30 or more items).  As expected, shorter tests (e.g., 15 or fewer items) yielded nearly linear, but 
slightly S-shaped scatterplots of

̂

  and .  Unfortunately, due to a confounding factor 

caused by the pool, the study was unable to assess the impact of the minor violation of the 
assumption on the information functions of the shorter tests. 

BME-N(0,1)̂

The confounding element was a lack of more difficult items in the pool.  How did this pool 
characteristic affect information functions for the global-slope procedure?  First, it caused 

 for high ability simulees to shrink toward the prior mean of 0 and fall short of 3.0, the 

maximum
BME-N(0,1)̂

  value, on the 10- and 15-item tests.  This translated to increasingly smaller 
conditional SEMs on the higher end when they typically get larger toward the maximum (and 
minimum)  values.  As noted above, the information function in general has the SEM in the 
denominator and the slope in the numerator.  Because, in the case of the global-slope method, the 
SEM (the denominator) is “local” (i.e., for one  value) while the slope (the numerator) is 
“global” (i.e., constant across the  range), increasingly smaller SEMs meant increasingly larger 
information values, hence a fish-hook rise on the upper end for the global-slope method. 

Why were information functions for the local and quasi-local methods not influenced by the 
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same pool characteristic, even on the shorter tests?  Simply stated, it is because both the slope 
and the SEM are “local” in the local and quasi-local methods.  Take Figure 2 as an example (any 
Nk):  The conditional SEM is very small at a   of, say, 2.8, but the “local” slope must be even 
smaller— a best-fitting linear line through a tiny area around the  should be practically flat, that 
is, near zero.  Thus, information on the upper end would be smaller than it is in the middle and 
unaffected by the smaller SEMs. 

Information functions of the local and quasi-local methods that are not influenced by the 
difficulty of a pool are a mixed blessing.  On the one hand, they seem to be more robust in the 
sense that they produced normal-looking information functions despite the pool characteristics.  
On the other hand, if you would like to look at score information functions to see if you have a 
good quality pool, you might find some use for a method that is not as robust and might be more 
“diagnostic,” indicating an area of improvement. 

If it is too challenging to improve a pool that is not well balanced in terms of difficulty, there 
seem to be at least two ways to compensate for the need for more difficult (or easy) items.  One 
way is to use another type of IRT score— the maximum likelihood estimator (MLE).  Our 
previous study (Ito, Pommerich, & Segall, 2009) made the same comparisons as in this study, 
employing the same pool and simulation conditions.  The previous study, however, used the 
MLE, and the results exhibited nothing unusual.  This is not surprising, considering that the MLE 
is the BME with a uniform prior.  There was no shrinkage toward the mean of a prior and 
therefore no “increasingly smaller SEMs” on the high   end.  Another way is to increase test 
length.  The current study demonstrated that longer tests (e.g.,  ≥ 30 items) were not impacted by 
an insufficiently difficult pool, and their information functions looked reasonable for all three 
methods and comparable.  That said, it probably is not easy to introduce these changes to an 
already established testing program.  CAT testing programs that are just starting might take these 
points into consideration in deciding on test length and/or the type of score for reporting. 

Future Research 

Because the insufficiency of difficult items in the pool clearly confounded the results for the 
shorter tests, we need to revisit BMEN (0,1) information functions with an augmented pool.  
Judging from the results for the longer tests which do not appear to have been impacted by the 
pool characteristics, BMEN (0,1) information functions of the global-slope procedure might tend to 
be more similar to those using the quasi-local procedure than to those based on the local 
procedure.  However, it is more or less speculative at this point.  With the MLE, the global-slope 
approach produced information functions that tend to be more similar to those of the local 
approach than to those of the quasi-local approach. 

Another alternative method of estimating score information for CAT evolved during the 
previous study.  Because different examinees usually take different sets of items in a CAT 
administration, there can be as many score (or test) information functions as the number of tests.  

What if the individual information functions are averaged conditionally on   or ?  That is, 

compute the score information for all examinees at a given 

̂
  (or ) level, average the 

information values at the 

̂
  (or ) level and repeat the process for all ̂   (or ) levels.  Might it 

be a reasonable way to summarize the amount of information contained in all the s that are 
based on different tests?  This method (referred to here as the conditional averaging method) 
would be a departure from the typical way of estimating score information as a function of the 

̂
̂
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slope of  on ̂   and the standard error of measurement of  for a given ̂  , but it might be an 
interesting comparison. 
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