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There are at least two types of adaptive achievement testing. In

the first type, if there is little variability in achievement at testing time
and the purpose of measurement is to classify students into one of two cat-
egories (e.g., in mastery testing), then it becomes profitable to adapt the
length of the test to the individual. 1If, on the other hand, there is a fair
amount of variability in achievement and the purpose of testing is to assess
level of achievement, then in the second type it becomes profitable to adapt
both the length and difficulty of the test to each individual.

Ferguson (1969) implemented an achievement testing system for the first
type which, through the use of decision theory, tested an individual until
a decision could be made that the student had reached a prespecified level
of achievement. No one has implemented a computer-based achievement testing
system for the second type, although there has been an increasing amount of
research on computer-based ability measurement.

In implementing an adaptive achievement testing system, serious consid-
eration should be given to the kind of test theory that will serve as the
psychometric framework. This is important because it has implications for
the creation and calibration of the item pool. The present study is based
on item characteristic curve (ICC) theory, which seems to be a more flexible
theory compared to theories that could be used in the two types of achieve-
ment testing situations described above. Accordingly, this paper is concerned
with two questions: (1) Is it possible to construct an item pool for achieve-
ment testing based on ICC theory--~that is, do ICC models fit observed achieve-
ment test data? (2) If the answer is positive, what is the efficiency of an
adaptive achievement test compared to a typical paper—and-pencil classroom
examination?

The study was done with the cooperation of the Biological Sciences Depart-
ment at the University of Minnesota. An introductory course was chosen because
it had the largest enrollment. The course is offered every quarter, and enroll-
ment ranges from 1000 to 1,500 per quarter. It is open to all students; both
majors and non-majors in the natural sciences enroll. Students are, for the
most part, freshmen; but a substantial number of sophomores also enroll. The
sexes are about equally represented. According to the course staff, there
seem to be no changes in the demographic characteristics of the students from
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quarter to quarter., Instruction is by means of videotaped lectures shown on
closed circuit television and a compulsory laboratory. The course is divided
into three units. The first unit covers Chemistry, Energy, and The Cell,

in that order; the second unit covers Heredity and Reproduction; and the third
unit covers Ecology and Evolution. At the end of each of the first two units

a midquarter examination is given. The final examination not only covers these
units, but in addition covers the third unit. This paper will be concerned
primarily with the first unit.

The Item Pool

Most research to date on adaptive testing has been based on verbal ability
(e.g., Lord, 1975; Vale & Weiss, 1975). Typically, verbal items are homogeneous
in content; therefore, one of the most important assumptions of latent trait
theory, unidimensionality, is justified. By contrast, in achievement testing
items are not homogeneous in content. The question arises whether or not a
unidimensional model is adequate. There is, of course, no general answer to
the question; it must be investigated in every new setting.

Development of the Item Pool

The raw data from which the item pool was formed consisted of answer sheets
for the first midquarter exam from a previous academic year. The data matrix
for each quarter consisted of between 1,000 and 1,500 respondents and 55 items.
Data for each quarter were analyzed separately by Urry's ESTEM program (see
Urry, 1976) for estimating item parameters using a minimum chi-square criterion.
Table 1 shows the number of items originally available in each of the content
areas as well as the number rejected by the program. The program rejects an
item if it cannot find a reasonable estimate of one of the three item parameters.
This occured with 227 of all items, as seen in Table 1. The remaining 787% of
the items presumably fit the three-parameter response model. However, the
fact that it was possible to obtain parameters is not in itself evidence of fit.
Since the items were from several content areas, it was decided to investigate
fit more closely.

Table 1
Summary of Calibration Study
Chemistry Cell Energy Total
Unique items available! 53 60 33 146
Items rejected 16 13 3 32
Percent of items rejected 30 22 9 22
Items calibrated 37 47 30 114

Includes items administered at the final exam.

Dimensionality of the Pool

Correlation of item parameter estimates. It was reasoned that if there
were any departures from unidimensionality, they would probably result from
content area specific effects. To determine whether or not this was true,for
each item a new set of parameter estimates was obtained. These were derived
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by including only items which belonged to a given content area. The rationale
for this method was that if the different content areas measured a single
dimension, the item characteristic curve estimated within a content area would
be interchangeable with that derived for the entire examination. That is,

the regression of content-area-derived parameters on parameters derived from the
total examination would have a slope of 1.0 and an intercept of zero.

This was not found to be the case for either the g parameter or the c
parameter. (This may have been attributable to the fact that there were relatively
few items in each content area; it is known from simulation studies that a large
number of items is required to obtain reliable estimates of the item parameters.)
The results for the b parameter, on the other hand, showed a great deal of
stability.

Table 2 shows the regression statistics for the regression of content-
area-based b estimates on total test-based estimates for the two first mid-
quarter exams. The prediction that the slope would be 1.00 and intercept would
be zero was shown to be justified when taking the standard error into account
for the first content area in both tests. For the second content area the
slope was still 1.00, but the intercept no longer was zero in either midquarter.
Finally, for the third content area neither the slope nor the intercept were
what they should be. This replicable trend suggests that the metric based on
the entire test is not interchangeable with the metric defined within content
areas. That is, there is a unique component associated with each content area
which was ignored when calibrating all items at once.

Table 2
Regression Statistics for the Regression of the
Content—Area-Based b Estimates on the Total Test-Based Estimates

Slope Intercept
Slope S.E. Int. S.E. Correlation

Winter

Chemistry .94 .03 .00 .03 .99

Cell 1.08 .06 ~-.41 .09 .98

Energy .73 .08 .46 .13 .95
Spring

Chemistry 1.03 .07 .16 .08 .98

Cell .93 .04 -.31 06 .99

Energy .72 .12 .11 .20 .91

Correlation of achievement estimates. The next question was concerned with
the extent of the content effect. To answer this question each of the three
content areas was scored using the two sets of parameters. It was originally
planned to use maximum likelihood scoring but difficulties occurred because
there were a large number of cases which did not converge, presumably because
some of the content areas had relatively few items. As a result, the data
were scored using Owen's (1975) sequential procedure. The inter-content area
correlations are seen in Table 3. Both of these matrices could be fitted
perfectly by a one~factor model. The maximum likelihood estimates of the loadlngs
on this factor and unique variances are also shown in Table 3.
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Table 3
Observed Correlations Among Content Area Scores Using
Content-Area- and Test-Based Item Parameter Estimates

Content-Area-Based

Content Chemistry Cell Energy A Uniqueness
Chemistry .856" .836 .29
Cell .607 .895 .726 47
Energy .511 LA44 1.052 .611 .63
Total Test-Based
Content Chemistry Cell Energy A Uniqueness
Chemistry .836! .834 .29
Cell .623 .937 . 747 A4
Energy .594 .532 .798 712 .50

Absolute Difference Between Correlations, Loadings, and Uniquenesses

Chenmistry .020 .002 .00
Cell .016 .042 .021 .03
Energy .083 .088 .254 .101 .13

lstandard deviations are on the diagonal.

From Table 3 the importance of the content effect can be deduced by
computing the difference in unique variances in the two solutions. As seen
in Table 3, the estimated unique variances were the same or larger for the
content-area-based solution. This is consistent with the earlier hypothesis
that there is a unique component associated with performance on each content
area beyond that accounted for by general achievement. These differences in
unique variance are the proportion of variance attributable to the content
area component. In the content areas of Chemistry and Energy this variance
was negligible; in the content area of The Cell the variance was not negligible.

Conclusions. These results suggest that in calibrating an achievement test
item pool, attention should be given to potential content area influences. It
should be pointed out that factor analysis of inter-item correlations is not
likely to provide assistance. Such a factor analysis was run and, although
a predominant single factor was found, there was no detectable trace of con~-
tent factors. The regression analysis previously reported appears to be much
more powerful. Its usefulness, however, is limited because the analysis can
be done only if subsets of items can be identified beforehand as belonging
together.

Comparison of the Adaptive and Conventional Tests

Despite the presence of
be calibrated separately to
enough items available. In

ed; and the adaptive testing of achievement proceeded.

content area effects, each content area could not
form separate item pools, since there were not
effect, the presence of content effects was ignor-
Although this

probably introduced some bias into the results, these scores would not be
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Table 4
Values of the a, b, and ¢ Parameters for Items
Used in the Conventional Test

Item a b c

3060 .86 -1,31 .29
3067 1.07 -.76 .21
3065 1.17 -1.66 .35
3056 .71 .89 .26
3063 .91 1.51 .35
3073 1.43 -1.57 .31
3058 1.05 -.43 .35
3274 .85 -1.05 .26
3271 .95 1.32 .30
3055 1.71 -.65 .24
3072 1.02 .65 .32
3057 1.20 -1.35 .26
3064 .94 .86 .24
3069 .88 ~-.01 .35
3054 1.29 -.93 .31
3066 1.05 .53 .31
3268 .97 -.28 .18
3267 1.02 -1.22 .23
3272 1.06 -.81 .35
3070 .95 ~1.28 .22
3008 .96 -1.75 .18
3018 1.31 .29 .29
3062 1.47 43 .30
3061 .95 1.57 .30
3262 .81 A7 .35
3263 .99 2.29 .35
3447 1.18 .93 .32
3443 1.07 ~1.64 .35
3438 .70 .21 .27
3448 1.40 .73 .30
3435 .83 -.61 .35
3439 1.36 .64 .32
3436 1.12 1.59 .35
3449 .91 1.26 14
3440 1.52 2.00 .30
3437 1.95 .66 .28
3427 .92 1.51 .26
3445 1.19 44 .34
3444 .88 .78 .35
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used for grading purposes; therefore,the bias could not affect the individual
personally. Comparing modes of administration is often difficult because of
the inherent differences of the two testing procedures (cf. Sympson, 1975).
Nevertheless, this is a question that must be faced. This study compared the
first midquarter Biology examination covering the areas of Chemistry, Energy,
and The Cell and a stradaptive test covering the same content areas. The
data were collected during fall quarter 1976 and are independent of the data
used in the item calibration.

Tests

Classroom test. The classroom exam consisted of the 39 items for which
item parameter estimates were available out of the 55 items in the actual test.
These 39 items had a mean discrimination of 1.09., The distribution of diff-~
iculty was slightly peaked. (It should be pointed out that the criterion
used by the Biology staff for assembling the test was a mixture of psycho-
metric, pedagogical, and content considerations.) The item parameters for
the 39 items are seen in Table 4,

The stradaptive test, The four major ingredients of the stradaptive
strategy are the item pool, entry point, branchivg rule, and termination
criterion (Weiss, 1973).

The item pool consisted of the 114 items described earlier (see Table 1).
The items were assigned to one of nine strata in such a way that there were
approximately the same number of items in each stratum. Within stratum the
items were placed so that although the content areas were alternated, the
most discriminating items were at the top of the stratum. The stradaptive
item pool is seen in Table 5.

The entry point for the stradaptive test was determined by the students'
reported GPA. For example, if the student reported a GPA of 3.75 or higher,
the entry point was at the ninth stratum. At the other extreme, if the student's
GPA was less than 2.00, the entry point was the first stratum (i.e., the
easiest stratum).

The branching rule used in the present study was to present an item from
the next more difficult stratum following a correct answer and an item from
the next less difficult stratum following an incorrect answer. After respond-
ing to the first item in the entry stratum, the student was given the first
item from the next lower stratum if the answer was incorrect or the first item
from the next higher stratum if the answer was correct. Thereafter, the stu-
dent was branched to the next unadministered item in the next higher or lower
stratum,depending on whether the answer was correct or incorrect. The
exception to this rule occurred if the testee was at the most difficult stratum.
In that case,after a correct answer the next item in that same stratum was
given. Similarly, foér the student in the least difficult stratum, an incorrect
response led to the next item in that stratum.



in the Stradaptive Test by Stratum

Table 5
Values of the a, b, and ¢ Parameters for Items

Item a b c Item a b e Item a b e
Stratum 9:(most difficult): Stratum 6: Stratum 3:
3209 2.77 2.29 .29 3047 1.66 44 .29 3021 1.96 -.49 .21
3417 2.67 3.02 .35 3213 .93 .52 .35 3217 1.06 -.48 .14
3033 1.54 2.44 .35 3041 1.51 .23 .35 3038 1.71 -.93 .21
3251 2.60 2.39 .35 3405 1.40 .55 .32 3215 1.59 -.82 .23
3406 1.31 2.48 .35 3218 .82 .58 .12 3011 1.32 -.86 .20
3045 1.02 2.48 .29 3019 1.31 .29 .29 3216 1.27 -.62 .18
3242 .94 2.40 .35 3207 .70 46 .28 3221 1.25 -.52 .17
3407 1.02 2.41 .29 3431 .70 .28 .20 3049 1.15 -.71 .18
3241 .91 2.09 .13 3000 1.24 .52 .35 3255 1.14 -.72 .26
3414 .88 2.29 .32 3046 1.18 .24 .22 3246 1.10 ~-.72 .28
3402 .83 2.44 .35 3042 1.15 .37 27 3022 1.01 -.48 .30
3247 .82 2.42 .35 3050 1.13 .35 18 3017 .99 -.58 .16
3228 .67 2.49 .31 3034 1.01 .37 .28 3224 .80 -.50 .27
Stratum 8: . Stratum 5: Stratum 2:
3409 4.68 1.28 .00 3220 1.79 -.03 .26 3023 2.40 -1.15 .35
3234 3.54 1.73 .00 3005 1.43 11 .35 3202 1.81 -.99 .21
3018 .89 1.25 .35 3425 1.36 17 .23 3415 .85 -.96 .35
3204 1.14 1.66 .35 3039 1.12 12 .34 3245 1.34 -.96 .21
3422 1.47 1.50 .35 3214 1.12 .03 .23 3236 1.26 -1.20 .33
3411 1.36 1.23 .35 3412 1.12 .19 .35 3020 1.23 -1.28 17
3250 .91 1.94 .29 3051 1.29 .21 .28 3028 1.12 ~1.26 .35
3206 74 1.51 .21 3403 .99 .18 .19 3226 1.09 -.98 .20
3410 1.30 1.34 .31 3211 .88 .01 .13 3210 1.04 ~1.22 .35
3429 1.25 1.24 .28 3002 .82 .13 14 3239 1.04 -1.13 .21
3419 1.23 1.48 .25 3426 .68 .07 .22 3013 1.00 -.97 .39
3421 1.17 1.15 .35 3423 .66 .16 .27 3257 .98 -1.02 .25
3427 .92 1.51 .26 3036 .92 -1.18 .16
3420 .68 1.62 .35 Stratum 4: 3014 .86 -1.24 .14
3238 .82 -1.06 .21
Stratum 7: 3256 2.31 -.33 .26 3032 .77 -1.06 .27
3408 2,51 1.05 .31 3430 1.15 -.30 29
3258 1.24 .81 .35 3031 1.47 -.33 .35 Stratum 1:
3432 1.72 .67 .35 3254 2.28 -.17 .27 3027 1.67 -1.38 .35
3048 1.35 .66 .33 3237 1.54 -.37 .18 3249 .91 -1.69 .17
3413 1.40 .76 .35 3404 .65 -.29 .35 3428 .90 -1.56 .35
3219 1.23 .62 .21 3244 1.35 -.44 .23 3205 1.25 ~-1.53 .19
3035 .90 .68 .28 3240 .98 -.28 .15 3235 1.15 -1.40 .28
3433 1.35 .86 .30 3208 .76 -.16 .12 3029 1.13 -1.50 .28
3230 .90 .87 .35 3006 .77 -.37 .33 3201 1.07 -1.34 .23
3012 .75 .80 .38 3259 .69 -.41 .20 3008 .96 -1.75 .18
3260 .71 .84 .28 3252 .79 -1.77 .35
3003 .96 -1.76 .34
3044 .87 -1.42 .15

—6L€-
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The termination rule used in this study was that testing was stopped if
in any stratum a student had answered 5 items and 20% or more of them had
been incorrect answers, or if 50 items had been administered, whichever
occurred first.

Scoring. Both the adaptive and classroom data were scored by the method
of maximum likelihood, using the Newton-Raphson numerical procedure with a
set of locally written programs. For scoring purposes the item parameter
estimates were edited so that the maximum discrimination was 2.50, the maximum
absolute value of the difficulty parameter was set to 3.00, and the maximum
"guessing'" parameter was set to .35. Less than 1% of the ability estimates
failed to converge during scoring.

Criteria for Comparison

One of the most important contributions of latent trait theory to psycho-
metrics has been the concept of information. Unlike reliability and related
concepts, information is a local measure of the accuracy of estimation of a
testee's achievement levels.

Samejima (1969) defines the test information function, in general, as

3%L (8)
T®) = —2%— > [1]
962

where Lv(e) is the log~likelihood function of the response vector v.

Thus, test information is the expected value of the second derivative of the
log-likelihood function. This apparently arbitrary quantity is useful because
its reciprocal, 1/I(8), is the minimum sampling variance of an estimator.

As such, it is a measure of the best that could be accomplished in estimating
with a given response model if an appropriate scoring procedure is used.
Maximum likelihood estimation provides, asymptotically, estimators with that
property.

Since it is an expected value, information is, in a sense, a prediction of
the model; and in fact, it does not depend on a response vector. This is a
useful property when making theoretical comparisons. For empirical compari-
sons, however, it seems more appropriate to base the result on a statistic
closer to the data. That statistic may be called the observed information
(cf. Edwards, 1972). Samejima (1973) has referred to observed information as
the response vector information function. Equations 2 and 3 give, respectively,
the expressions for the test information function and the response vector
information function.

I(® ID%a? ¥ -P 242 -
(©) Pa, [DLg(e)] g(e)D a, ‘P[DLg(G) Log cg] [2]

_/Z\- 222\1; - 2 2 -
®) gD ag [DLg(G)] ug(6)D ag W[DLQ(G) log cg] [3]



-381-

Equations 2 and 3 are identical with the exception that the second term on
the right is weighted by P(6) (i.e., the probability of passing the item) in
one case and by u (=1 if the answer is right, O otherwise) in the other.

To the extent that P(8) is an accurate estimate of the probability that u =1,
these two kinds of information functions will differ very little. g

Results

Approximately 350 students came to the laboratory for testing between
one day and three weeks after the classroom exam. For their participation,
they received points toward their final course grade and a computer-printed
report of the questions they had taken as part of the adaptive test.

Adaptive vs. classroom test. Figure 1 shows the response vector infor-
mation functions for the adaptive and classroom exams. To obtain the curves
the maximum likelihood estimates of & between -2.00 and +2.00 were divided
into intervals of .20. The mean observed information for testees in a given
interval was assigned to the midpoint of that interval. These values are
plotted in Figure 1. The adaptive test is far superior; however, several
factors must be considered to put this in perspective.

Figure 1
Response Vector Information Curves for
Classroom Conventional Test and Adaptive Test

Classroom Exam (Mean Number of Items = 35)

6.4 —
— — — Adaptive Exam (Mean Number of Ttems = 27)
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4.8 —
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N
|

0.0 T T T T ] T T T T T
2.5 -2.0 -1.5 -1.0 -.5 0.0 5 1.0 1.5 2.0 2.5

Estimated Achievement Level (é)
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As indicated earlier, the stradaptive test had variable test length.
The mean test length in the 20 intervals of O was fairly constant. The
mean test length across all students was 27 items; for the conventional test
the mean was 35. Despite the fact that the stradaptive test was shorter,
on the average, it yielded more information. To see in retrospect what
the results would have been with a shorter adaptive test, the adaptive data
were rescored reducing the maximum test length from 50 to 40, 30 and 20
items. The mean number of items for the maximum lengths of 40, 30, and 20
were respectively 25, 22, and 17 items. The results are seen in Figure 2.
Note that the adaptive test with a maximum test length of 20 still yielded
a substantially higher amount of information compared to the classroom exam,
while shortening the test considerably.

Figure 2
Response Vector Information Curves for
Classroom Conventional Test and Adaptive Test at Four Test Lengths

Classroom conventional, mean number of items = 35
— — — Adaptive max. length = 50, mean number of items = 27
seseseces Adaptive max. length = 40, mean number of items = 25
L4 T Adaptive max. length = 30, mean number of items = 22
6.4 1 _. . Adaptive max. length = 20, mean number of items = 17
567 /;-"‘:\\i‘*
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Adaptive vs. an ideal conventional test. These results are not surpris-
ing because the conventional test used for comparison was not designed to
be optimal. A fairer comparison might have been to contrast the adaptive
test against an ideal conventional test. For the ideal conventional test the
top items were chosen from each of the seven most difficult strata until a
maximum of 25 items was reached. This resulted in a conventional test with
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mean g=1.70 and approximately rectangularly distributed b's in the interval
-1.00 to 3.00. The test information function of the conventional test and

the response vector information function for the adaptive test with a maximum
length of 20 and 40 items are seen in Figure 3.

The information for the optimal conventional test was very low for 6's
below -1.00. This was a function of the distribution of item difficulties
chosen for the test. It was reasoned that an optimal achievement test need
not have very high information in the lower end of 6. In addition, by con-
centrating the difficulty of the items in a restricted range of 6,the conven-
tional method was given a better chance against the adaptive test. The maximum
information of this optimal conventional test was 4.59 at 6=1.10. The adaptive
information functions also peaked at 6=1.10;and the shortest adaptive test
yielded 107 more information with 30% fewer items on the average. Compared
to the information for the optimal conventional test, the information for the
adaptive test with a maximum length of 40 items (which resulted in a mean of
25 items per student, i.e., the same number of items as in the optimal con-
ventional test) resulted in an even larger increase in information.

Figure 3
Information Curves for Optimal Conventional Test
and Adaptive Test at Two Test Lengths
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Summary and Conclusions

Two questions have been addressed in this paper. The first question
was whether it is possible to construct an item pool based on the ICC model
which could be used in adaptive achievement testing. In general, the answer
was found to be positive. The spread of difficulties and discrimination in
the item pool were such that adaptive testing would be effective. However,
unique response components associated with the different content areas were
also identified. The magnitude of these components was not large,but must
have introduced certain biases into the comparison of the two testing pro-
cedures. As a result of ignoring the influence of content-specific factors
on test performance, the parameters of the estimated item characteristic
curves derived from the entire test may have included a mis-specification
bias. Since the adaptive testing procedure relied on these possibly mis-
estimated item parameters for the sequential selection of items, it is
likely that the advantage of adaptive testing over conventional achievement
testing was underestimated.

The second question addressed was how effective adaptive achievement
testing is compared to conventional testing. The answer was that adaptive
testing can drastically reduce testing time while yielding more precise
scores than an actual conventional or an ideal conventional test. Although
the answer is gratifying, it is one which should be expected from theoretical
studies. In fact, the stage is rapidly being approached in which the in-
creased efficiency of adaptive testing is no longer an issue. Future research
in adaptive achievement testing should concern itself with the truly unique
needs of achievement testing. Two such needs are the ability to perform multi-
content branching and the need to assess growth. Work on multi-content
branching is already under way (Urry, 1977; Weiss & Brown, 1977). Little,
however, seems to have been done in the areas of the assessment of growth by
means of computerized testing. Hopefully, that gap will be filled in the
near future.
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