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A Procedure for Decision Making 
Using Tailored Testing 

MARK D. RECKASE 

There are many applications of testing technology that require deci­
sions about whether a person is above or below a criterion score. 
Criterion-referenced testing and its special case, mastery testing, are ex­
amples of such a decision. In the criterion-referenced testing application, 
it would be especially useful if decisions could be made quickly and con­
veniently for each student in an individualized instruction program. The 
recently developed technology of tailored-adaptive testing has the poten­
tial to fulfill the requirements of such a testing system. There is no gener­
ally accepted procedure for making classification decisions using tailored 
testing, however, probably because these testing techniques are still rela­
tively new. The few procedures that do exist are either based on randomly 
sampling items (Epstein, 1978; Sixtl, 1974), which does not take advan­
tage of the power of tailored testing, or on heuristic techniques (e.g., see 
Chapter 13), which do not have a sound theoretical base. The purpose of 
this chapter is to present a decision procedure that operates sequentially 
and can easily be applied to tailored testing without loss of any of the 
elegance and mathematical sophistication of the examination procedures. 
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TAILORED TESTING PROCEDURES 

Numerous tailored (i.e., adaptive, response contingent, sequential) 
testing procedures now exist in the research literature, ranging from sim­
ple two-stage procedures (Betz & Weiss, 1973) to complex Bayesian pro­
cedures (Owen, 1969; see Weiss, 1974, for a good review of the tailored 
testing procedures that were developed prior to 1974). Although many 
procedures exist, only tailored testing procedures using item response 
theory (IRT) and maximum likelihood ability estimation will be considered 
in this chapter. It will also be assumed that the tests are administered to 
the examinees on a computer terminal and that the items are selected to 
maximize the value of the information function at the previous ability 
estimate. Despite the narrow definition of tailored testing used in this 
chapter, the results should generalize to any procedure based on IRT. 

In applying the decision procedure discussed in this chapter, two 
specific IRT models will be used: the one- and three-parameter logistic 
models. Although any other IRT model could just as easily have been 
used, these models were selected because of their frequent appearance in 
the research literature and because of the existence of readily available 
calibration programs (e.g., LOGIST and BICAL) and tailored testing pro­
grams (Reckase, 1974). 

SEQUENTIAL DECISION PROCEDURES 

A cursory review of the statistical literature indicates that much has 
been written about sequential estimation and classification procedures. 
Although somewhat more obscure than ANOVA and regression proce­
dures, most intermediate-level mathematical statistics books include at 
least one chapter on sequential analysis (for example, see Brunk, 1965, 
chap. 16). In a review of the extensive literature on this topic, it has been 
found that most procedures fall into one of three categories: (a) sequential 
probability ratio tests (SPRT; Wald, 1947); (h) Bayesian sequential proce­
dures (e.g., DeGroot, 1970); and (c) curtailed single sampling plans 
(Dodge & Romig, 1929). Of these procedures, only the Sl RT is narrowly 
specified; the other two refer to families of procedures rather than a single 
technique. 

Although these statistical procedures are widely applied for quality 
control, little use has been made of them in the area of mental testing, 
probably because operable sequential testing procedures did not exist 
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until recently. To date, most references in the testing literature to sequen­
tial decisions have used the SPRT (Epstein, 1978; Reckase, 1978; Sixtl, 
1974). The SPRT will therefore be described and studied here. Since the 
Bayesian procedures have not been fully developed for practical im­
plementation, and the curtailed sampling plans cannot readily be applied 
to the commonly used tailored testing procedures, they will not be dis­
cussed in this chapter. 

THE SEQUENTIAL PROBABILITY RATIO TEST 

The sequential probability ratio test (SPRT) was initially developed by 
Wald (1947) as a quality control device for use by the Armed Forces 
during World War II. In addition to Wald's (1947) excellent book on the 
subject, Epstein (1978) also clearly described this procedure. The proce­
dure will therefore be only briefly described here in order to generalize it 
so that it will more directly apply to tailored testing. 

Application to Mastery Decisions 

Wald originally developed the SPRT as a statistical test to decide which 
of two simple hypotheses is more correct. For example, it may be interest­
ing to determine whether a student can answer correctly 60% or 80% of 
the items in an item pool. The basic philosophy behind the procedure used 
to decide between these two alternatives is to determine the likelihood of 
an observed response to an item under the two alternative hypotheses. If 
the likelihood is sufficiently larger for one hypothesis than for the other, 
that hypothesis is accepted. If the two liJ<elihoods are similar, another 
observation is taken. Wald (1947) has shown that one hypothesis will 
always be selected over another after the administration of a finite set of 

items. 
To demonstrate this procedure, suppose an item is randomly selected 

from an item pool and administered to a student. If a correct response 
were obtained, the likelihood under H1 (8p% knowledge) would be .80, 
and the likelihood under H0 (60% knowledge) would be .60. To evaluate 
these likelihoods, Wald takes the ratio of the two, 

L(x = I\H1) .80 
L(x = 1\Ho) = .60 = 1.67. ( 12.1) 

If the ratio is sufficiently large, H1 is accepted; if it is sufficiently small, H 0 

is accepted; and if it is near 1.0, another observation is taken. The values 
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of this ratio that are considered sufficiently large or small depend on what 
is considered acceptable for the two possible decision errors: (a) accept­
ing H1 when H 0 is true (a error) and (b) accepting H0 when H 1 is true (/3 
error). 

Although Wald (1947) developed a procedure for determining the exact 
values of these decision points, the procedure is very complex and is 
seldom used. Instead, good approximations can be determined using the 
following formulas: 

lower decision point= B = (3/(1 -a), 

upper decision point =A = (I - {3)/a. 

(12.2) 

( 12.3) 

Thus, if the likelihood ratio is less than or equal to B, H 0 is accepted with 
error probability approximately f3. If the likelihood ratio is greater than or 
equal to A, H 1 is accepted with error probability approximately a. Ifthe 
ratio is between B and A, another item should be randomly sampled and 
administered and the decision rule implemented again. If a = .05 and 
f3 = .10, for example, the decision points would be at B = .105 and 
A = 18. Since the likelihood ratio (1.67) in the above example is between 
these two values, no decision would be made, and another item would be 
selected and administered. 

Since the responses to the items follow a binomial distribution in this 
example, a general expression for the likelihood ratio can be developed for 
the administration of n items: 

L(x1 ,x2 , •.• ,x,jH1) _ p}xt(l -p 1 )>~-r.x; 
L( IH) - \" X·(t )"-\"X· xt, x2, · · · , x, o Po ' -Po - ' 

= (Pt) :Ex; ( 1 - Pt) n-:l: x;, 

Po 1 -Po 
(12.4) 

where x1 is the score on item i (0 or 1), p 1 is the proportion of items in the 
item pool known by the student under H1 , and p 0 is the proportion in the 
item pool known under H0 • If 

L(xt, ... , x,jHt) 
( I ) 2:A, 

L x 1 , •.• , x, H 0 
( 12. 5) 

accept H 1 • If 

L(x1 , ••• , x,jH1 ) 

( I ) :sB, 
L x1 , ••• , x, Ho (12.6) 

accept H 0 • Otherwise, continue administering items. 
This procedure was originally developed to test simple hypotheses, but 

Wald (1947) has shown that the procedure operates in the same way for 
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composite hypotheses. For example, suppose it is desired to know whether 
a student knew more than some proportionp of the items in an item pool. 
In order to use the SPRT to make this decision, a region for which it does 
not matter which decision is made must first be selected around p, say, 
Po < p < Pt. If Po is close to p 1 , a very precise decision is required. If p 0 

and p 1 define a wide indifference region around p, a rather gross decision 
rule is all that is needed. The SPRT is then carried out in the same fashion 
as above, using Po and p 1 as the values for hypotheses H 0 and H 1 , respec­
tively. When the decision points A and B are computed as above, the 
error rates a and f3 hold for true values of p at Po and p 1 • For true values 
of p more extreme than p 0 or p 1 , the error rates are lower. 

Evaluating Outcomes 

In order to evaluate the properties of the SPRT, two functions have 
been derived: the operating characteristic (OC) function and the average 
sample number (ASN) function. The OC function is defined as the proba­
bility of accepting hypothesis H 0 as a function of the true proportion of the 
item pool known by the student. Although the derivation of the OC func­
tion is somewhat complex, the function can be approximated by the fol­
lowing two formulas: 

I -[(I - Pt)/(1 - Po)]h 
p = (ptf Po)h - [(I - Pt)/(1 - Po)]h 

( 12. 7) 

and 

[(I - (3)/a]h - I 
L(p) =[(I _ f3)/a]h _ [/3/(1 _ a)]h (12.8) 

These equations are used by substituting various arbitrary values of h and 
solving for p and L(p). L(p), the probability of accepting H 0 , is then plotted 
against p to describe the OC function. Figure 12.1 shows an OC function 
fora= .05, f3 = .10, Po= .6, andp1 = .8. Note that atp =Po the height 
oft he curve is equal to 1 - a, and at p = p1 , the height of the curve is equal 
to f3. Note that the OC function is dependent only on a, (3, p 0 , and p 1 • 

Also, the steeper the curve, the more accurate the SPRT decision rule. 
The ASN function is defined as the expected number of items required to 

make a decision at the various values of the true proportion of known items, 
E(n IP ). The formula for the ASN function for the binomial case described 
above is 

L(p) In B + [I - L(p):] In A 
E(njp) = p ln(p1/p0 ) +(I - p) ln[(I - Pt)/(1 - Po)J' (12.9) 
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:FIGURE 12.1. Example of the OC (solid line) and ASN (dashed line) functions. 

where all of the symbols are as described above and the logarithms are to 
the base e. Figure 12.1 also shows the ASN function for the example 
presented above. Note that the ASN function is highest between the 
points Po and p 1 and that the closer together the values of p 0 and p 1 are, the 
higher the curve in that region. In general, the lower the ASN curve, the 
more efficient the decision rule since fewer observations are required, on 
the average, to make a decision. 

Application to Tailored Testing 

Although the SPRT as defined above is a valuable technique for deci­
sion making in many situations, it makes an implicit assumption that limits 
its usefulness for tailored testing. The technique as presented assumes 
that the probability of a correct response is the same for all items in the 
pool. This assumption is reasonable if items are randomly selected andp is 
the proportion of the items that a student can answer correctly, but it is 
not reasonable if items are selected to maximize information at an ability 
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level. Under the tailored testing procedure assumed in this chapter, the 
probability of a correct response changes with each item, requiring a 
modification of the SPRT technique. 

Fortunately, a detailed analysis of Wald' s ( 1947) work indicates that the 
sequentii:il random sampling assumption is not necessary for the applica­
tion of the SPRT but is needed only for the derivation of the OC and ASN 
functions. The SPRT can be directly applied to tailored testing, but the 
OC and ASN functions must be determined in a different manner. One 
approach to determining these functions will be presented below. 

To demonstrate the application of the SPRT to tailored testing as de­
fined by this chapter, suppose that a tailored test is being used to deter­
mine whether a student has exceeded the criterion score specified for a 
criterion-referenced test. Although the method for selecting this criterion 
score is currently not well specified, assume that a value Oc has been 
determined and that students above this value on the latent achievement 
scale pass the unit, while those below Oc are given more instruction. 

In order to use the SPRT, a region must be specified around 8,. for 
which it does not matter whether a pass or a fail decision is made. If high 
accuracy is desired for the decision rule, a narrow indifference region 
must be specified, but more items will be required to make the decision. 
As the region gets wider, the decision accuracy declines, but fewer items 
are required. Values on the ability scale, 80 and 81 , mark the boundaries of 
this indifference region (00 < Oc < 01). Once these values have been 
selected, the likelihood ratio can be defined as 

L(xl, ... , Xnj81) 

L(xl, ... , XniOo) 

= ( n P;(Ol)XiQ;(01)1-xi) I ( n P;(OoYiQ;(Oo)1-Xi) , (12.10) 

where L(x1 , ••• , xnlek), k == 0, I, is the likelihood of the student's 
response string of n items administered so far; x1 is the 0, 1 score on item i: 
PMk) Is the probability of a correct response to item i assuming ability 
8k and the appropriate latent trait model; and Q;(Ok) == 1 - P;(Ok)· 

If the one-parameter logistic model is used as a basis for the tailored 
testing procedure, Eq. (12.10) becomes 

L(xl, ... , XniOI) 

L(xl, ... , Xnl8o) 

== (Ii: exp[xt(01 - h1)]) /(:ri: exp[x1(8o- h;)]) (l2 ll) 
t=I 1 + exp(81 - h1) i=I 1 + exp(80 - hi) ' · 
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where b; is the difficulty parameter for item i. Equation ( 12.11) can be 
simplified to 

L(xl, 0 0 

0, XnjOl) =( :f ·.((} - (} ))rr I+ exp(Oo- ha 
L(x1 , • • • , Xn J Oo) exp i=t .\' 

1 0 
i=

1 
1 + exp(01 - b;) · (12.12) 

The values of this likelihood ratio can then be used to test whether the 
student is above or below H,. using the same method presented earlier. 
If the ratio is greater than A = ( 1 - {3) /a, the student is classified as 
being above 8c; if it is below B = {3/(1 - a), the student is classified 
below the criterion score; otherwise, another item is administered. If 
the three-parameter logistic model is the basis for the tailored testing 
procedure, the SPRT procedure is applied in the same manner as above, 
except that 

exp[Da;(Ok - h;)] 
P/8k) = c; + (I - c;) 1 + exp[Da;(()k - h;)] 

is used in Eq. (12.10) instead of the simple logistic form. 

(12.13) 

The evaluation of the OC and ASN functions cannot be performed as 
easily as for the simple binomial model because of the presence of the 
item parameters in the formula for computing the probability of a correct 
response. Since the item parameters for the next item to be administered 
are dependent on the item pool used and on the responses to the previous 
items, the derivation of these functions depends on a complex string of 
conditional expectations. The conditional probabilities involved make the 
derivation of these functions, for all practical purposes, impossible. 
Therefore, the OC and ASN functions can only be approximated using 
simulation techniques, but these approximations should be adequate for 
most purposes. Note, however, that although the full OC function cannot 
be derived, the value of the function is equal to 1 - a at 80 and to {3 at 0

1
, 

assuming that the item parameters are known. In reality, these two values 
of the function are not known either, since in all cases except simulations 
the item parameters are only estimated. 

RESEARCH DESIGN 

The purposes of this research were (a) to obtain information on how the 
SPRT procedure functioned when items were not randomly sampled from 
the item pool; (b) to gain experience in selecting the bounds of the indif­
ference region, 80 and 01 ; and (c) to obtain information on the effects of 
guessing on the accuracy of classification when the one-parameter logistic 
model was used. 
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Tailored Testing Procedure 

To determine the effects of these variables, the computation of the 
SPRT was programmed into both the one- and three-parameter logistic 
tailored testing procedures that were operational at the University of 
Missouri-Columbia. Since these procedures have been described in de­
tail previously (Koch & Reckase, 1978), they will be merely summarized 
here. The programs implementing both models used a fixed stepsize 
method for branching through an item pool until both a correct and an 
incorrect response had been given. After that point, all ability estimates 
were obtained using an empirical maximum likelihood estimation proce­
dure. Items were selected for both models to maximize the item informa­
tion at the most recent ability estimate. 

To evaluate the decision-making power of the SPRT, subjects with 
known ability were needed. Therefore, a simulation routine was built into 
the tailored testing program in place of the responding live examinee. At 
the beginning of each simulation run, the true ability of the simulated 
examinee was input into the program. This value was used to determine 
the true probability of a correct response to the administered items based 
on the model used (one- or three-parameter logistic) and the estimated 
item parameters. A number was then randomly selected from a uniform 
distribution in the range from 0 to I. If the randomly selected number 
was less than or equal to the probability of a correct response, the item 
was scored as correct. If the randomly selected number was greater than 
the probability of a correct response, the item was scored as incorrect. 
This procedure continued for each item in the tailored test. 

Tailored tests were simulated 25 times at each true ability level using 
different seed numbers for the random number generator. True abilities 
from -3 to + 3 at .25 intervals were used for both the one- and three­
parameter models to evaluate the performance of the SPRT. In addition, 
simulations were run on a composite procedure in which the tailored 
testing procedure and the probability ratio calculations [Eq. ( 12.11)] were 
based on the one-parameter model, but the item responses were deter­
mined by using the three-parameter model. This was done to determine 
the effects of guessing on correct classification using the one-parameter 
logistic model. 

Criterion Values 

In computing the probability ratios, three sets of limits of the indiffer­
ence regions were used: ::±: .3, ::±: .8, ::±:I. A criterion of 8,. = 0 was assumed 
in all cases. The ratios were computed after each item was administered, 
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and the results were compared to an A value of 45 and a B value of .102. 
These were determined based on a = .02 and {3 = .10. A classification 
was made the first time these limits were exceeded. If the limits were not 
exceeded before 20 items had been administered (an arbitrary upper limit 
on test length), the values above 1.0 were classified as above Oc and the 
values below 1.0 were classified as below Oc. This is called a truncated 
SPRT. At each true ability used for the simulation, the proportion of the 25 
administrations classified below Oc and the average number of items ad­
ministered were computed. Plots of these values against the true abilities 
approximate the OC and ASN functions, respectively. These plots were 
made for each combination of indifference region and tailored testing 
method, yielding nine plots of the OC and ASN functions. 

Item Pools 

Two different item pools were used for this study. For the analyses 
using just the one-parameter or the three-parameter model, an existing 
pool of 72 vocabulary items was used. This item pool had an approxi­
mately normal distribution of difficulty parameters. For the one-parameter 
tailored test using three-parameter responses, an item pool with 181 items, 
rectangularly distributed between -3 and + 3 in difficulty, was used. 
These simulated items had constant discrimination parameters of .588 
(this value yields a discrimination of 1.0 when multiplied by D = 1.7 in the 
exponent of Eq. (12.13)) and a pseudoguessing parameter of .12. This 
simulated item pool was selected over the real vocabulary pool to have 
better control over the guessing parameters. The one-parameter tailored 
testing procedure used only the b values from the pool, whereas the item 
responses were determined on the basis of all three parameters. 

RESULTS 

One-Parameter Model 

Figure 12.2 shows the OC functions for the one-parameter logistic 
model based on the vocabulary item pool. The figure shows three graphs, 
one for each of the :±: .3, :±: .8, and :±: 1 indifference regions. Note that the 
curves are similar regardless of the indifference region. The data indicate 
that in all three cases the classification accuracy was nearly the same. 

The values of the curves at the limits of the indifference region give 
further evaluative information. At the lower point the OC function should 
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FIGURE 12.2. One-parameter OC functions for three indifference regions: solid line, ::':: .3; 
dashed line, ::':: .8; dotted line, ::':: 1.0. 

pass through 1 - a. At the - .3 value the curve is in fact .85 when it 
should be .98, showing the degrading effect of the restrictive stopping rule 
used by the tailored testing procedure. At the - .8 and - 1 points for the 
corresponding curves, the results are about as expected, being .94 and 
l.OO rather than .98. 

At the upper limit of the indifference region, the OC function should 
have a value of .1. For the + .3 case it is in fact .5 rather than .1, again 
showing the effects of truncating the procedure. At the values of+ .8 and 
+ l the values of the OC function were near or better than what they 
should have been based on the theoretically expected results. 

The ASN functions for the one-parameter model are given in Figure 
12.3. The curves plotted correspond to the ASN functions using indiffer­
ence regions of ±.3, ±.8, and :±: 1. It can immediately be seen that there 
was substantial variability in the average number of items needed to reach 
a decision, with the greatest number required when the indifference region 
was narrowest. It can also be seen that the largest expected number of 
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FIGURE 12.3. One-parameter ASN functions for three indifference regions: solid line, 
± .3; dashed line, ± .8; dotted line, ± 1.0. 

items was near the criterion score 0.0 and that the average number 
dropped off at the extreme abilities. The slight lack of symmetry in the 
curves is due to the fact that a was not equal to {3. For abilities beyond ± 1, 
an average of only about 3-5 items was needed for classification for the 
wider regions, but 6-11 items were needed for the ± .3 indifference region. 
Note that the ± .3 curve approached the arbitrary 20-item limit for the 
tailored tests. 

Figure 12.4 shows, for comparison purposes, the theoretical curves for 
the ASN and OC functions based on the ±.3 indifference region. An 
infinite number of items with difficulty 0.0 was assumed for the theoretical 
functions, and the tests were assumed to have no upper limit on the number 
of items administered. A comparison of Figures 12.2 and 12.3 with Figure 
12.4 shows that the OC curve for the theoretical function is steeper at the 
cutting point than the simulated curves, and that the ASN function is 
substantially higher. The difference in the theoretical and simulated OC 
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curves shows the effect of the 20-item stopping rule and the selection of 
items of differing difficulty. 

Three-Parameter Model 

The results of the simulation of the three-parameter logistic tailored 
test are given in Figures 12.5 and 12.6. Figure 12.5 presents the OC func­
tions for the three-parameter model, again using the indifference regions 
of± .3, ± .8, and ±I. Note that, as with the one-parameter model, the OC 
curves are fairly similar for the three indifference regions throughout most 
of the range of ability. However, there are discrepancies for the ±I indif­
ference region curve near the + 1 and -I points, indicating a decline in 
decision precision for that region. At the -.3 value for the ± .3 indiffer­
ence region, the value of the curve is . 96, fairly close to the . 98 theoretical 
value. At the upper end ( + .3), however, the value is .2 instead of the .1 
value that it should be. This may show the effects of guessing on the 
decision process. The ± .8 and ± 1 indifference regions again yield better 
error probabilities than would be expected from the theory. 
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The ASN function for the three-parameter model (Figure 12.6) also 
shows similar results to those obtained from the one-parameter model. 
The ± .3 indifference region required the greatest number of items, 
whereas ± .8 and ± 1.0 required about the same number. As before, the 
largest number was required near the criterion score. However, with the 
three-parameter model far fewer items, on the average, were required to 
make a decision than for the one-parameter model. Of special note is the 
ASN value of about 1.0 in the -1 to -3 range on the ability scale. Deci­
sions seem to be possible with very few items in that range. 

Because of the guessing component of the three-parameter logistic 
model, the ASN function tended to yield more asymmetric results than 
the one-parameter model. More items were required when classifying high 
than when classifying low to compensate for the nonzero probability of a 
correct response. Also, the ASN curve for the ± .3 indifference region was 
much more peaked than its one-parameter counterpart. If the simulated 
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curves for the three-parameter model are compared to the theoretical 
curves presented in Figure 12.4, the OC functions can be seen to match 
the theoretical functions fairly closely, while the ASN functions show that 
substantially fewer items were required. Over much of the ability range, 
as many as 10 times more items were specified by the theoretical ASN 
curve when unlimited identical items were assumed. It should be noted, 
however, that the theoretical curves are based on the one-parameter 
model. 

Effect of Guessing on the One-Parameter Model 

Figure 12.7 shows the OC functions for the one-parameter model when 
the three-parameter model was used to determine the responses. The 
figure shows three graphs, one for each of the ::!: .3, ± .8, and ± 1 indiffer­
ence regions. Note that the curves are fairly similar regardless of the 
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FIGURE 12.7. Composite OC ·functions for three indifference regions: solid line, :±: .3, 
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indifference region but that they are shifted substantially to the left com­
pared to the previous OC curves. This indicates that the probability of 
classifying a person below ec has dropped off substantially until an ability 
of about -2 has been reached. In other words, it is much easier to be 
classified above the criterion score with this procedure than when guess­
ing does not enter into the decision. Instead of being at zero, the effective 
criterion has been shifted down to -1.5. Clearly, the values of the OC 
function at the limits of the indifference region are entirely different from 
the theoretical values. 

The ASN functions for the three indifference regions ( :±: .3, :±: .8, and 
:±: 1) are shown in Figure 12.8. The differences between these graphs and 
those presented in Figure 12.4 are that the curves are higher (more items 
were required) and the highest point of the curve is shifted to the steepest 
part of the OC curve. The relation between the height of the ASN function 
and the width of the indifference region still holds; however, as the region 
gets wider, the average number of items decreases. 

f 

12. A PROCEDURE FOR DECISION MAKING USING TAILORED TESTING 253 

20 

~ 16 

,, 
,.., "' ' I ., ' 

I • \ 

., 
a 
Q) ... .... 
.... 
0 

... 
Q) 

.JJ 

a 
i 
Q) 

110 
a! 
k 
Q) 

< 

I .•1 \ 
I ••• ~ \ 
I • • \ 

I : ~ \ 
I : ~ \ 

I : : \ 
I : ~ \ 

I • • \ 
I : •. \ 

I • •.. \ 
I .z • \ 
I .• •.. \ 
I .• •. \ 

I : •. \ 
I • • \ I 

,' l · .. , ~ ~ : ._ ... _ 
/ . \ 

/ ••• • •• I' -···· .... · ·.1 \ /, ', 4.1 • 1··.~·-··.. ......__ ____________ _ 

································· 

k ·g. 
Q) 

p:: 

12 

8 

Oc 
I 
I 

-3 -2 -1 0 1 2 3 

Achievement ( 0) 

FIGURE 12.8. Composite ASN functions for three indifference regions: solid line, :+: .3 

dashed line, :+: .8; dotted line, :+: 1.0. 

SUMMARY AND CONCLUSIONS 

The purpose of this study was to describe a procedure for makinf 
binary classification decisions using tailored testing in conjunction witr 
the sequential probability ratio test (SPRT) and to present some simula 
tion data showing the characteristics of the operation of the SPRT for tw( 
IRT models. The SPRT, which was developed by Wald for quality control 
work, has not been applied for tailored testing applications because till 
assumption of an equal probability of a correct response was made tt 
facilitate the derivation of the operating characteristic (OC) and average 
sample number (ASN) functions. Since this assumption can be met fo1 

testing applications only by randomly sampling items for administration 
the procedure has not been used with tailored testing. In the pre~ 
ent research the probability of a correct response was allowed to van 
from item to item, although it made the derivation of the OC and ASN func 
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tions impossible. Simulation procedures were used to estimate these func­
tions. 

The results of the application of the SPRT procedure in three simula­
tion studies were described. The first study estimated the OC and ASN 
functions for a one-parameter logistic-based tailored testing procedure in 
which the size of the indifference region around the criterion score was 
varied. The results showed that the average number of items needed for 
classification was quite low when the true ability of a simulee was not too 
close to the criterion score and that the width of the indifference region did 
not greatly affect the OC function. The width of the indifference region did 
have a substantial effect on the ASN function. The accuracy of classifica­
tion of the simulated tailored test was not quite as good as administering a 
large number of items with difficulty values equal to the criterion score. 
This result was explained by the arbitrary 20-item limit imposed on the 
tailored test and by the variation in the difficulty parameters of the items 
administered. 

The second study estimated the OC and ASN functions for a three­
parameter logistic tailored testing procedure, also varying the size of the 
indifference region. The results were similar to those for the one­
parameter model, but even fewer items were generally needed for 
classification. The results of these first two studies both indicated that the 
SPRT could be successfully applied to tailored testing. 

The third simulation study estimated the OC and ASN functions for the 
one-parameter model when guessing was allowed to enter into the re­
sponses to the items administered. The results showed that, in effect, 
guessing lowered the criterion score, making it easier to classify an exam­
inee above the criterion and raising the average number of items needed 
for classification. This spurious shift in the effective criterion score greatly 
increased the error rates in classification. Although this effect was exag­
gerated in this study because the difficulty parameter estimates for the one­
and three-parameter models were assumed to be equal except for the 
constant D when in reality there would be some difference in the param­
eter estimates, the effect was strong enough to raise serious questions 
concerning the use of the one-parameter model for making classification 
decisions when guessing is a factor in item responses. 

On the basis of the results of these three simulation studies, several 
conclusions can be drawn. First, the combination of tailored testing and 
the SPRT results in a practical decision-making procedure. Second, accu­
rate decisions can be made based on the administration of relatively few 
test items. Third, procedures based on the three-parameter model require 
fewer items for making decisions than do procedures based on the one­
parameter model. Finally, guessing has a seriously detrimental effect on 

:r; 
~f' 

~if 
't.~ 

·~ 

~ 
:,f 

'?: 
(. 

12. A PROCEDURE FOR DECISION MAKING USING TAILORED TESTING 255 

the decision making procedure when it is based on the one-parameter 
logistic model. Overall, the tailored testing-SPRT combination shows 
substantial promise for testing applications. Future research should con­
centrate on verifying the findings :reported here in live-testing situations. 
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