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• Item parameter drift (IPD): change in item parameters over 
time. 

• Possible causes: changes in curriculum and training; 
candidates’ increasing familiarity with frequently exposed 
items. 

• Impact of IPD: affect psychometric quality of IRT applications 

 CAT: item selection; ability estimate 

 Pretest item calibration 

• Evaluate IPD: maintain a stable scale and ensure the quality 
of item calibration  

Introduction 
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• Data: a fixed-length CAT using 3P model 

• Number of candidates: 15,000 

• Test length: 150 operational (scored) items 

• Number of items in the data: 1,921 

• Number of items in IPD check: 1,208 items (N>=500) 

• Baseline scale: item pool  

• Purpose: develop procedures that can be used to efficiently 
identify items drifting away from the baseline scale in a real 
CAT data. 

CAT Program and Data 
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• IPD procedures have often been examined in the fixed-form 
test data.   

• DIF, drift, IRT model misfit:  all demonstrate the lack of 
invariance of item parameters in the data 

• IPD identification in CAT research:  

 Lord’s    statistic  

 CUSUM method  

 Raju’s NCDIF 

IPD Literature (1) 

2
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• Lord’s    statistic (2P & 3P): use parameter differences and 2 
sets of asymptotic variance-covariance matrices of maximum 
likelihood estimators for original and new item parameters; fit 
in the general framework of Wald test. 

• CUSUM procedure: a sequential series of Wald tests, in which 
standardized parameter differences are sequentially added for 
each time period.  

• Issues with Lord’s     & CUSUM: 

 Unavailability of asymptotic variance-covariance matrix for original item 
parameter estimates 

 Impact of item sample size on the magnitude of the asymptotic matrix 

• Raju’s NCDIF: rely on Monte Carlo technique 

 A large number of replications—time consuming 

 Numerous item parameter sets from the asymptotic variance-covariance 

matrix for newly calibrated parameters—restriction can’t be guaranteed   

IPD Literature (2) 
2

2
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• G2 is a likelihood ratio chi-square statistic.  

 

 

 

 

 

• G2 can’t be computed for an item with insufficient cases. 

• G2 issue: with a large sample size, an item can be flagged 
with even a trivial model misfit.  
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Item plot (1): Flagged Item (P<0.01) 

 

 

 

 

 
 

 

 

 



IACAT Monterey CA 7 

Item plot (2): Non-flagged Item (P<0.01) 

 

 

 

 

 
 

 

 

 



IACAT Monterey CA 8 

• BILOG-MG plot  

 Phase 2 output: poor quality 

 IRT Graphics tool: inconvenience 

• Visual inspection: subjective and time-consuming 

• Quantitative evaluation: more efficient and more objective 

• BILOG-MG: no detailed interim computation results for G2 

• For each item: compute a G2, produce a plot, then use the 
discrepancies between observed and model-based values to 
refine statistical test results and to categorize items.  

G2 Computing and Item Plotting  
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• G2 comparison: BILOG-MG vs. VUE 

 

 

 

 

 

• alpha=0.01: among 1,208 items, 77 (6%) are classified 
differently, G2 flagging consistency rate: 94% 

• Possible cause: use different interval merging methods 

Initial IPD Identifications: G2 Statistic 

Consistency: 1131 

(475+656)/1208=93.6% 

Inconsistency: 77 

(42+35)/1208=6.4% 
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• Indices to check item parameter drift: 

 P-DIF: discrepancy between observed and model-based 
proportion correct at each theta interval; 

 Drift: average of P-DIFs across all intervals; 

 Absolute drift: average of absolute P-DIFs across all intervals. 
 

 
 

 

 

 

Further IPD Identifications (1) : Drift Category 

179 (15%) getting easier 

19 (2%) getting harder 

537 (44%) Mixed directions 

404 (75%): easier 

133 (25%): harder 

473 (39%) drift OK 
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• Standard P-DIF: P-DIF / standard error of model-fit ICC value at 
each interval 

 

 

• Standard Drift Flag (Yes/No):  

Yes: standard P-DIF mean <= -1.645 or >= + 1.645 

• Absolute Standard Drift Flag (Yes/No):  

Yes: absolute standard P-DIF mean >= +1.645 

• Lower Asymptote Flag (Yes/No):  

Yes: 2 lower standard P-DIF values >= +2 or <= -2  

• Upper Asymptote Flag (Yes/No):  

Yes: 2 upper standard P-DIF values >= +2 or <= -2  

• Medium and large drift Flag (Yes/No):   

Yes: drift category is NOT OK, E, H, or V 
 
 

 

 

 

Further IPD Identifications (2) Standard Indices  

hjhjhjhj NPPP Error Standard /))ˆ(1(*)ˆ())ˆ((  
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• Each of the 1208 items is placed under one of two categories: Recalibration 
or Anchor.   

• Decision rule:  

     If (VUE G2 flag = Yes or BILOG-MG G2 = Yes or Drift Category ≠ OK) and  
(any of the drift flags = Yes) then the item is placed in the Recalibration 
category (509), otherwise it is placed in the Anchor category (699). 

 
 
 

 

 

 

Further IPD Identifications (3) Final Classification  

504+195=699 13+496=509 
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Item plot (1): Anchor Item (Flagged by G2) 
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Item plot (2): Recalibration Item (Not flagged by G2) 
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Item plot (3): Recalibration Item ICC 
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• Using both G2 statistic and criteria derived from the discrepancies 
between observed and model-based proportion correct, we check 
parameter drift for 1,208 operational items. 

• Plots for those items have been produced and scanned; in general, 
the real data support our final classification of items and 
recalibration outcomes. 

• Although the results can be confounded by item model misfit in 
original data calibration, it is still considered as a practical way of 
identifying drift items in a real CAT data.   

• A simulation study should be conducted to further examine the 
accuracy of this approach. 

• Finally, we will not completely replace parameters for all flagged 
items with newly calibrated values; instead, we have procedures to 
determine whether using recalibration results for an item directly or 
updating an item parameters by reconciling original and new values. 

 
 

Summary  
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Questions? Comments? 

 

 

 

 

 
 

 

 

 

 

 

Thank You! 
 

                               huijuan.meng@pearson.com 


