Practitioner's Approach to Identify Item Drift in CAT

Huijuan Meng, Susan Steinkamp, Pearson Paul Jones, Joy Matthews-Lopez, NABP

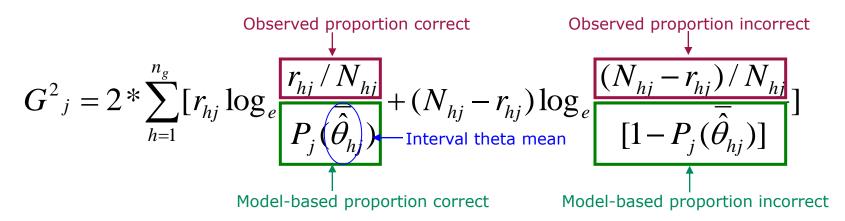
Introduction

- Item parameter drift (IPD): change in item parameters over time.
- Possible causes: changes in curriculum and training; candidates' increasing familiarity with frequently exposed items.
- Impact of IPD: affect psychometric quality of IRT applications
 - CAT: item selection; ability estimate
 - Pretest item calibration
- Evaluate IPD: maintain a stable scale and ensure the quality of item calibration

CAT Program and Data

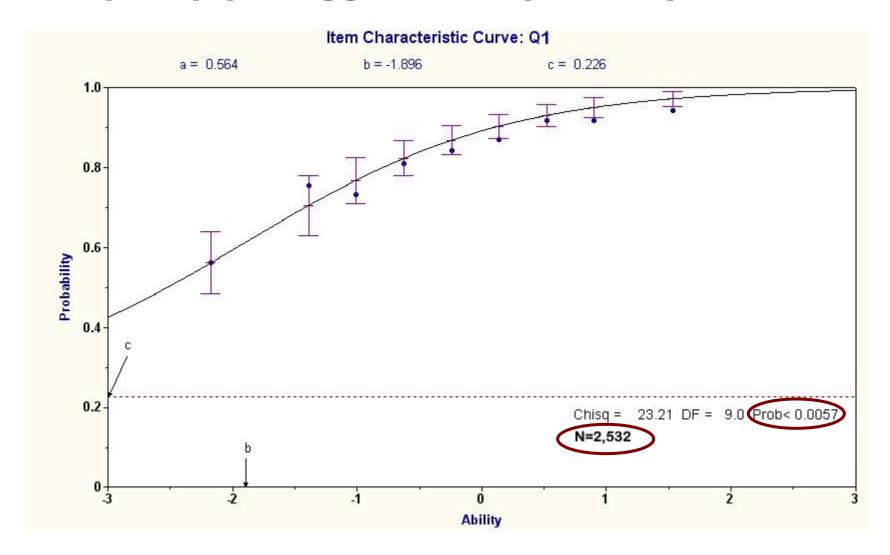
- Data: a fixed-length CAT using 3P model
- Number of candidates: 15,000
- Test length: <u>150</u> operational (scored) items
- Number of items in the data: 1,921
- Number of items in IPD check: 1,208 items (N>=500)
- Baseline scale: item pool
- Purpose: develop procedures that can be used to efficiently identify items drifting away from the baseline scale in a real CAT data.

IPD Literature (1)

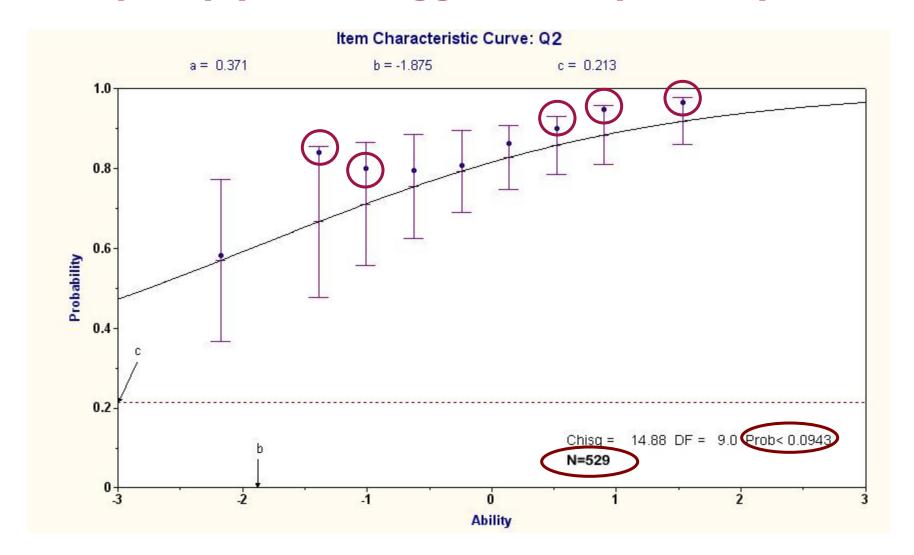

- IPD procedures have often been examined in the fixed-form test data.
- DIF, drift, IRT model misfit: all demonstrate the lack of invariance of item parameters in the data
- IPD identification in CAT research:
 - Lord's χ^2 statistic
 - CUSUM method
 - Raju's NCDIF

IPD Literature (2)

- Lord's χ^2 statistic (2P & 3P): use parameter differences and 2 sets of asymptotic variance-covariance matrices of maximum likelihood estimators for original and new item parameters; fit in the general framework of Wald test.
- CUSUM procedure: a sequential series of Wald tests, in which standardized parameter differences are sequentially added for each time period.
- Issues with Lord's χ^2 & CUSUM:
 - Unavailability of asymptotic variance-covariance matrix for original item parameter estimates
 - Impact of item sample size on the magnitude of the asymptotic matrix
- Raju's NCDIF: rely on Monte Carlo technique
 - A large number of replications—time consuming
 - Numerous item parameter sets from the asymptotic variance-covariance matrix for newly calibrated parameters—restriction can't be guaranteed


G² Statistic

G² is a likelihood ratio chi-square statistic.



- G² can't be computed for an item with insufficient cases.
- G² issue: with a large sample size, an item can be flagged with even a trivial model misfit.

Item plot (1): Flagged Item (P<0.01)

Item plot (2): Non-flagged Item (P<0.01)

G² Computing and Item Plotting

- BILOG-MG plot
 - Phase 2 output: poor quality
 - IRT Graphics tool: inconvenience
- Visual inspection: subjective and time-consuming
- Quantitative evaluation: more efficient and more objective
- BILOG-MG: no detailed interim computation results for G²
- For each item: compute a G², produce a plot, then use the discrepancies between observed and model-based values to refine statistical test results and to categorize items.

Initial IPD Identifications: G² Statistic

G² comparison: BILOG-MG vs. VUE

VUE Flag	BILOG-MG Flag				
	No	Yes	Total		
No	475	42	517		
Yes	35	656	691		
Total	510	698	1208		

Consistency: 1131

(475+656)/1208=93.6%

Inconsistency: 77

(42+35)/1208=6.4%

- alpha=0.01: among 1,208 items, 77 (6%) are classified differently, G² flagging consistency rate: 94%
- Possible cause: use different interval merging methods

Further IPD Identifications (1): Drift Category

- Indices to check item parameter drift:
 - P-DIF: discrepancy between <u>observed</u> and <u>model-based</u> proportion correct at each theta interval;
 - Drift: average of P-DIFs across all intervals;
 - Absolute drift: average of absolute P-DIFs across all intervals.

Drift	VUE G ² Flag		Total	
Category	No	Yes	Total	
OK	361 (76%)	112 (24%)	473	→ 473 (39%) drift OK
E	10	111	121	
EE	0	45	45	179 (15%) getting easier
EEE	0	13	13	
Н	0	12	12	
HH	0	5	5	19 (2%) getting harder
HHH	0	2	2	15 (2 /o) getting narae.
V	145	344	489	
VV	1	45	46	537 (44%) Mixed directions
VVV	0	2	2	
Total	517	691	1208	
				133 (25%): harder

Further IPD Identifications (2) Standard Indices

 Standard P-DIF: P-DIF / standard error of model-fit ICC value at each interval

Standard Error
$$(P(\hat{\hat{\theta}}_{hj})) = \sqrt{P(\hat{\hat{\theta}}_{hj}) * (1 - P(\hat{\hat{\theta}}_{hj})) / N_{hj}}$$

Standard Drift Flag (Yes/No):

Yes: standard P-DIF mean \leq -1.645 or \geq + 1.645

Absolute Standard Drift Flag (Yes/No):

Yes: absolute standard P-DIF mean >= +1.645

Lower Asymptote Flag (Yes/No):

Yes: 2 lower standard P-DIF values >= +2 or <= -2

Upper Asymptote Flag (Yes/No):

Yes: 2 upper standard P-DIF values >= +2 or <= -2

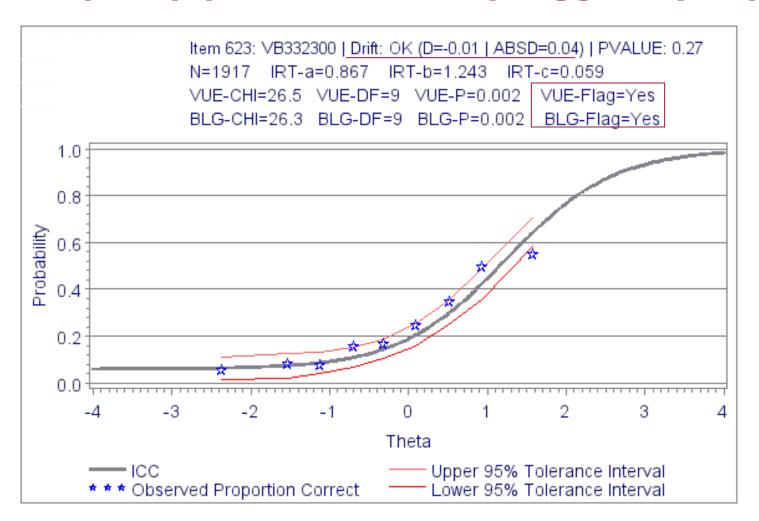
Medium and large drift Flag (Yes/No):

Yes: drift category is NOT OK, E, H, or V

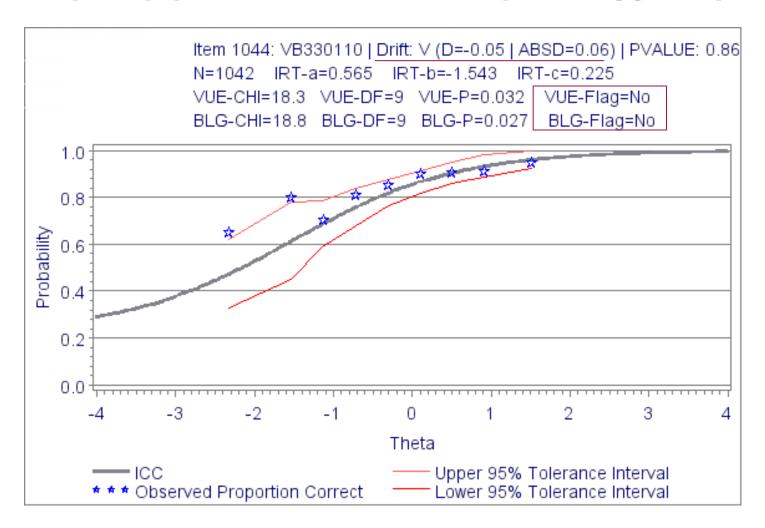
Further IPD Identifications (3) Final Classification

Each of the 1208 items is placed under one of two categories: Recalibration or Anchor.

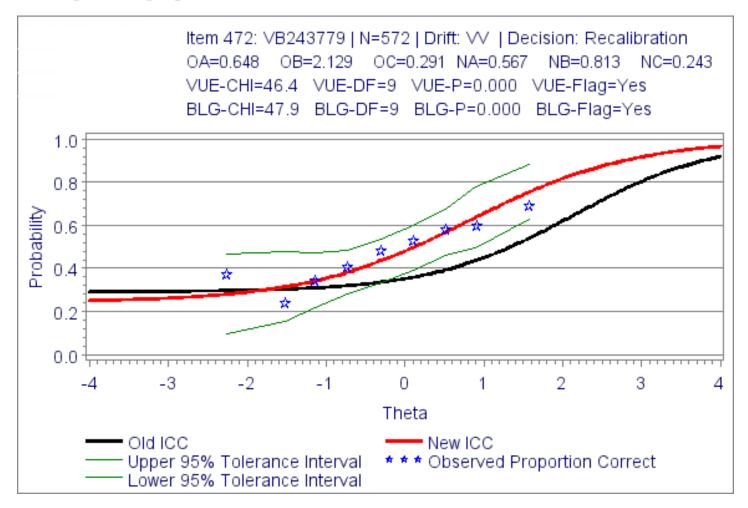
Decision rule:


If (VUE G^2 flag = Yes or BILOG-MG G^2 = Yes or Drift Category \neq OK) and (any of the drift flags = Yes) **then** the item is placed in the **Recalibration** category (509), **otherwise** it is placed in the **Anchor** category (699).

Category	And	hor	Recal	Total	
	G ² No	G ² Yes	G ² No	G ² Yes	Total
ОК	358	59	3	53	473
Е	10	30	0	81	121
EE	0	0	0	45	45
EEE	0	0	0	13	13
Н	0	2	0	10	12
HH	0	0	0	5	5
ннн	0	0	0	2	2
V	136	104	9	240	489
VV	0	0	1	45	46
VVV	0	0	0	2	2
Total	504 (72%)	195 (28%)	13 (3%)	496 (97%)	1208


504+195=699

13+496=509


Item plot (1): Anchor Item (Flagged by G²)

Item plot (2): Recalibration Item (Not flagged by G²)

Item plot (3): Recalibration Item ICC

Summary

- Using both G² statistic and criteria derived from the discrepancies between <u>observed</u> and <u>model-based</u> proportion correct, we check parameter drift for 1,208 operational items.
- Plots for those items have been produced and scanned; in general, the real data support our final classification of items and recalibration outcomes.
- Although the results can be confounded by item model misfit in original data calibration, it is still considered as a practical way of identifying drift items in a real CAT data.
- A simulation study should be conducted to further examine the accuracy of this approach.
- Finally, we will not completely replace parameters for all flagged items with newly calibrated values; instead, we have procedures to determine whether using recalibration results for an item directly or updating an item parameters by reconciling original and new values.

Questions? Comments?

Thank You!

huijuan.meng@pearson.com