RESEARCH CENTER FOR EXAMINATIONS EN CERTIFICATIONS

Item Selection Methods based on Multiple Objective Approaches for Classification of Respondents into Multiple Levels

Maaike van Groen, Theo Eggen & Bernard Veldkamp 2nd IACAT Conference, October, 2011, Monterey

UNIVERSITY OF TWENTE.

now you know

UNIVERSITY OF TWENTE.

Current Study Classification Testing Item Selection Simulation Study Conclusion

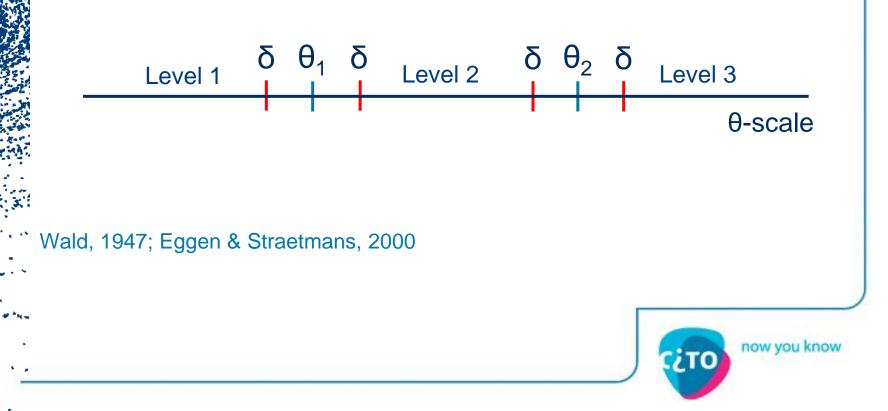
UNIVERSITY OF TWENTE.

Current Study Classification Testing Item Selection Simulation Study Conclusion

UNIVERSITY OF TWENTE.

Current Study Classification Testing Item Selection Simulation Study Conclusion

UNIVERSITY OF TWENTE.


Current Study Classification Testing Item Selection Simulation Study Conclusion

Classification Testing

Current Study Classification Testing Item Selection Simulation Study Conclusion

 Classification into one of several, mutually exclusive categories

Current Study Classification Testing Item Selection Simulation Study Conclusion

- Selecting the (next) item based on some criterion
- Objective:

UNIVERSITY OF TWENTE.

Maximization of Fisher information at some point on the ability scale

Current Study Classification Testing Item Selection Simulation Study Conclusion

Sequential Classification Testing

Adaptive Classification Testing

UNIVERSITY OF TWENTE.

Current Study Classification Testing Item Selection Simulation Study Conclusion

Current methods (Eggen & Straetmans, 2000)

Randomization

UNIVERSITY OF TWENTE.

- Maximization at the middle of the cutting points
- Maximization at the nearest cutting point
- Maximization at the current ability estimate

 θ_2

Current Study Classification Testing Item Selection Simulation Study Conclusion

New methods

- Taking multiple points on the ability scale into account
- Based on multiple objective approaches (Veldkamp, 1999)

UNIVERSITY OF TWENTE.

Current Study Classification Testing Item Selection Simulation Study Conclusion

New methods

- Multiple objective approaches
 - Weighting methods
 - Ranking or prioritizing methods

θ₁ability

- Goal programming methods
- Global-criterion methods
- Maximin methods $I_i(\theta_c), i \in V_i$

 θ_2

 $\max \sum_{i=1}^{n} w_c I_i(\theta_c), i \in V_i$

c=1

 θ_3

UNIVERSITY OF TWENTE.

informatior

Simulation Study

Current Study Classification Testing Item Selection Simulation Study Conclusion

Two item pools:

- 500 items
- α ~N(1.0,0.25)
- $\beta \sim N(0.0, 1.0) \& \beta \sim N(0.0, 2.0)$

Simulees:

• 1000 simulees per item selection method, $\theta \sim N(0.0, 1.0)$

SPRT:

- *α=β=*0.05
- δ=0.10
- Cutting points: -1.0 & 1.0

8 item selection methods

now you know

Simulation Study: Results

Current Study Classification Testing Item Selection Simulation Study Conclusion

	Broad item pool		Peaked item pool	
Item selection method	ATL	PCD	ATL	PCD
Random	99.0	0.77	95.6	0.77
Estimate Based	77.1	0.88	74.5	0.89
Middle cutting points				
	78.6	0.89	76.6	0.87
Nearest cutting point	80.5	0.86	75.0	0.89
Weighting method	79.3	0.87	74.4	0.89
Goal programming method	82.3	0.87	79.9	0.86
Global-criterion method	86.0	0.85	83.1	0.85
Maximin method	85.6	0.85	82.9	0.84

Note: ATL = average test length, PCD = percentage of correct decisions.

now you know

Conclusion

Current Study Classification Testing Item Selection Simulation Study Conclusion

- Sequential Classification Tests higher ATL than Adaptive Classification Tests
- Sequential Classification Tests slightly lower PCD than Adaptive Classification Tests
- Results also hold with three and four cutting points

Conclusion

Current Study Classification Testing Item Selection Simulation Study Conclusion

Concluding remarks:

- Other item pools
- Other SPRT settings
- Other ability distributions
- Lower maximum number of items
- High average test length
- Other methods can be based on multiple objective approaches

