TitleScripted On-the-fly Multistage Testing
Publication TypeConference Paper
Year of Publication2017
AuthorsChoe, E, Williams, B, Lee, S-H
Conference NameIACAT 2017 Conference
Date Published08/2017
PublisherNiigata Seiryo University
Conference LocationNiigata, Japan
KeywordsCAT, multistage testing, On-the-fly testing

On-the-fly multistage testing (OMST) was introduced recently as a promising alternative to preassembled MST. A decidedly appealing feature of both is the reviewability of items within the current stage. However, the fundamental difference is that, instead of routing to a preassembled module, OMST adaptively assembles a module at each stage according to an interim ability estimate. This produces more individualized forms with finer measurement precision, but imposing nonstatistical constraints and controlling item exposure become more cumbersome. One recommendation is to use the maximum priority index followed by a remediation step to satisfy content constraints, and the Sympson-Hetter method with a stratified item bank for exposure control.

However, these methods can be computationally expensive, thereby impeding practical implementation. Therefore, this study investigated the script method as a simpler solution to the challenge of strict content balancing and effective item exposure control in OMST. The script method was originally devised as an item selection algorithm for CAT and generally proceeds as follows: For a test with m items, there are m slots to be filled, and an item is selected according to pre-defined rules for each slot. For the first slot, randomly select an item from a designated content area (collection). For each subsequent slot, 1) Discard any enemies of items already administered in previous slots; 2) Draw a designated number of candidate items (selection length) from the designated collection according to the current ability estimate; 3) Randomly select one item from the set of candidates. There are two distinct features of the script method. First, a predetermined sequence of collections guarantees meeting content specifications. The specific ordering may be determined either randomly or deliberately by content experts. Second, steps 2 and 3 depict a method of exposure control, in which selection length balances item usage at the possible expense of ability estimation accuracy. The adaptation of the script method to OMST is straightforward. For the first module, randomly select each item from a designated collection. For each subsequent module, the process is the same as in scripted CAT (SCAT) except the same ability estimate is used for the selection of all items within the module. A series of simulations was conducted to evaluate the performance of scripted OMST (SOMST, with 3 or 4 evenly divided stages) relative to SCAT under various item exposure restrictions. In all conditions, reliability was maximized by programming an optimization algorithm that searches for the smallest possible selection length for each slot within the constraints. Preliminary results indicated that SOMST is certainly a capable design with performance comparable to that of SCAT. The encouraging findings and ease of implementation highly motivate the prospect of operational use for large-scale assessments.

Presentation Video