%0 Journal Article %J Applied Psychological Measurement %D 2020 %T Stratified Item Selection Methods in Cognitive Diagnosis Computerized Adaptive Testing %A Jing Yang %A Hua-Hua Chang %A Jian Tao %A Ningzhong Shi %X Cognitive diagnostic computerized adaptive testing (CD-CAT) aims to obtain more useful diagnostic information by taking advantages of computerized adaptive testing (CAT). Cognitive diagnosis models (CDMs) have been developed to classify examinees into the correct proficiency classes so as to get more efficient remediation, whereas CAT tailors optimal items to the examinee’s mastery profile. The item selection method is the key factor of the CD-CAT procedure. In recent years, a large number of parametric/nonparametric item selection methods have been proposed. In this article, the authors proposed a series of stratified item selection methods in CD-CAT, which are combined with posterior-weighted Kullback–Leibler (PWKL), nonparametric item selection (NPS), and weighted nonparametric item selection (WNPS) methods, and named S-PWKL, S-NPS, and S-WNPS, respectively. Two different types of stratification indices were used: original versus novel. The performances of the proposed item selection methods were evaluated via simulation studies and compared with the PWKL, NPS, and WNPS methods without stratification. Manipulated conditions included calibration sample size, item quality, number of attributes, number of strata, and data generation models. Results indicated that the S-WNPS and S-NPS methods performed similarly, and both outperformed the S-PWKL method. And item selection methods with novel stratification indices performed slightly better than the ones with original stratification indices, and those without stratification performed the worst. %B Applied Psychological Measurement %V 44 %P 346-361 %U https://doi.org/10.1177/0146621619893783 %R 10.1177/0146621619893783 %0 Conference Paper %B IACAT 2017 Conference %D 2017 %T A Simulation Study to Compare Classification Method in Cognitive Diagnosis Computerized Adaptive Testing %A Jing Yang %A Jian Tao %A Hua-Hua Chang %A Ning-Zhong Shi %X

Cognitive Diagnostic Computerized Adaptive Testing (CD-CAT) combines the strengths of both CAT and cognitive diagnosis. Cognitive diagnosis models that can be viewed as restricted latent class models have been developed to classify the examinees into the correct profile of skills that have been mastered and those that have not so as to get more efficient remediation. Chiu & Douglas (2013) introduces a nonparametric procedure that only requires specification of Q-matrix to classify by proximity to ideal response pattern. In this article, we compare nonparametric procedure with common profile estimation method like maximum a posterior (MAP) in CD-CAT. Simulation studies consider a variety of Q-matrix structure, the number of attributes, ways to generate attribute profiles, and item quality. Results indicate that nonparametric procedure consistently gets the higher pattern and attribute recovery rate in nearly all conditions.

References

Chiu, C.-Y., & Douglas, J. (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns. Journal of Classification, 30, 225-250. doi: 10.1007/s00357-013-9132-9

Session Video

%B IACAT 2017 Conference %I Niigata Seiryo University %C Niigata, Japan %8 08/2017 %G eng %U https://drive.google.com/open?id=1jCL3fPZLgzIdwvEk20D-FliZ15OTUtpr